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Abstract

Due to the advent of many new multimedia
applications in high speed networks, the issue of
multicast routing has become more and more important.
The multicast routing problem in computer networks is
also known as the Stenier tree problem which has been
shown to be NP-complete. In this paper, we propose a
new multicast routing algorithm based on Genetic
Algorithms. Computer simulations are conducted to
evaluate the performance of the proposed algorithm. Our
numerical results show that, under non-fully connected
networks, our algorithm is able to find a better solution
than the average distance heuristic (ADH) algorithm, a
very promising heuristic algorithm for the Steiner tree
problem.

1. Introduction

Due to the rapid advance in the switching and
communication technologies and the increased demand
for various kinds of communication services, many new
applications in networks require support of multicast
communication. Therefore, the issue of multicast routing
has become more and more important.

In the literature, there are two optimization goals for
the design of multicast routing algorithm. The first is to
minimize the average path delay which is measured as
time required to transmit a message from the source
node to any destination node. The second is to minimize
the cost of the multicast tree which is the sum of costs of
the links in the multicast tree. The cost of a link can be a
function of the capacity and/or the traffic of the link.
Although these two goals often conflict with each other,
in this paper, we focus on the design of multicast
algorithms which try to achieve the second goal while
also take the first goal into consideration.

Clearly, the least cost tree, which is called a steiner
tree [1], is the optimal solution a multicast algorithm
looks for. Unfortunately, the problem of finding a steiner
tree is known to be NP-complete [2], even if links have
unit cost [3]. Thus most previous researchers have
focused on developing heuristic algorithms that take
polynomial time and produce near optimal resulis [4, 5,
6]. Furthermore, these heuristic algorithms often
guarantee that their solutions are within twice the cost of
the optimal soltion.

In this paper, we present a novel heuristic multicast
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routing algorithm based on Genetic Algorithms. The
Genetic Algorithms [7-12] provide robust and efficient
search in complex spaces. Survival of the fittest “genes”
and structured yet randomized genetic operations are the
basic philosophies behind the algorithms. The main
advantages of Genetic Algorithms include (1) Solutions
are coded as bit strings, referred to as chromosomes,
Large problems can be easily handled by using long
strings; (2) Genetic operations, such as crossover and
mutation, are very easy to implement; (3) With a pool of
chromosomes (candidate solutions), Genetic Algorithms
search the solution space at different conners in parallel.
The algorithm can be easily implemented on
multiprocessors machines to do the search in parallel; (4)
Randomized genetic operations, such as mutation, can
avoid the search being trapped by local-optima. Genetic
Algorithms have been successfully applied to control
problems in ATM networks, such as bandwidth
allocation [13] and buffer management [14]. Recently, it
has been applied to point-to-point routing [15] and
spanning tree problem [16] in communication networks.

The proposed GA-based multicast routing algorithm
is evaluated through simulations under different network
topologies. Our simulation results show that the
proposed algorithm is able to find a multicast tree with
less cost than that of a the average distance heuristic
(ADH) algorithm [17,18), a very promising heuristic
algorithm for the Steiner problem.

The remainder of this paper is organized as follows.
Section 2 briefly describes the basics of the Genetic
Algorithms. In section 3, the GA-based multicast routing
algorithm is presented. In section 4, the performance of
our multicast routing scheme is evaluated through
simulation. The performance of our algorithm is also
compared to that of the average distance heuristic (ADH)
algorithm under different network configurations.
Finally, conclusions and future work are given in section
5.

2. Genetic algorithms

The Genetic Algorithms(GAs) are used for solving
an optimization problem based on the principle of
evolution. A population of candidaie solutions, called
chromosomes, are maintained at each iteration of the
evolution. Each chromosome consists of linearly
arranged genes which are represented by binary strings.
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Three basic operations, namely, reproduction, crossover,
and mutation, are adopted in the evolution to generate
new offspring. Reproduction is based on the Darwinian
survival of the fittest among strings generated. The
samples (represented as bit sirings) with larger fitness
function values are selected to generate new offspring
bit strings by crossover operations and convert the
offspring to new parameter solutions. Intuitively, a bit
string with a larger fitness function value should have a
higher probability of contributing one or more offspring
bit strings in the next generation and vice versa.
Crossover is used to cut individually two parent bit
strings into two or more segments and then combine the
segments undergoing crossing over to generate two
offspring bit strings. Crossover can produce offspring
that are radically different from their parents. Suppose
the crossover operation is performed on the two bit
strings, “01110001” and “10011011”, and they are split
at the second bit, then two new bit strings, “01011011”
and “10110001” are generated, (see Figure 1). There are
other ways for implementing the crossover operation,
e.g. arithmetic crossover [12].

eltloft[tjoft |

crossover
—_—

parents

offsprings

Figure 1: The crossover operation.

Mutation is to perform random alternation on bit
strings by some operations, such as bit shifting,
inversion, rotation,...,etc. The mutation operation will
create new offspring bit strings different from those
generated by the reproduction and crossover operations.
Mutation can extend the scope of the solution space and
reduce the possibility of falling into local extremes. In
general, the possibility of mutation is very low.

The genetic algorithms are typically implemented as
follows:

Step 1: Initialize a population of chromosomes

(solution).

Step 2: Evaluate each chromosome in the population.

Step 3: Create new chromosomes by mating current
chromosomes and apply mutation and
recombination as the parent chromosomes
mate.

Step 4: Delete members of the populatxon to make
room for the new chromosomes.

Step 5: Evaluate the new chromosomes and insert them
into the population.

Step 6: If stopping criterion is satisfied, then Stop and
ouiput the best chromosome (solution),
otherwise, go to Step 3.
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3. The propeosed multicast routing algorithm
3.1 Neitwork Model and Problem Definition

For a undirected network graph, the problem of
finding an optimal multicast routing (OMR) with least
cost, called an optimal multicast tree (OMT), is formally
defined as follows:

@ GIVEN: An undirected network G'=(V,E,c)
consists of a nonempty set V' of |//] vertices and a
set £,EcV xV,of |E| edges connecting pairs
of vertices. In addition, it has a cost function
¢c:E—R ad a given non-empty set

N={ Voo Uys Uyy oo vy Uy }, of terminals in &,
NcV, where v, is the source node and

D= { Uy, Uy, .
nodes. 7
@ FIND: A subnetwork 7, (N ) of (& such that:

— there is a path between every pair of
terminals,
,ETG (6'/ ) 18
minimized.

— total cost | TG | =
The subnetwork 7, ( N ) is called a Steiner minimal

co Uy } is the set of destination

network for /V in (. If all edges in G have positive
cost, a Steiner minimal network 7 ( N ) must be a tree,
and 7, ( N) is called a Steiner minimal tree for N in
G . In particular, 7, (V) denotes a minimum spanning
tree for G .

3.2 Routing table

In the network graph, G:(V, E), there are

IV|><(|V|—1)/2 possible source- destination pairs. A
source-destination node can be connected by a set of
links, which is called a “route”. There are usually many
possible routes between any source - destination pair.
For example, consider the network of Figure 2, the

possible routes between v, to v, include v,—-v,,

Vo —Vs—V,,....and so on.

Our GA-based multicast routing algorithm assumes
that a routing table, consist of R possible routes, has
been constructed for each source-destination pair. For

example, Figure 3.2 shows the routing table for the
source-destination pair (v,, v,). The size of the

routing table, R, is a parameter of our scheme. The
possible routes in the routiing table is sorted according to
their length (i.c. number of links) such that shorter paths
are assigned with smaller route number. The reason for



preferring routes with shorter length is to take the path
delay into consideration on finding the multicast trees.

4} N
/ ~
™

Figure 2 : A simple 6-node network.

Routing table of v, <> v,
Route No. Route lists
0 Vo — Vs
1 Vo —Vs—Vy
kel Vo=Vs =1V,

Figure 3: Example of a routing table

3.3 Representation of chromosomes

For a given source node ¥, and destination set
D={ Uy Uy oo Uy }, a chromosome can be

presented by a string of integers with length k. An
gene, £;, 1< 7 £ k, of the chromosome is an integer

in {0, 1s R—l} which represents a possible route

between Vv, and u,,where y eD. The relationship of

chromosome, gene, and routing table is explained in
Figure 4.

This coding method was proposed in [15] for point-
to-point routing problem. Obviously, a chromosome
represents a candidate solution for the multicast routing
problem since it guarantees a path between the source
node to any of the destination nodes. However, a
chromosome does not necessary represent a tree. This is
not a serious problem since a graph (chromosome) with
cycles will have bad fitness value and, thus, will be
deleted from the population. It is possible to choose a
coding method in which chromosomes only represent
trees, e.g. [19]. The major advantage of using the coding
method of [15] is that given a chromosome, the links of
the multicast tree (graph) can be easily identified. On the
other hand, the methods proposed in [19] all require
complex transformation in order to obtain the links of
the tree of a chromosome. Another advantage of using
the coding method of [15] is that the path delay can be
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taken into consideration through the proper selection of
routes in  routing tables.

chromosome

Ig||32| g,l |gk
i T
g, =1
]
Routing table of v, <> v, °
Route No. Route lists
0 Vo—U;
Vo—. . —U
R-1 — —
Vo= v vv v o u;

Figure 4: A chromosome. In this example, the ith gene g].zl in

the chromosome means the second route of the routing
table of (v 0’ VJ_) is chosen.

When the network is large, the number of possible
routes between two nodes may become very huge.
Therefore, we must limit the number of candidate routes
to a reasonable amount, say K . That is, only the K
shortest routes will be listed in the routing table.

3.4 Description of the algorithm

The GAs maintain a population of chromosomes,
each of which has a fitness value. The fitness value
defines the quality of the chromosome. Beginning with a
set of random chromosomes, a process of evolution is
simulated. The main components of this process are
crossover, which mimics propagation, and mutation,
which mimics the random changes occurring in nature.
After a number of generations, highly fit chromosomes
will emerge corresponding to good solutions.

The outline of our GA-based multicast routing
algorithm, schematically illustrated in Figure 5, is given
as follows.

3.4.1 Initialization of chromosomes

In a chromosome, each gene corresponds to a
specific route of a routing table. Thus a chromosome is a
series of integers which initial values are taken at
random. The initial procedure generates P different
chromosomes at random which form the first generation,
This set of chromosomes is called the gene pool, and P
is the population size of the gene pool.

3.4.2 Evaluation of chromosomes
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The fitness value of a chromosome is a value of the
objective(fitness) function for the solution (eg. a
multicast tree) represented by the chromosome. Given a
population H={ BBy, b } the fitness value
of each chromosome is computed as follows. Let ()
be the sum of the costs of the links of the graph
represented by the chromosome B; - The fitness value of
the chromosome 4, F( b ), is given by

i

F(h)=1-S4

(L)
where C'( [,) is the sum of costs of all edges.
After the fitness values of all chromosomes are
computed, they are then sorted according to their fitness
values such that C(bo) < C(bx) <. ..< C(ﬁp-l)‘

Initialization
[Initial generation]

J,

Gene pool

[
Evaluation
!
Discard

!

Genetic operation
Selection / Reproduction

Crossover

Mutation
T

[Next generation]

Solution

Figure 5: The proposed Genetic Algorithm

3.4.3 Discard the duplicate chromosomes

In the gene pool, there may exist two or more
duplicate chromosomes. Apply some of the genetic
operations, e.g., crossover, on two duplicate
chromosomes will yield the same chromosome.
Therefore, too many duplicated chromosomes in the
gene pool will reduce the ability of searching. Once this
situation occurs, the duplicated chromosomes must be
discarded. In our algorithm, they are replaced by new
randomly generated chromosomes, as shown in Figure
6.

3.4.4 Reproduction

According to the computed fitness values, some of
chromosomes are selecied to generate more offspring
through crossover and muiation operations, and others
will be removed from the gene pool. By this way,
chromosomes with large fitness values will survive and
reproduce more. On the other hand, chromosomes with
small fitness values die off.
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Figure 6: Discard duplication chromosomes.

The reproduction process selects certain number of
chromosomes with the best fitness values from the
current generation for reproduction. Another number of
chromosomes, again with the best fitness values, are
selected to reproduce offspring through crossover
operation. Note that the number of the chromosomes in
gene pool is always restricted to P, as illustrated in
Figure 7.

3.4.5 Crossover

Crossover operation is used to exchange genetic
information between two chromosomes. In this process,
two chromosomes strings with larger fitness values are
picked from the gene pool first. The start point and
length of the portion to exchange are randomly selected.
Two new offSprings are created and put back to the gene
pool, as illustrated in Figure 8.
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Figure 7: Select chromosomes for genetic operation.

Crossover point

Iexchange TN
[

Number of cutting sites =2

Figure 8: Crossover operator

3.4.6 Mutation

The mutation operation is one kind of random
change in the chromosome. In our algorithm, pointwise



mutation is adopted in which one bit in the chromosome
string is changed with a probability, called mutation
probability. The mutation operation gives the Genetic
Algorithm an opportunity to search for new more
feasible chromosomes in new corners of the solution
spaces.

4, Numerical resulis

In this section, performance of the proposed
multicast routing scheme is evaluated via simulations.
The performance is then compared to that of the optimal
solution (based on [20]), as well as the average distance
heuristic steiner tree method. The performance of
multicast routing algorithms heavily depends on the
underlying network topology and the volume of traffic
carried in the network. Therefore, three different
network configurations are used in simulation.

4.1 Network model and traffic distribution

There are three network models employed in our
simulations. The first model is a 10-node fully connected
network consisting of 10 nodes and 45 bi-directional
physical links. Figure 9 shows the physical layout of the
10-node network. The second and third models, taken
from [21], are 25-node and 21-node sparsely connected
networks, respectively. The 25-node grid network
consists of 25 nodes and 40 bi-directional links, and the
21-node network, which is the topology of the ARPA,
consists of 21 nodes and 26 bi-directional links. The
physical layouts of these two networks are shown in
Figure 10 and Figure 11.

We assume that all networks are well-dimensioned
and the cost of a link is normalized to the unity. The cost
may represent the cost of carrying a connection on the
link. For example, in [22], the routing problem is
formulated as an Markov decision process (MDP) and
the cost of a link, which is state dependent, represents
the expected revenue loss due to the carry of the new
call. Since we assume that the network is well-
dimensioned, the costs of the links are uniformly
distributed between 0.3 to 1.

4.2 Computer simulation results
4.2.1 Off-line setup

In our proposed algorithm, the GA approach uses a
gene to represent a route from the source node to one of
the destinations. Hence, the routing table for each
source-destination pair needs to be construcied first.
Obviously, the number of possible routes between two
nodes heavily depends on the network topology. If the
network is densely connected or the size of the network
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is large, the number of possible routes of a source-
destination pair becomes huge. Hence, it is impossible to
list all the possible routings in the routing table. In the
simulation, we have set the size of routing table to 64.
An algorithm has been designed to automatically
generate the routing tables. Recall that we prefer routes
with short length.

Figure 11 : 21-node ARPA network model

4.2.2 Parameter selection

Parameters of the genetic algorithm, such as the size
of gene pool, crossover rate, mutation rate, and the
number of generations, must be properly selected to
yield the best performance. In the following, simulations
are conducted to obtain proper values of these
parameters.

Let us examine the effect of the number of
generations on the performance of the algorithm. Figure
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12 shows the minimum cost of each generation for a
multicast connection with node 0 as the source node and
all the other nodes as the destination nodes under the 10-
node fully connected network model. The mutation rate
is set to 0.4. The three curves in Figure 12 show the
minimum cost of each generation when the size of the
gene pool (population) is set to 16, 32, and 64,
respectively. As expected, the cost does not decrease
much further after the 80™ generation. Therefore, in our
later simulations, we set the number of generations to
100. -

Figure 13 shows the cost observed after 200
generations under different population sizes. The
network configuration and other parameters are the same
as above. As expected, larger population size leads to
better performance because more diverse chromosomes
available in a large population can protect the genetic
algorithm from falling into the local optimum. From
Figure 13, we can observe that after 200 generations, the
population size of 64 yields the best performance. As the
population size is larger than 64, the cost is even slightly
increased. This may due to the slow convergent rate of
larger population sizes. That is, the process has not
converged to the optimal solution yet.

6

5.5

S

Cost 4.5
4

3.5

0 20 40 60 80 100
Generation

Figure 12 : The effects of the number of gnerations.
(Mutation rate=0.4).

16 32 48 64 80 9% 108 120

Population sizes
Figure 13: The effects of the population size.

Figures 14 and 15 show the effect of mutation rate
on the performance of the genetic algorithm. The four
curves in Figure 14 show the cost observed after 200
generations under various population sizes for different
mutation rates, namely 0,001, 0.01, 0.1, 0.25. Figure 15
shows the cost under various mutation rates when
population size is set to 32. Although previous
researches in genetic algorithms suggest that a small
mutation rate usually yields a beiter performance, we
have observed a conirary result. Figures 14 and 15
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suggest that any mutation rate that is larger than 0.1 will
yield good performance. Unfortunately, it seems
impossible to observe a mutation rate that yields the best
performance under differ network configurations and
parameiers.

Cost

Population size

Figure 14: The effects of mutation rate .

Cost 4

iy N

) > 0 oy

< < < S o (=3 > <
Mutation rate

Figure 15: The effects of mutation rate

<

4.2.3 Comparison of performance

In this section, we evaluate the performance of three
multicast routing algorithms through simulations. The
simulations on the 10-node fully connected network are
run on SUN IPX workstations while simulations on the
other two network configurations are run on IBM PC’s.

Table 1 shows the performance of the three
multicast algorithms under different sizes of destination
set and GA parameters. The last column of Table 1
shows the relative error rate, i.e. the ratio of the cost
difference between the proposed algorithm and the
optimal solution to the optimal solution. Figure 16
shows the obtained solution from our proposed method
for the broadcast case, where node 0 is the source node.
In this example, the proposed method cannot find the
optimal solution, even both the population size and the
number of generations are set to large. Thus, it seems to
fall into local-optimum. However, we observe that the
difference between the costs obtained from the proposed
method and the optimal method is always less than the
minimum cost of one physical link, i.e. 0.3. By carefully
examine the solutions, we found that the selected links
from the two methods are almost the same.

The reason why our algorithm cannot find the
optimal solution may due to the fact that the number of
routes in routing tables is limited. Therefore, the optimal
solution may not be presented by any combinations of
genes. Since increases the size of routing table also



increases the computation complexity of our algorithm,
we conclude that our proposed method is not very
suitable for solving the multicast routing problem in

fully connected networks.
~ multicast| Optimal | ADH | Propose | ermor
":l':’:f method | method | method algorithm | rate

Complete multicast | 3 190889 | 3 090889 | 3235910 | 4.692%
(broadcast)

8-destination nodes | 2.754019 | 2.754019 | 2.899040 | 5.265%

7-destination nodes | 2.412504 | 2.412504 | 2.483104 | 2.926%

6-destination nodes | 2.242692 | 2.433600| 2.295119 | 2.338%

Table 1: The performance of three methods under the
10-node fully connected network model.

“g:,l"f'“’ ADH | ADHtime | Propose GA time
#of " method (sec) algorithm (sec) improvement
destinatio
24 13.810000 0.22 13.968166 0.33 -1.15%
20 12.571197 0.17 10.716147 0.28 14.76%
16 12.571197 0.22 11.324875 0.33 9.91%
12 10.673905 0.11 10.2558900 0.22 3.92%
§ 7.062323 0.11 7.081897 0.16 -0.28%
5 5.234097 0.11 4.902666 0.11 6.33%

Table 2: The performance of ADH and our proposed algorithm
under the 25-node network model and GA parameters set 1.

A'g“’_"{“m ADH | ADHtime | Propose | GA time
Wof 1 method (sec) algorithm (sec) improvement
destination)
24 13.810000 0.22 11.601373 0.55 15.99%
20 12571197 0.17 10.716147 0.3%9 14.76%
16 12571197 0.22 11.564104 0.38 8.01%
12 10.673905 0.11 10.000676 0.33 6.31%
8 7.062323 0.11 6.980517 0.16 1.16%
5 5.234097 0.11 4.336138 0.22 6.33%

Table 3: The performance of ADH and our proposed algorithm
under the 25-node network model and GA parameters set 2.

The performance of the ADH algorithm and our
proposed algorithm under the 25-node network model is
compared in Tables 2 and 3. In table 2, the size of the
gene pool is set to 24, the crossover rate is set to 1. The
first 8 chromosomes are selected for reproduction. The
mutation rate is 0.39. The costs shown in Table 2 are
obtained afier 100 generations. As we can see from
Table 2, our proposed algorithm ouiperforms the ADH
algorithm under most multicast seitings. However, it
also takes more computation time.
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The performance of our proposed algorithm can
yield even better performance if we increase the
population size. In table 3, the size of the gene pool is
increased to 32, the crossover rate is still set to 1. The
first 8 chromosomes are selected for reproduction. The
mutation rate is 0.58. Again, the performance is obtained
after 100 generations. As we can observe from Table 3,
our proposed algorithm yields much better performance
than the ADH algorithm under any multicast settings.

Finally, these two algorithms are evaluated under
the network model of Figure 11. Tables 4 and 5 show
the comparison of the performance of the ADH method
and the proposed method. The parameters in all
experiments are set as follows. In table 4, the size of
gene pool is set to 24, the crossover rate is set to 1, and
the mutation rate is set to 0.81. The first 6 chromosomes
are selected for reproduction. Again, the performance is
obtained after 100 generations. As we can observe from
Table 4, our proposed algorithm yields slightly better
performance than the ADH algorithm.

The performance of our proposed algorithm yields
better performance with larger population size. In table 5,
the size of the gene pool is increased to 64, the crossover
rate is still set to 1, and the mutation rate is set to 0.92.
The first 12 chromosomes are selected for reproduction.
Again, the performance is obtained after 100 generations.
As we can observe from Table 5, our proposed
algorithm yields much better performance than the ADH
algorithm under any multicast settings.

N&‘j""ﬂ ADH | ADHtime | Propose GA time
Hof "™ method (sec) algorithm (sec) improvement
destination
20 11.039253 0.33 10.832664 0.44 1.87%
15 9.318338 0.27 9941274 0.33 -6.69%
10 9.758270 0.22 9.050517 0.22 7.25%
8 7.272851 0.16 7.370375 0.18 -1.34%
5 4.983870 0.16 4983870 0.11 0%

Table 4: The performance of ADH and our proposed algorithm
under the 21-node network model and GA parameters set 3.

A':;"j"“ ADH |ADHtime| Propose | GAtime
Hof | method (sec) algorithm (sec) improvement
destination

20 11.039253 0.33 10.832664 0.73 1.87%

15 9.318338 0.27 8.612569 0.60 7.57%

10 9.758270 0.22 9.050517 0.50 7.25%
8 7.272851 0.16 7.122356 0.36 2.07%
5 4.983870 0.16 4.983870 0.34 0%

Table 5: The performance of ADH and our proposed algorithm
under the 21-node network model and GA parameters set 4.
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5. Summary and future work

In this paper, we have proposed a new multicast
routing algorithm based on GAs. Current existing
multicast routing algorithms emphasis either on
minimum cost or path delay. Our new multicast routing
algorithm tries to minimize the multicast cost while
maintaining a reasonable path delay.

From our simulation results, it can be found that
with properly setting of the GA’s parameters, such as the
population size, the generation time, the mutation rate
and the crossover rate, the proposed multicast routing
algorithm is able to obtain a better solution than the
ADH method in the two sparsely connected network
models we examined. However, in the 10-node fully
connected network, it does not seem to yield a better
performance than the ADH method. We believe that if
the routing table is large enough to contain all possible
routings, it is possible to obtain the optimal solution.
Although the proposed algorithm requires more
computation time than the ADH algorithm, it is still very
promising for the use in real networks. The computation
time can be reduced if the number of generations can be
decreased. In real network, the solutions obtained for
setting up a multicast connection can be used as initial
chromosomes for the next multicast request, either with
the same source and destination set or not. Since the
network configuration (e.g. traffic on each link) may not
change significantly between two consecutive multicast
requests, a near optimal solution can be obtained after
few generations. Therefore, in the future, we will
examine the number of generations require if network
configuration does not change significantly and the
previous solution can be used as the initial solution.
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