Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

On the Lossless Compression of Still Images®

Trees-Juen Chuang and Ja-Chen Lin

Department of Computer and Information Science
National Chiao Tung University
Hsinchu, Taiwan 30050
R.O.C.

Abstract

This paper presents a new algorithm for lossless
still image compression using a new scheme: base-
switching (BS). The given image is partitioned into
non-overlapping fixed-size subimages. Different
subimages then get different compression ratios
according to the base values of the subimages. In
order to increase the to compress gray-value images
(or a color component of color images). In Section 2
we review the JBIG and Lossless compression ratio,
a hierarchical technique is also used. It is found that
the compression ratio of the proposed algorithm can
compete with that of the international standard
algorithms known as JBIG and Lossless JPEG. The
math theory needed to build up the proposed
compression scheme is also provided.

1. Introduction

There are many algorithms for lossy
compression of still image compression and they
usually achieve very high compression ratio."” These
algorithms usually assume that the reconstructed
images will let human eyes feel no difference.
However, in certain situations, lossy compression is
inappropriate due to the need of exact fidelity or
legality. For example, if we get many unidentified
images which cannot be analyzed immediately due
to the lack of suitable analyzer on the scene, then we
cannot use lossy compression algorithms to
compress images. (This kind of application did
occur in, say, satellite or medical image processing.)
The reason lossy compression is not suitable in this
case is that they might ignore some important
information imperceptibly, and the lost information
cannot be recovered. Note that the need of lossless
compression might also arise in the application

“This work was supported by the National Science
Council, Republic of China, under contract NSC 86-
2213-E009-108,

where some kinds of lossy compression has already
been done and further lose is not desired.”
Since many lossless compression algorithms have
been developed to compress black-and-white (binary)
images (the international standards for binary
images include the compression algorithms MH,
MR,®” MMR,” JBIG,”® and so on), we only
discuss in this paper the gray-value images, and
present a new lossless method

JPEG for gray-value images. We then present
our new algorithm in Section 3. The experimental
results and time complexity analysis are provided in
Section 4. The comparisons with JBIG and Lossless
JPEG are also included there. Concluding remarks
are in Section 5.

2. A short review of the JBIG
and Lossless JPEG for gray-
value images

Two lossless still image compression algorithms,
JBIG and Lossless JPEG, have recently become
international standards. The algorithms are the
special cases of the parameterizable JBIG®" and
JPEG®V standards, respectively.

JBIG (Joint Bi-level Image expert Group coding)
was defined in CCITT Recommendation T.82,
which for gray-level coding breaks images down
into the “bit-planes” of the images, and then
compresses these bit-planes with its binary
algorithm (the algorithm defined in CCITT T.82 for
binary compression uses an adaptive 2D coding -
model, followed by an adaptive arithmetic coder*?).

JPEG (Joint Photographic image Expert Group)
was defined in CCITT Recommendation T.81. For
lossless coding (this differs from the lossy mode of
JPEG well-known to most of the people; the JPEG
that we mention here is in its lossless mode and
hence does not require the use of the Discrete Cosine
Transform (DCT) coding”®), JPEG utilizes a
customizable from of Differential Pulse Code
Modulation (DPCM) coding"* and a variable-length

121

Proceedings of International Conference on Image
Processing and Character Recognition

representation of the DPCM errors."> There are two
choices — custom Huffman or adaptive arithmetic
coder — to follow this model.

3. The proposed algorithm

3.1. System Overview

S
(input an imﬁ
_

divide into subimages of size nxq

[get the first subimage]

Is BS worthy?

encode this subimage by BS l

get next subimage e

Fig. 1. The flowchart of the proposed Base
Switching (BS) method.

As shown in Fig. 1, we first divide the original
image (gray-level data) into subimages of size nxn.
The subimages are then processed one by one. For
each subimage, we have to determine whether the
proposed base-switching (BS) algorithm is worthy
o apply to the subimage or not. In other words, if
the proposed BS will cause data explosion, i.e., will
cause the b.p.p. (bits per pixel) be not less than 8
for this gray level subimage, then we skip this
subimage because the whole subimage will be
transmitted in the traditional pixel-by-pixel
manner (nxn pixels, and each pixel has 8 bits).
On the other hand, if the data explosion does not
occur, then the proposed BS is used to transmit this
subimage. Of course, an extra bit is needed to
indicate whether the subimage is encoded (by the
proposed BS) or not. (Therefore, the total number
of bits needed to iransmit a non-BS subimage is one
more bit than that of the traditional pixel-by-pixel
manner.) Throughout this paper, the subimage size
used is 3x3 for the efficiency of compression ratio.

3.2. Encoding a subimage by BS

8o g g2 g, g g
g3 g4 Es £ g, g
g6 g7 83 g6 g 8

Fig. 3. Subimage 4’
Each g’ is g—m,
i=01---8.

Fig. 2. An arbiirary given
subimage 4.

Given a 3x3 subimage 4, whose nine gray
values are g.,g,, -, g, (see Fig. 2). Define the
“minimum” m, “base” b, and the “value-reduced
subimage” A’ (see Fig. 3) of the subimage 4 by

m=ming,, ey
0<i<8
0<i<8 0<is8
m m m
A?:x3 A3x3 —ymomomy, (3)
m m m
respectively. Note that (3) means that
g',=g;,—m foralli=0, 1,2,.-.8. 4
Also denote that
ming',=0 and max g’ =b-1. (%)
0<i<8 0<i<8
Therefore, the 9-dimensional vector
A'=(g'y.8'1,++,8"g) can be treated as a 9-

digit number (g'o g'l...g'8)b in the base-b

_number-system. For convenience, let 73,3 be the

and the base-
-, 256}. Then we define an
function f:V 3., %X B —> {non-

collection of all 3 X 3 subimage A4’
set B = {1, 2, 3,
integer-value
negative integers} by
f(A',b)= the decimal integer equivalent
to the base-b number (g/g"*-g,),
8
=2.8'x¥ (©)

i=0]
=(-(gyxb+g) xb+g5) xb++)xb+gg. @)

It is easy to prove the following two properties.

Property 1. The inequality f(A4’,b)<pN always
holds. Here, N = 5? is the number of pixels in the
subimage A’ .
Proof of Property 1.

By Equatlons (6) and (5), we have

J(Ab)= Zg xb’sZ(b-l)xb’-(b UZb —(b-—l)x—
=pV - 1 < p¥ 0

122

Property 2. For each base b, and for each given
integer A satisfying p—_1<A<T(B-lxs =p"-1,
=0

we can find a unique 3 x 3 subimage A’ such that
fA',b)=xr.
Proof of Property 2.

Just convert the base-10 number (L), to a base-
b number (808 84), Note that 1 2 b ~ 1

is required because Equation (5) have confined the
outlook of A'. O

By Property 1, the number of bits needed to store
the integer f(A',b) using a binary number is
therefore at most

Zp= rlogzbg_]- ®)
‘When we want to reconstruct
A'=(g'., 8", ,g's) all we have to do is to
switch that binary (base-2) number to a base-b

number (g'og'l,” g’s)b .

3.2.1. Several possible ways to represent the

subimage A’ according to the value of base
b

As stated in (5), for each subimage
A'=(g',.g" ., ,g's) > We always have
min{g'y,g' .8 's}= 0,and &)
inax{g'o,‘g'l,..‘,g's}=b—l- (10)
Therefore, at least one of the pixels of A’ has gray

value 0, and at least one of the pixels of A’ has
gray value b-1. There are at least two ways to store

A’ . The first way is as stated at the end of Sec. 3.1,
namely, to store

b and a binary-equivalent of (8,88, (11)
The second way is to store

{05 mins Imax? A0Q {@|i # i ppin, 1 # imaf- (12)
(Here, 7,:, €{0,1,---,8} is such that g .. =0,
and j,,,. €{0,1,---,8} is such that g, ..=b-1
If more than one i in #0,1,--- 8} have there g/
value being 0, say, g’, = g’, = g', = 0, then use
the smallest i as j,,;, (hence, 7,,=2 in this
case). An analogous statement making' 7, unique

can be stated likewise.) We analyze below which of
the two ways ((11) vs. (12)) would save more
storage space. First, we reduce (12) to a simpler
form by Lemma 1 below.

Lenuna 1. In the storage system (12), we can use 7
bits to indicate the positions of the pair (i, imae) -

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Proof.
Because the size of the block A’ is 3 x 3, we
have 0<;,,,<8 and 0<; . <8.As a result,

there are 9 x 8 = 72 possible combinations of the
DA (Fminsimae). Since 26<72<27. we can
use 7 bits to indicate the combination (and hence,
the location among the nine pixels) of (7 » 7 max)
pair.]

With Lemma 1, we know that (12) can be rewritien
as

{b; a 7-bit key to get (iminrima) . and

a binary-equivalent of the 7-digit base-b

number (gili:’éiminxi;éimax)b. (13)
To know when the storage system (13) can save
more memory space than (11) does, we notice that:
first, both (13) and (11) needs to store b; second,
(11) needs r10g2b9‘| bits to represent a 9-digit
number g' g’ .- g’y in the base-b number
system, whereas (13) needs 7 bits to indicate the
location of the (7in»ima:) Ppair, and [log, b7_|
bits to encode a 7-digit number g' g’ - g’y
(with g, and g’ taken away) in the base-b
needs no

tmax

number system. (g, - and g'

storage if we know the position of 7,,;, and 7,
(see Fig. 4), this is because g’ ~ =0and
8 mx=b-1 always hold by (9) and (10).) The

next lemma and property are used to compare the
storage system (11) and (13).

Fig. 4. If the position of 7, and i, are known,

then only 7 gray values needed to be encoded. Here,
Fmin =3 and jg = 8 are known in this example.

Lemma 2. (1). If
T+log,b” > log,p’-
(). ¥ 5>2~11314, then
7+ 1log,b" < log,p°.
Proof:
We first prove statement (i). Since b < 237,
we have log,b <35;ie, 2log,b<7;1ie,

b<2*~11314, then

123

Proceedings of International Conference on Image
Processing and Character Recognition

9log,b-Tlog, <7516+ 9log, b<7+7log, b e,
log,b° < 7+ 7log,b . The second statement can
be proved likewise. O

Property 3. Using the storage system (13) is more
worthy than using the storage
system (11)ifand onlyif & > 11.314 .

The next concern is to find the condition such
that using the storage system (11) or (13) is more
worthy than using the “raw” storage system in

Rule 1:if b €{1,2,---,11}, then the coding format is

1bit 7 bits 8 bits

which 9 x § = 72 bits are used to store the nine
(original) gray values (each is 8-bif)
20.8,,8,, and g, of the subimage 4. After

careful checking, we obtain the following rules to
encode a 3 x 3 subimage.

3.2.2. Format

There are three formats to be used in the
proposed algorithm. They are:

zb=[log2 bg] bits

fog b m

binary equivalentof (g s 81 &3 Js

(This format uses at most 1+7+8+

Rule 2: if b €{12,13,-++,128}, then the coding format is

1 bit 7 l;its 8 bits

7 bits

Iog2119]=43 bits since b<11)

z =[log2 67] bits

c b m

P (min,max)

binary equivalent of
(gj | 0<is8izi izi

max’b

(This format uses at least +7+8+7+

l+7+8+7+[log2 1287]=72 bits.)

log, 127]=49 bits and at most

Rule 3: if b € {129,130, --,256}, then the coding format is

1 bit 72 bits

¢ the original nine gray values : £¢: 81" 8¢

(This jormat always uses 73 bits.)

Note that ¢ stands for the category-bit: if ¢ is zero
then we encode block 4 by Rule 1 or Rule 2,
(according to the value of b); if ¢ is one, however,
Rule 3 is need. Also note that P(min,max) denotes
which of the 9 x 8 = 72 possible position-pair is
the actual position of the pair (7min,imac) - As for

(g'1t03138,1¢ imin’i¢ imax)b N lt 15 a 7‘digit

base-b number because the two gray values g’ .

and g’ are taken away. Finally, m = miin g

and b=max g, —ming;+1 are as defined in
H 1

Eq. (1) and (2), respectively. Below we explain why
we use Rule 3 instead of Rule 1 or Rule 2 when b >
128. If b =129, then using the format provided in
Rule 1 is not worthy because
147+8+7+[log,b" |21+ 7+8 +[10g21299-|

is longer than the fixed 73 bits needed in the format
given in Rule 3. Similarly, if 5>129, then

1+7+8+7+[1<g2 b’] 21+7+3+7+(Iog, m’} =73 suggested

that the format in Rule 2 can not be better than that
of Rule 3. Moreover, if b is large, say, b=200, then

1+7+8+7+ l‘108i2007_|= 77 is even worse than

the 73 required in the format of Rule 3.

We also give here another remark about Rules
1 and 2. Some readers might suggest that one more
(sub-category) bit is used to distinguish Rule 1 from
Rule 2; then , 4 bits (instead of 7 bits) are used to
represent b for Rule 1 (whereas 7 bits are still used
to represent b for Rule 2). However, according to
our experiments, this modified approach was found
not better than the old one which uses 7 biis to
represent b for both Rules 1 and 2, especially if the
hierarchical structure introduced in Sec. 3.4 was
used. The only case that this modified approach
(the one using one more (sub-category) bit io
distinguish Rule 1 from Rule 2) could perform
better occurred only when the hierarchical struciure

124

was not used and the image had many large smooth
regions. However, since the hierarchical struciure
can improve the compression ratio, and we wish to
handle images of any kind without judging in
advance whether the image have large smooth
regions or not, we do not iniend to use this
modified approach.

3.3. Decoding

Without the loss of generality, we show below
how to reconstruct (decode) the first subimage of an
image which has been encoded using Rules 1~3
presented above in Section 3.2, (The remaining
subimages can be reconstructed similarly.)

We first check the first bit ¢. If ¢ = 1, then we
use the next g x 9¢= 72 bits to reconstruct the
nine gray values, each is 8-bit, of the subimage.
However, if ¢ = 0, we use the next 7 bits to obtain
the base value b. According to the value of b, there
are two subcases to proceed. (Subcase 1): if H <11,
then we take the next 8 bits to obtain the value m;
and after that, we take another [log, 5] bits of

the received code to know the binary equivalent of
(gogi 84), We can therefore obtain the nine

gray values fg/2% = of the subimage A'. Then,

with the help of Eq. (4), we can obtain the nine
8

gray values {g; }_, of the subimage A. (Subcase 2):

if 12<5<128, then get the next 8 bits, 7 bits,
and |'10g 21,7'| bits, to obtain the values of m,

P(minmax), and (gll0 < i< 8,i# iy, i i),
respectively. With the help of a predefined position
codebook, we can use the value of Pgnin, max),
which is a codeword, io recover the positions of the
two pixels where the (reduced) gray values g/ are
minimum and maximum, respectively. By (4), the
positions where g/ become minimum or
maximum are also the positions where g, become
minimum or maximum. Therefore, on the two
pixels just recovered by the value of P(nin, max),
the “original” gray values g, should then be m and
m+ b — 1, respectively, by Eq. (1) and (2). As for
the remaining 9 — 2 = 7 pixels, we can use the
next |'10 g, b7 | bits o obtain a binary number.

Convert this [Jog , 577 -digit number in the base-2

gystem to obtain a 7-digit number in the base-b
system, Afier adding the value m to each of these
seven digits, we obtain the seven gray values
needed.

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

3.4. Hierarchical use of the techniques introduced
in Sec. 3.2~3.3

The encoded result of Sec. 3.2 can be
compressed furthes in a hierarchical manner.
Consider 3 x 3 = 9 adjacent subimages, each
subimage is of size 3 x 3. Then, since each
subimage has its own base b, we have nine bases.
(If some of these 9 subimages were encoded using
Rule 3, for convenience, just “assign™ a fixed
number to the corresponding bases. In this paper,
we set this fixed number as 128, and modify the
base-value range of using Rule 2 as 12~127, so that
we may completely discard the category bit “c” (see
Sec. 3.2.2) for all subimages (because whether Rule
1 (or 2, or 3) is used to encode a specified subimage
can be completely determined by the value of base).
We then can imagine that there is a so-called “base-
image”, whose gray values are by,by,ba, ", bs;

then, since it is a kind of image (except that each
value is a base value of a subimage rather than a
gray value of a pixel), we can use the technique
introduced in Sec. 3.2 to compress these nine base
values. The details are omitted.

Besides b, the minimal value m of each block
can also be grouped and compressed similarly. In
other words, for every 3x3 = 9 adjacent
subimages, we compress their { nag, ma,* -, mg } by

treating smo~mg as the nine gray values of an
imaginary 3 x 3 “super” image. (If some of the
3 x 3=9 subimages that form the super image
were encoded using Rule 3, the missing 772, can be

arbitrarily assigned, because the decoding of those
subimages using Rule 3 will not use m, at all.)

The compression layer described in the above
two paragraphs are called Pass 2, and we can repeat
the same procedure to encode in Pass 3.the result of
Pass 2. Of course, the higher a layer is, the less the
data to be processed.

For decoding, we first decode the highest pass,
Pass k, using the method presented in Sec. 3.3, and
then decode Pass k-1, -and then decode Pass k-2,
and so on. For exaimple, look at the 9 x 9 image S
sketched in Fig. 5(a). For Pass 1 encoding, nine
3x 3 subimages so~S3 are encoded by slighily
modifying the non-hierarchical formats of Rule 1~3
given in Sec. 3.2.2. Note that there is no category
bit “c”; Rule 1 is still with 1 < 5 <11; but Rule 2
iswith 12 < b £127; and Rule 3 (which handles
the case 128 < b < 256) now uses the artificial
format

125

Proceedings of International Conference on Image
Processing and Character Recognition

7 bits

8 iu'ts

72 bits

711 = an arbitrary number

b=128

the original nine gray values : £¢.8,"" - 83

9 34 84 Ss

S¢ Sq Sg

U)A9¢w&imwes=05i
i=0

—

—3

bs, | bs, | bs,
bs, | bs, | bs,
bs, | bs, | bs,
(2) The base-subimage of S

3

Msy| ms,|ms,

Mgy m,,|mg | 3

Ms,| Ms,| Msy

(3) The minimum-subimage of S

Fig. 5. A two-pass BS system. (a) A 9 x 9 image S consists of 9 subimages s; (i = 0,1,:++,8), and each s; is
3 x 3. (b) The base-subimage of S where ¢, g, means the base-value of the subimage s;. (¢) The minimum-

subimage of S where mg means the minimum-value of the subimage s;.
1

After that, each subimage drops the first 7+8=15

bits from its storage format by sending these 15 bits .

(a base-value b (7 bits) and a minimum-value m (8
bits)) to Pass 2 encoder. The base-values of each
nine adjacent subimages constitute a “super” image
(see Fig. 5(b)), and the minimum-values of each
nine adjacent subimages also constitute a super
image (see Fig. 5(c)). For Pass 2 encoding, these
super images are encoded respectively using the
original Rules 1~3 stated in Sec. 3.2.2.

For decoding, we first decode Pass 2, and
-recover the base-subimage (Fig. S5(b)) and the
minimum-subimage (Fig. 5(c)). Then we decode
Pass 1 according to these base-values and
minimum-values, For example, the 3 X 3 subimage
So in Fig. 5(a) is reconstructed with the help of the
b, and m, just obtained. The original image S

S

(Fig. 5(a)) is thus recovered.

4. Experimental results and
complexity amalysis

Although the techniques introduced in Section
3 are explained in terms of gray-level images, we
can of course use these techniques to handle color
images by applying the techniques three times to
each of the three color components.

In this section, we use six color images (shown
in Fig. 6) to test the proposed Base Switching (BS)

algorithm. In order to compare our results with the
results of JBIG and Lossless JPEG which was
reported in reference (12), we used the same color
components that was used in reference (12), i.e., we
used the “YUV” components of the color images.
All of the compression ratios presented below
express the averages of the corresponding results of
the six images, and each of them is again the
average compression ratio of the three color
components (therefore, we took the average of
6 x 3 = 18 data sets to obtain a compression ratio).
In these experiments, we used 3-pass BS algorithm
(see Section 3.4) to compress each color image
component, and the subimage sizes for each pass
were 3 x 3, Table 1 shows how the color image
compression ratio varied for the BS, JBIG, and
Lossless JPEG algorithms. It was found that our new
algorithm, BS, can compete with the international
standard algorithms, JBIG and Lossless JPEG. Their
compression ratios are very close,

Table 1. The average compression ratio of the six
test images.

Methods BS JBIG JPEG
Average
compression 2.00 1.99 2.04
ratio

126

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

Fig. 6. The test image set (actual size at 720 x 576 pixels/image).

In Table 1, we found that the average compression
ratio of the BS algorithm is a little better than that of
the JBIG and a little inferior to that of the Lossless
JPEG. On the other hand, although the average
compression ratio of the proposed method is a little
((2.04-2.00)/2.00 ~ 2.0%) inferior to that of the
Lossless JPEG, the proposed method is about (5-
3.94)/3.94~ 27% faster than the Lossless JPEG. In
the encoding, for example, the BS algorithm
requires about 3.33~4.55 clock cycles (the average is
3.94 clock cycles) for each pixel (we will analyze
the detail in next paragraph); whereas the Lossless
JPEG requires 4~6 clock cycles (the average is 5
clock cycles) for each pixel. On the average, the BS
algorithm is therefore a little faster than the Lossless
JPEG. The reason that that the Lossless JPEG
requires 4~6 clock cycles for each pixel is explained
as follows: firsi, for each pixel, the Lossless JPEG
requires 3~5 clock cycles for the predictor part (used
for some arithmetic operations such as addition,
subiraction, arithmetic-right-shift, and one’s
complement operation; the deiail is given in Sec.
2.10.3 of reference (16) and H.1.2.1 of Appendix A
of reference (11)); afier that, 1 complete clock cycle
for the adaptive arithmetic coder part is needed (see
Sec. 13.7 of reference (11)).

We discuss below in detail the time complexity
of the BS algorithm. Without the loss of generality,
we only analyze the single-pass system (or the first
pass of the hierarchical system). To encode a 3 x 3
subimage, we need 8~15 comparisons (8
comparisons for the best case and 15 comparisons
for the worst case) to obtain 73311;181 g, and max g, 1

subtraction and 1 addition to compute the value of
max g,-ming,+ 1 (= b, see Equations (1) and (2));
0sis8 0<i<8

and 8 subtractions to obtain A/ (because we had

known the location of ;Oyys;sz g, in the process of
finding min g and max g,» we could save 1
0sis8 0<ic8
subtraction, see Equation (4)). After that, if Rule 1
(Rule 2) is applied, then we need 8 (6) additions and
8 (6) multiplications to compute Equation (7). Since
an arithmetic operation such as addition, subtraction,
comparison, shift, one’s complement, and
multiplication could be accomplished during one
complete cycle under the modern technology of
VLSI (see Sec. 2.2 of reference (17)), the BS
algorithm requires 30~41 clock cycles to encode a
3 x 3 subimage. In other words, it takes 3.33~4.55
clock cycles to encode a pixel (the average is 3.94
clock cycles). On the other hand, because ihe

127

Proceedings of International Conference on Image
Processing and Character Recognition

encoded length of the JBIG, the Lossless JPEG, and
our proposed algorithm are all variable instead of
being fixed, we do not consider the computations of
the transformation from decimal values to binary
values, because this kind of computations are
common for all three methods. Finally, the job of
decoding is similar to that of encoding, except that
the computation of Equations (1) and (2) are now
disappeared. As for the computation loads needed in
Passes 2 and 3, they are relatively negligible,
because the whole image size of Pass 2 is only
1 _ 1 of the whole image size of Pass 1; not to
3Ix3 9
mention the even smaller image in Pass 3. (If we
consider the work needed in Passes 2 and 3, the 3.94
clock cycles mentioned above will become 4.43
clock cycles, which is about (5-4.43)/4.43~13%
faster than the Lossless JPEG.)

5. Concluding remarks

A new lossless compression algorithm in the
spatial domain has been proposed along with the
experimental results and time complexity analysis.
The compression ratios using the proposed BS
algorithm were found to be competitive to those of
the international standard algorithms JBIG and
Lossless JPEG. The math theory needed to derive
the proposed encoding format is also provided.

In our experiments, we also tested some other
subimage sizes such as 4 x 4, 6 x 6, and 8 x &,
and found that the subimages of size 3 x 3 can
usually achieve higher compression ratios. 3 x 3 is
therefore suggested. The reason why larger sizes did
not give better compression ratios is that: as the
subimage size increases, the base value b (which
indicates how wide the gray value variation of a
subimage is) also increases, and the compression
ratio is down because the frequency that Rule 3
occurs will increase.

References

[1] J.M. Shapiro, An Embedded Hierarchical Image
Coder Using Zero Trees of Wavelet Coefficients,
Proceeding of the IEEE Data Compression
Conference, 214-223 (1993).

[2] S.J. Lee, K.H. Yang, C.W. Kim, and C.W. Lee,
Efficient Lossless Coding Scheme for Vector
Quantization Using Dynamic Index Mapping,
Electronics Lett. 31(17), 1426-1427 (1995).

[3] CCITT (International Telegraph and Telephone
Consultative Committee), Standardization of
Group 3 Facsimile Apparatus for Document
Transmission, Recommendation T.4 (1980).

[4] CCITT (International Telegraph and Telephone
Consultative Committee), Facsimile Coding
Schemes and Coding Control Functions for
Group 4 Facsimile Apparatus, Recommendation
T.6 (1984).

[5]1 CCITT (International Telegraph and Telephone
Consultative Committee), Progressive Bi-level
Image Compression, Recommendation T.82
(1993).

[6] ISO/IEC (International Organization for
Standards/International Electrotechnical
Organization), Progressive Bi-level Image
Compression, International Standard 11544
(1993).

[7] H. Hampel, R.B. Arps, et al., Technical Features
of the JBIG Standard for Progressive Bi-level
Image Compression, Signal Process.: Image
Commum. 4(2), 103-111 (1992).

[8] CCITT (International Telegraph and Telephone
Consultative Committee), Digital Compression
and Coding of Continuous-tone Still Images,
Recommendation T.81 (1992).

[9] ISO/IEC(International Organization for
Standards/International Electrotechnical
Organization), Digital Compression and Coding
of Continuous-tone Still Images, International
Standard 10918-1 (1993).

[10] G. Wallace, Overview of the JPEG (ISO/CCITT)
Still Image Compression Standard, Proc. SPIE
(Image Processing Algorithms and Techniques),
1244, 220-233 (1990).

[11] W.B. Penncbaker and J.L. Mitchell, JPEG Still
Image Data Compression Standard, New York:
Van Nostrand Reinhold (1993).

[12] R.B. Arps and T.K. Truong, Comparison of
International Standards for Lossless Still Image
Compression, Proceedings of the IEEE, 82(6),
889-899 (1994).

[13] A.G. Tescher, Transform Image Coding in
Image Transmission Technique, W.K. Pratt.,
ED. New York: Academic Press, Ch. 4 (1979).

[14] H.G. Musmann, Predictive Image Coding in
Image Transmission Techniques, W.K. Pratt,
ED. New York: Academic Press (1979).

[15] G.G. Langdon, Sunset: A Hardware-oriented
Algorithm for Lossless Compression of Grey-
scale Images, Proc. SPIE (Medical Imaging V-
Image Capture, Formatting, and Display),
1444, 272-282 (1991).

[16] V. Bhaskaran and K. Konstantininides, /mage
and Video Compression Standards: algorithms
and Architectures. Boston/Dordrecht/London:
Bluwer Academic Publishers (1995).

[17] J.L. Hennessy and D.A. Patterson, Computer
Architecture a Quantitative Approach, Morgan
Kaufmann Publishers, INC. San Mateo,
California, third printing (1993).

128

