Proceedings of International Conference
on.Computer Architecture

Design and Performance Evaluation of Branch-Skipped Reduced
Instruction Set Computers

Shyh-Jye Wang, Phen-Lan Lin * and John D. Provence **

ASIC Division
Taiwan Semiconductor Manufacturing Company
Hsin-Chu, Taiwan

* Department of Computer Science and Information Management
Providence University
Shalu, Tai-Chung, Taiwan

** Mixed Signal Products Group
Texas Instruments

Dallas, Texas 75265, U.S.A.

Abstract

A pipelined RISC has been designed to incorporate
the branch-skipped feature. Branch insiructions are
detected in the first stage of the pipeline and branch
target instructions are made available early enough to
let the RISC skip all branch instructions. The perfor-
mance of this RISC is significant compared with other
RISCs, with or without the branch-skipped feature.

1 Introduction

The design of a pipelined reduced instruction set
computer (RISC) is well known [1]. The maximum
throughput of a pipeline can only be obtained if
the pipeline can be kept full. The execution of a
branch instruction will cause the contents of part of
the pipeline to be discarded and then reloaded if the
branch is taken. Lilja [2] used an equation to calculate
the cost of a branch. First, he defined the following
parameters:

Thve is the average number of cycles required per
instruction,

P, is the probability that a particular instruction
is a branch,

P, is the probability that a branch is taken, and

b is the branch penalty (that is the number of cy-
cles wasted when a branch is taken).
The average number of cycles per instruction is then

Tywe = 1+ bP, P (1)

For the simple pipeline model presented here, Tg,. is
determined by the branch penalty b, the percentage of
branch instructions executed Py, and the probability
that the branch is taken P;.

The strategy of reducing the cost of a branch is
to reduce any one of the three factors that consti-
tutes the cost. Delayed branch [1], multiple prefetch

[3{, and the using of branch target buffers [4] are
all utilized to reduce the branch penalty. Branch-
skipped [5] and branch folding [3, 6, 7] are used to
reduce the probability that a particular instruction is
a branch instruction. The major difference between
the branch folding and the branch-skipped is that
the branch-skipped technique detects and resolves all
branches, conditional and unconditional, due to its
simple architecture, while the branch folding cannot
resolve conditional branches all the time. Therefore,
branch folding is usually combined with other branch
cost reduction techniques such as branch prediction.
Branch prediction [4] is used to reduce the proba-
bility that a branch is taken to the probability of a
wrong prediction. A combination of more than one
of the stated techniques have been utilized to reduce
the cost of branches by many researchers and compa-
nies [2, 6, 8, 9]. For example, both branch folding and
branch prediction techniques are used in the AT&T
CRISP microprocessor [6]. Another example is made
by Gonzalez and Llaberia [8] who have introduced
a mechanism called COBRA which incorporates the
following schemes: early computation of the target
address, multiple prefetch, and delayed branch.

2 The branch-skipped pipelined RISC

We have designed a branch-skipped RISC [5] which
implements the instruction set of the 32-bit DLX ar-
chitecture [1]. Referring to Figure 1, The princi-
pal stages of the branch-skipped pipelined RISC are
the instruction prefetch stage, instruction fetch stage,
instruction decode stage, execution stage, memory
stage, and write back stage. These principal stages
communicate with each other through signals that
represent data, instructions, and control signals dur-
ing the execution of a RISC instruction.

Memary

IRy

(1D

Contro)
Signals

+ 6 & 11-bit
! Decoder

Conteal
Signals

.......................................

Cantsol
Signals

Generator

...

Figure 1: The branch-skipped RISC block diagram.

In investigating the branch path in a pipeline, the
only two things that need to be done are determin-
ing if the branch is taken or not and determining
the branch target address. The idea of the branch-
skipped or branch folding techniques is to determine
the branch instruction outcomes in the instruction
prefetch stage and to prevent branch instructions from
being loaded into the later part of the pipeline so that
branch instructions can be skipped. It is a waste
of time and hardware for the branch instruction to
go through other pipeline stages, such as execution,
memory access, and write back, since nothing is done
in those stages.

The instruction prefetch stage consists of two
prefetch buffers, PFB0 and PFB1, and a predecoder.
The program counter, PC, is incremented by four and
the result, PC4, is used as the memory address for
fetching the instruction stored in that address loca-
tion. The fetched instruction is then stored in PFB1.
In the same manner, PC4 is incremented by four and
the result, PC8, is used for fetching the next instruc-
tion stored in memory. The fetched instruction is then
stored in PFB0. The predecoder is used to determine
if the instruction in PFBI1 is a branch instruction.
If a branch instruction is detected, then, the branch
target address BTA is generated by a 32-bit adder
which sums up PC4 and the displacement indicated
in the offset field of PFB1. The branch target ad-
dress is then used to access the memory and load the

45

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

branch target instruction and the instruction follow-
ing the branch target instruction into the branch tar-
get queues, BTQ2 and BTQ1, respectively.

The instruction fetch stage is constructed from two
branch target queues, BTQ1 and BTQ2, two 32-bit
multiplexers, a prefetch buffer, PFB2, an instruction
register IR, and a branch detection and control logic.
If PFB1 is not a branch instruction, PC is incre-
mented by four. The contents of IR are loaded from
PFB2 which are loaded from PFBI1 in the previous
cycle. When the clock moves to the next machine cy-
cle, we are able to determine if the branch is taken
or not by testing the contents of a specific register
in the register file or by forwarding the output of the
ALU to the control logic if the condition of the branch
depends on the current ALU output.

The contents of source register field of PFB2 are
compared with the contents of each of the data de-
pendency buffers. If either one is matched, the con-
tents stored in the corresponding forward buffer will
be loaded into a temporary register. However, if the
comparison between PFB2 and the data dependency
buffers is not a match, a specific register in the regis-
ter file will be accessed and the contents of the register
will be stored in the temporary register. If the IPF
stage has already detected a branch instruction, then
the memory contents pointed by BTA and BTA +
4 will be loaded into BTQ2 and BTQ1 respectively.
By the end of the current machine cycle, IR is loaded
from BTQ2, and PFB2 is loaded from BTQ1, if the
branch is taken. Also, PC is loaded by the result of
BTA + / so that a new program sequence path will
begin. If the branch is not taken, IR is loaded from
PFB1, and PFB2 is loaded from PFB0. In both cases
the branch instruction will not be loaded into IR so
that the branch instruction is skipped from the later
part of the pipeline. PC will increment by four again
because the branch instruction is skipped.

Figure 2 is an execution pattern of a branch-
skipped pipelined microprocessor. Let BRA be a
branch instruction. If branch is not taken, instruc-
tion ¢ + 3 will succeed instruction ¢ + I and BRA is
skipped. If branch is taken, the new instruction j will
succeed instruction ¢ + 7 and BRA is skipped as well.

The limitations of the branch-skipped technique
are the following: first, a conditional branch cannot
depend on the ALU output of the previous instruc-
tion. This is because the determination of the branch
condition has to be made when the instruction is in
the IF stage while its previous instruction is still in
the ID stage, and there is no way to know the result
of the ALU until the next stage. If we desire to make
this possible, extra hardware needs to be added. Sec-
ond, no consecutive branches are allowed in the ma-
chine instructions. This is because when the branch is
taken, the instruction is skipped and PFB2 is loaded
from BTQ1 which would have never been detected if
it were a branch instruction. In this case, the pro-
gram sequence will be wrong. In the above cases,
the compiler can insert an NOP instruction in front
of the branch instruction. An NOP instruction costs
one machine cycle to execute; however, the average
execution time with this technique is still no more
than one clock cycle. Let P, be the probability that

Proceedings of International Conference
on Computer Architecture

Clock number

lstuction 1 2 3 4 5 & 71 3

i IPF IF ID EX MEM WB

i+1 WF FF 1D EX MEM WB

BRA IPE T

i+3 (PFBI) ID EX MEM WB

i (BTQ») D EX MEM WB
Figure 2: The execution pattern of the branch-

skipped RISC.

a branch instruction does not follow an NOP instruc-
tion. The average execution time of a branch skipped
processor is

Tave = (1= P)(1) + P[0+ (1= P)(L)], (2)
which can be rearranged to
Tove = 1= BP,. (3)

It can be seen from Equation 3 that Ty, is indepen-
dent from the term P; in the branch-skipped imple-
mentation. This is because a branch instruction is
always skipped no matter if it is taken or not. From
Equation 3, the worst case is when either there is
no branch instruction in the whole machine instruc-
tions (P, = 0) or there is always an NOP inserted
before a branch instruction, (P, = 0) in which case
Tave = 1 and is not worse than any other previous
scheme. However, whenever P, P, is not equal to zero,
there is always a branch benefit and T,,. is less than
one. It can also be seen that the bigger the value
of Py, the lesser the value of T,,., which means the
higher the percentage of all machine instructions that
are branch instructions, the more the execution time
can be reduced.

One issue on implementation is the processor cycle
time. In this design, on-chip instruction and data
caches must be incorporated. Therefore, the added
IPF stage would not be the slowest pipeline stage of
the processor.

In order to support the branch-skipping scheme,
additional hardware needs to be added to the micro-
processor. One adder is needed to calculate PC4 and
PC8. Two multiplexers are needed to select the paths
of the IR and PFB2. One predecoder and one con-
trol logic are also needed to control and make deci-
sions. Without taking the on-chip instruction and
data caches into account, the hardware overhead is
about 15% when the branch-skipped scheme is incor-
porated.

The compiler for the branch-skipped microproces-
sor needs to make sure two things will not happen.
First, a conditional branch cannot depend on the ALU
output of the previous instruction. Second, no con-
secutive branches are allowed in the machine instruc-
tions.

Like the delay-slot in the delayed branch scheme,
we will call the pipeline slot which is placed one step

46

earlier than the branch instruction an early-slot. If
the instruction in the early-slot conflicts with either
one of the previous two rules, the compiler shall find
an instruction to fill the early-slot under a condition
that the data dependency shall not be changed. If a
safe instruction is not found, however, the compiler
c]an always insert an NOP instruction into the early-
slot.

The wotkload of a compiler for the branch-skipped
microprocessor should be less than that of a compiler
for a microprocessor with the delayed branch feature.
The compiler for a microprocessor with the delayed
branch feature needs to search for useful instructions
to fill every delay-slot and reschedule the machine
code. On the other hand, the compiler for the branch-
skipped microprocessor only needs to check for any
consecutive branches or any data dependencies of the
branch. If one of the above conditions is found, the
compiler will then find a safe instruction or assign an
NOP instruction to fill the early-slot.

3 Performance evaluation

In this section, the performance of the branch-
skipped RISC is compared with other existing
schemes which include the DLX, CRISP [6], COBRA
(8], and a RISC without any feature for reducing the
cost of branches. We first modeled the RISCs with
Verilog HDL and then extracted the parameters re-
quired for the calculation below.

The comparisons are based on the performance of
Tave, the average number of cycles required to exe-
cute an instruction. The variables are &, P;, and P,
which have been defined in the first Section. The val-
ues of some other variables are fixed so as to keep our
results small. However, the variation of those fixed
variables will not cause a different outcome of the
analysis. Those variables and their assumed values
are described below: P,,, is defined as the fraction-of
the b delay slots filled with NOP instruction. Assume
that Py, is equal to 0.7 for delayed branch based on
the statics shown by Lee and Smith [4]. P, is the
probability that a prediction is wrong. For branch
prediction, let P, equal 1 minus P, if P; is greater
than or equal to 0.5 and let P, equal P; if P, is less
than 0.5. The reason is this: for the case of branch-
ing in one direction, a 100% correct prediction is re-
cewved; for the case when branches alternate direction,
only 50% of prediction accuracy is received. P, is
the probability that a particular branch instruction is
a conditional branch. For CRISP, assume that P,,,
equals 0.2. Finally, assume that P, equals (1 — P)
for a branch-skipped RISC. Where P, is the probabil-
ity that a branch instruction does not follow ‘an NOP
instruction. For a branch-skipped RISC, an NOP is
inserted before a branch instruction under two condi-
tions: first, when the branch instruction follows an-
other branch instruction; second, when the branch
mstruction depends on the result generated by the
previous instruction and a useful instruction is not
found to fill the slot. The first condition will cause a
result as assumed. The second condition can be ig-
nored when useful instructions are found to fill the
slot.

Now, we will use Amdahl’s Law [10] to quantify

our measurement. Amdahl’s Law states that the per-
formance improvement to be gained from using some
faster mode of execution is limited by the fraction of
the time the faster mode can be used. Let Ty;; be
the execution time for the entire task without using
the enhancement and T, be the execution time for
the entire task using the enhancement when possible.
Amdahl’s Law defines the speedup that can be gained
by using a particular feature.

T.
Speedup = =24,

(4)

Figure 3 to 5 are the performance comparisons
when b = 1, with P, = 15%, 25%, and 35%. It can
be seen that the performance of the branch-skipped
scheme is always the best one. Since the DLX is im-
plemented with the same features the COBRA has,
the performance of the COBRA and the DLX are the
same,

Lee and Smith found that the average number of
branch instructions in a program is about 25% among
all instructions [4]. Therefore, when the branch
penalty of the normal RISC is one clock cycle, the
speedup gained by using branch-skipped feature is
from 1.24 to 1.55 depending on the probability that
a branch is taken. the higher the probability that a
branch is taken, the higher the speedup. Under the
same condition, the speedup gained by the CRISP is
from 1.06 to 1.30 and the speedup gained by the CO-
BRA is from 1 to 1.09.

The speedup gained by using any feature to reduce
the cost of branch is more significant when the per-
centage of branch instructions in a program is higher.
In the case of P, = 35%, the speedup gained by using
branch-skipped feature is from 1.30 to 1.75.

Figure 6 to 8 are the performance comparisons
when b = 3, with P, = 15%, 25%, and 35%. The
speedup gained by using any feature to reduce the cost
of branch is even more significant when the branch
penalty of the normal RISC is three clock cycles. In
this case, the speedup gained by using branch-skipped
feature is from 1.25 to 2.70 when P = 35%.

When the branch penalty is three clock cycles, the
COBRA outperforms the CRISP in the range between
15% to 75% of P;. This is because the CRISP incorpo-
rates a branch prediction scheme. The probability of
a correct prediction is low when the number of taken
branches and not taken branches are about the same.

enh

4 Conclusion

The idea that a branch instruction can be skipped
from the pipeline stimulated this research. We have
shown the design of a branch-skipped RISC in a reg-
ister transfer level.

The performance of this technique is significant in
that while other approaches are targeted on reducing
the branch penalty to zero, this approach reduces the
branch penalty to a negative value. Therefore, the
mote branch instructions there are, the more execu-
tion time is reduced. When the branch penalty of the
normal RISC is one clock cycle and the average num-
ber of branch instructions in a program is about 25%
among all instructions, the speedup gained by using

47

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

branch-skipped feature is from 1.24 to 1.55 depending
on the probability that a branch is taken. The higher
the probability that a branch is taken, the higher the
speedup. The technique of branch-skipping shown in
this paper can be applied to almost every RISC.

References
[1] D. A. Patterson and J. L. Hennessy, Computer

Architecture A Quantitative Approach. 1990,
Morgan Kaufmann.

(2] D. J. Lilja, “Reducing the Branch Penalty in
Pipelined Processor,” IEEE Computer, vol. 21,
no. 7, July 1988, pp. 47-55.

[3] PowerPC 601 RISC Microprocessor Technical
Summary. IBM Microelectronics, Essex Junc-
tion, VT, November, 1993.

[4] J. K. F. Lee and A. J. Smith, “Branch Predic-
tion Strategies and Branch Target Buffer De-
sign,” IEEE Computer, Jan. 1984, pp. 6-22.

[5] S.-J Wang and J. D. Provence, “Branch-Skipped
Pipelined Microprocessor,” IEE Electronics Let-
ters, vol. 30, no. 14, July 7, 1994, pp. 1122-1123.

[6] D. R. Ditzel and H. R. McLellan, “Branch Fold-
ing in the CRISP Microprocessor: Reducing
Branch Delay to Zero,” Proc. of the 14th Sym-
posium of Computer Architecture, 1987, pp. 2-9.

[7] J. E. Smith, “Dynamic Instruction Scheduling
and the Astronautics ZS-1,” IEEE Computer,
vol. 22, no. 7, July 1989, pp. 21-35.

(8] A. M. Gonzalez and J. M. Llaberia, “Reducing
Branch Delay to Zero in Pipelined Processors,”

IEEE Transactions on Computers, vol. 42, no. 3,
March 1993, pp: 363-371.

[9] S. McFarling and J. Hennessy, “Reducing the
Cost of Branches,” Proc. 13th Symposium on
Computer Architecture, 1986, pp. 396-403.

[10] G. M. Amdahl, “Validity of the Single Proces-
sor Approach to Achieving Large Scale Comput-
ing Capabilities,” Proc. AFIPS 1967 Spring Joint
Computer Conf., April 1967, pp. 396-403.

Proceedings of International Conference

on Computer Architecture

t

L8

L6

Speedup 14 -

Nemwal —
DLX. Cobra ---*

fIsp .
Branch-skapped - -+

Figure 3:

[

Speedup comparison with b = 1, P, = 15%.

Pu(%)

18

16 |

Speedup 14

1.2

T
Noemal =—
DLX. Cobra ==**
nsp ==
Branch-skipped * *

Figure 4:

Speedup comparison with b = 1, P, = 25%.

Pt (%)

80 100

=

Speedup L4

1.2

Nomal —

DLX. Cuthrg ==+
Cinp ==~

Brunch-shappend © -7

Figure 5: Speedup comparison with b = 1, P, = 35%.

PL(T)

bt 1x)

3 T T T T
Nowal — |
DLX. Cibra oo
Crnp
Biancheskipped © -
pA N o 1
5L 4

0 20 4) 60 RO w
Prit)

Figure 6: Speedup comparison with b = 3, P, = 15%.

3 T T T T
Nomnat —
DL, Cobray -+
risp <<
a5k Brancheskippad -+ |

v
T
.

Speedup

in

o 20 40 60 80 100
PL(%)

Figure 7: Speedup comparison with b = 3, P, = 25%.

3 T . : ;
Normal —
DLX. Cobra -~

Crusp ===,

25 Branch-skx?ncggv i

0 20 4an 60 "0 10X
Pt(%)

Figure 8: Speedup comparison with b = 3, P, = 35%.

