Proceedings of International Conference
on Networking and Multimedia

Approaches to Reducing Object Retrieval Latency
in the World Wide Web™

Yo-Feng Weng and Wen-Shyen E. Chen **
Institute of Computer Science
National Chung-Hsing University
Taichung, Taiwan, 40227 ROC
email: echen@cs.nchu.edu.tw

Absiract

The rapid growth of the World Wide Web
(WWW) brings along several problems. Among the
problems, the most serious the user experienced is
the increasing amount of time he/she has to wait for
the retrieval of WWW objects due’ to increased
network bandwidth usage and server overload .

In this paper, we propose some approaches to
reducing the latency for retrieving WWIW objects:
persistent connections and a new protocol to access
the proxy server. 4 prototype of the proposed
approaches has been implemented and the
performance measurement results show significant
improvements in terms of network latency and
robustness over the original schemes.

1 Introduction

The past few years have witnessed the
accelerated growth of the Internet and the
proliferation of the information available in the
World Wide Web (WWW) [1, 2]. The Hypertext
Transfer Protocol (HTTP) [4] is the transport
protocol for the WWW. It is designed to be fast,
stateless, extensible, and easy to implement for both
clients and servers. However, HTTP has some
deficiencies: it does not interact well with the TCP,
the underlying protocol for the Internet. As a result,
HTTP incurs much unnecessary overhead and leaves
some room for improvements. In addition, the
explosive increase in the number of clients accessing
the Web servers and the multimedia information
available to the users result in server overload and

* This research was supported in part by the National
Science Council of the Republic of China under
contract No. NSC85-2213-E-005-012.

#* Corresponding Author.

150

saturation of the network bandwidth usage.
Consequently, the amount of time needed to retrieve
WWW objects becomes unbearable.

The HTTP/1.0 protocol was designed to work
with different transport protocols. However, when
works with the TCP protocol [5], the HTTP protocol
will establish a separate TCP connection every time
it retrieves a WWW object. Since, the average
size of WWW objects is small[6], the lifetime of the
TCP connections established by the HTTP protocol
is quite short. With the Slow Start mechanism (7]
employed by the TCP protocol, the short-lived
connection is destined to be inefficient. Persistent
connections can be used to better utilize the
handwidth and to reduce the latency incurred.

Another mechanism to reduce the latency is the
use of proxy cache [8, 9]. With a proxy, the
internet client will contact a proxy server for the
requested objects. If the objects can be found in
the proxy, no connections need to be established to
the remote WWW server. However, the proxy also
introduces a single point of failure and a
performance bottleneck. Hierarchical proxy servers
structure [10] has been proposed to address the
problem of overloaded server but failed to resolve
the robustness problem. We devise a proxy-query
protocol to address the fault-tolerant and load-
balancing issues of the structure. Combined with
the persistent connection approach, we think the
mechanisms can effectively reduce the latency in
retrieving the WWW objects.

The rest of this paper is organized as follows.
An overview of the problems is introduced in
Section 2. The persistent-connection enhancement
to the HTTP/1.0 is discussed in Section 3. The
Proxy Query Protocol is illustrated in Section 4.
Section 5 shows some performance measurement
results of our approaches. Conclusion remarks and
future research directions are given in Section 6.

2 Overview

2. 1 HyperText Transfer Protocol

HyperText Transfer Protocol (HTTP) [4] is a
transfer protocol used by the WWW to retrieve
distributed hypermedia objects. HTTP has the
advantages of being fast, stateless, extensible, and
easy to implement for both clients and servers. It
provides the user a consistent view of the
information available in the network and hides the
complexity of communication.

The relationship between the HTTP and the TCP
is illustrated in Fig. 1. (Note that we use “internet
client” and “browser” interchangeably in this paper.)
However, from our initial observation and reports n
the literature [12], certain design features of HTTP
interact badly with TCP, causing. performance
degradation: Latency problems are caused by
opening a single connection per request, through
connection setup and Slow-Start costs. Further
avoidable latency is incurred due to the fact that the
protocol only returns a single object per request.

As can be seen in Fig. 2, for each WWW
object the HTTP client retrieves, a TCP connection
has to be established. Since the three-way
handshaking is used [7], the connection setup time
takes a round-trip time (RTT) between the client and
the server. In the WWW environment, the RTT is
significant when compared to the time spent in
transmitting the WWW object, which is normally
small.

In addition, TCP employs a Slow Start
congestion control mechanism [7]: Associated with
the sender, there is a congestion windows which
indicates the packets that are sent to but have not
been acknowledged by the server. The congestion
window size is initialized to one (1) when the
connection is first established. It would then be
incremented by one every time an acknowledgment is
received, until a packet is lost (acknowledgment not
received) or a preset value is reached. This
mechanism has little effect for transferring long files
but has a strong impact for the bandwidth utilization
for transferring small files, such as WWW objects,
since the congestion windows have not fully opened
before the connection is terminated.

2.2 Proxy and Proxy Cache

The proxy [8, 9] was originally designed for the
communication between the users inside a firewall

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

and the outside world. A typical proxy locates at
the firewall host and accepts the requests from the
users, delivers the requests to the servers that
provide the services. After receiving the responses,
the proxy converts the responses into proper formats
and sends them to the requesting clients. The
function of a proxy is illustrated in Fig. 3.

By adding some disk spaces to the proxy, the
objects retrieved from the remote servers can be
stored in the disk “cache”. The future requests
from other clients for the same objects can then be
satisfied by the proxy server if the objects are
available in the proxy cache, as shown in Fig,. 4.

I internet client server

\]\
HTTP HTTPD
TCP TCP
Lower-Layer Lower-Layer
Protocol Protocol

Figure 1: The relation between HTTP and TCP.

(A5

ack

HTTP: Send Ist request PSH v TR
PSH—""""_| -
4/PSI‘[:FIN/ - Tes| nd entity |

"
HTTP: Send 20d request o — O TR
e W
Wit response and entity
!

Figure 2: The TCP data exchanges for HTTP request
and responses.

MNP Server

WAIS Seever

Figure 3. The function of a proxy.

151

Proceedings of International Conference
on Networking and Multimedia

| GET full-URL 2. GET full-URL
HTTP/1.Q HTTF/1.0
I:l_ HTTP I I g g
"= S HTTPIL.O 200 5 SHTTPI0200 =

Document follo»\ism Document follows

Client 1

6. GET full-URE.
/H%TWI%RL
IE HTTP0 200

ocument followg Cache

Server
4. Store a copy of dac.

—=

Client 2

Figure 4. The function of a proxy server.

3 Persistent Connection Enhancement to
the HTTP/1.0

In this section, we will present the persistent
connection enhancement to the HTTP/1.0 and
discuss the problems and solutions while this
approach is implmented. = As the bases for
implementing our approach, we use NCSA Mosaic
Version 2.6 as the WWW client, NCSA httpd
Version 1.42 as the WWW server, and CERN httpd
Version 3.0 as the proxy server. The selections was
based on their acceptance and availability of the
source code.

3.1 Persistent HTTP Connection

As discussed in Section 2, one of the major
reasons that cause the inefficiency of the HTTP
protocol is the need to establish a TCP connection
for each of the WWW objects to be retrieved, even
though the objects are located at the same WWW
server. An obvious solution would be to maintain
a persistent connection between the client and the
server for a reasonable long period of time until it is
no longer needed. As a result, when the internet
client requests additional WWW objects, such as
inline images, from the same server, no further
connections need to be established. The persistent
connection can be used for transferring other HTML
files requested from the server and thus can reduce
the effects of slow-start mechanism of the underlying
TCP protocol and the waste of the system resources
by TCP connections being put into the TIME_WAIT
state [7). Fig. 5 shows the TCP packets exchanged
for HTTP with persistent connections. Note that
the shaded boxes indicate either a TCP connection
set-up or termination. As can been seen, the time to
terminate the first connection and that to establish
the second connection to the same server can be

152

saved. The saving can be significant if the time to
transmit the requested WWW object is small.

A related work about persistent connection
that was developed independently the work in the
paper can be found in [13, 14].

[Cient/)
HTTP: Seod 15t request
HTTP: Send 2nd seguest

TETTP: Send Ise
resHmse

[EITEP: Semd 1st entity

IITEP: Send 2nd
respunse

I —
IE7T: Send Znd entity
N

Figure 5. TCP packets exchanged for HTTP with
persistent connection.

3.2 Implementation Issues

Client Side Modification

On the internet client side, we use a linked list
to record the WWW server addresses and the port
numbers that the client has connections with.
When a request for a WWW object arrives, the
client first check the linked list to see if a connection
has been set up to that server. If yes, then use the
corresponding socket number to communicate with
the server; if not, then set up a new connection to
that server and record the WWW server address and
the socket number of the connection in the linked list.
After the request is fulfilled, the connection is not
terminated and can be reused for the future requests.

Server Side Modification

The WWW server we selected (NCSA httpd
1.42) has two execution modes. In the first
execution mode, when receive a request, the master
process will fork a child process for processing the
request. In this case, the persistent connection can
be maintained by not terminating the connection and
the child process created. Thus the requests from
the same client can be processed without incurring
more overhead. The second operation mode of the
NCSA httpd is created to reduce the clients’ waiting
time by “preforking” several child processes.
When the master process receives a request, it passes
the socket number of the corresponding connection
to a selected child process via interprocess

communication, and thus saves the time to “fork” a
new child process. After fulfilling the request, the
child process goes back to the preforked child
process pool. In this case, our modification is to let
the child process keep accepting the requests from
the same connection after finishing serving the
previous request, until a predetermined idle period is
reached.

A major concern for these modifications is that
the number of connections a server has to maintain
will become unmanageable. In our approach, we
have an “idle timer” associated with each connection.
The idle timer will be activated after a request
receives its services. It will be reset every time a
new request is received. The server will terminate
the connection only when its corresponding idle
timer expires.

3.3 Backward Compatibility with the
Original Internet Client/Server

A “Connection” header is added to the HTTP
entity header as a token to indicate if the entity
supports persistent connections. When an internet
client sends a request for persistent connection (by
adding the Connection header to the Entity header)
to the modified WWW server, the server also adds
the Connection header in its response, notifying the
client that the persistent connection will be provided.
The original server does not understand the newly
added header and will ignore it as specified in the
HTTP protocol. If the client does not find the
Connection header in the response, it knows that the
server does not support persistent connection and
will behave accordingly. Therefore, the backward
compatibility can be achieved.

However, if a unmodified proxy server sits
between the internet client and server, the
aforementioned mechanism cannot function properly.
This is because according to the specification, the
proxy will deliver the unrecognized header to the
server. Consequently, the newly added Connection
header will be delivered between the client and
server, without any change. Since the client and
server have no way of knowing if a proxy server is
located in between them, they would falsely assume
that the persistent connection is supported, while in
fact the proxy server simply delivers whatever it
receives. In this case, the proxy server will wait
indefinitely for the server to terminate the connection,
which will not happen, or until the timer expires.

153

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

During this period, the proxy server will not be able
to accept new requests from the client.

4 Proxy Query Protocol
4.1 Overview

To relieve the problem of server overload and
network congestion, considerable effort has been.
spent to investigate the method of providing cache
for WWW objects. Our work only involves client
side solution, which uses caching proxy that accepts
requests from one or more clients and caches objects
on the clients® behalf.

Many client side caching server have been
developed recently. The most widely used in
CERN's httpd 3.0. All clients using the proxy can
have the benefit of a shared cache. Although it can
effectively reduce the server overload problem, it
also introduces single point of failure and becomes a
performance bottleneck. The structure of such a
proxy server is illustrated in Fig. 6, where the proxy
servers P1 and P1 serve C1 and C2, C3 and C4,
respectively.

S: Server
P1, P2: Proxy
Cl, C2, C3, C4: client

A

Figure 6. Single level of proxy server.

° S: Server

Pl, P2, P3: Proxy
l Cl, C2, C3, C4: client

Pare% arents
? Siling_,

olicNofic

Figure 7. Hierarchical proxy servers.

Another caching server system developed
independently with the work done for this paper is
the Harvest cache [10]. Developed at the
University of Colorado and the University of
Southern California, the Harvest cache is a proxy
designed to operate in concert with other instances

Proceedings of International Conference
on Networking and Multimedia

of itself. These servers are typically configured as
a tree, with each server considering a certain set of
other servers as parents and certain others as siblings,
as shown in Fig. 7. When a server receives a
request that it cannot fulfill, it will consult with its
parents and siblings to see if they have the requested
object cached. One disadvantage of the Harvest
cache approach is that it uses unicast to
communicate with these parents and sibling servers
and the hierarchy does not provide robustness to the
proxy structure.

Related Work

Another caching server system, developed
concurrently with the work done in this paper is the
Cooperating Cache Server scheme in [19]. In this
work, a set of cooperating proxy servers are
available for clients to use. For each request, the
client randomly picks a proxy server (“master”
proxy) form the list and sends its request to it. If
the master has the requested objects, it returns to
object to the client. Otherwise, it multicasts the
requests to other proxy servers in the set. If no
reply is received within a predetermined time
interval, it contacts the server specified in the URL,
as it normally does. If any of the other cache
servers has the object, the proxy server informs the
master proxy, which in turn redirect the clients to the
specific proxy server. The client then makes a new
request for the object to the proxy server. The
protocol is illustrated in Fig. 8.

However, the approach requires that the proxy
server supports I[P multicast, which is not a
reasonable assumption. In addition, the randomly
selected proxy server (the master server) might be
busy or not functioning properly. In this case, the
request cannot be handled efficiently. Furthermore,
it requires real TCP connection to look up the
requested object in the proxy servers. The latency
incurred might not be justified.

—

(S) S: Server

~ P1, P2, P3: Proxy
C1: client

%75 new request
to the server

Figure §. Cooperating Proxy Servers.

4.2 Proxy Query Protocol

To address the robustness and load-balancing
issues in the aforementioned proxy servers, we
propose to use a “Proxy Query Protocol” to allow
the client to use multiple proxy servers. With the
protocol, the client will issue a query to each of the
proxy servers specified in a configuration file to see
if the requested HTML object is cached in one of .
them. (No query will be sent for the inline images,
as will be explained in the following.) The query
will be delivered to the proxy servers through UDP,
which does not set up connections to transmit data as
does in TCP.

A timer will be set when the query is sent. If
no response is received before all the timers expire,
the client will bypass the proxy and contact the
WWW server specified in the URL directly. This
1s to increase the robustness seen by the client when
the proxy servers are all overloaded or are not
working at all. If the answers all indicate that the
proxy servers do not have the requested objects, the
first proxy responded to the query will be selected as
the target proxy and the normal proxy service will be
provided by that proxy server to the client. The
first server that responds a “hit” will become the
target proxy and a regular request will be sent to that
proxy. Note that the proxy query protocol needs to
be applied for the HTML object only. The client
will send the requests for the inline images included
in the HTML object to the target proxy to ensure that
the related WWW objects will reside in the same
proxy server. In addition, the load-balancing of the
proxy servers can be achieved as the proxy servers
with lower loads will response faster to the client.
The protocol is illustrated in Fig. 9.

An alternative to the above mentioned protocol
is to use IP multicast to allow the client to multicast
the queries to the proxy servers. This approach was
rejected because it might not be acceptable to
require IP multicast in all TCP/IP protocol stack
implementations used by the client.

S) S: Server
~ P1, P2, P3: Proxy
Cl: client

ans UDP protocol

Figure 9. Proxy Query Protocol.

154

4.3 Implementation Issues

To implement the proxy query protocol, a
configuration file called proxy.conf is added on the
client side to specify the proxy servers to use. UDP
protocol is used in delivering the queries and
answers to avoid the high overhead of TCP
connections. On the proxy server side, a process is
created to handle queries from the clients. The data
exchanged between the client and the server has the
formats as shown in Figure 10. The format for the
client query has two field: A timestamp for the
time that the query was issued, and a URL filed
indicating the URL it needs. The ranswer to the
query also has two fields: The timestamp that was
sent in the original query so that the client can
correlate the response to the query it sent, and a

response indicating “hit” or “miss”.
Client: query
rcquest
Timestamp Requested URI
10 char up to 256 char
Proxy: query

response
Timestamp
10 char

Figure 10. The formats of the query and answer.

Hil or Miss
up to 4 char

We use UDP unicast in delivering the queries
and answers. This is because it is unreasonable to
require all the protocol stacks in the clients and
proxy servers to support muticast. In addition, to
reduce the time in collecting all the answers from the
proxy servers, we also introduce a limit to the
number of the proxy servers that a client can send
the query to.

5 Performance Analysis

In this section, we will use a prototype
implementation for performance measurements of
the aforementioned persistent-connection mechanism
and proxy query protocol. The experiments were
carried our between 4:00AM and 7:00AM, when the
network traffic volume was shown to be the lowest.
In addition, the time wmeasured is for data
transmission only and does not include the time for
displaying the retrieved objects.

5.1 Measurements for Persistent Connection

In the experiments conducted for persistent

155

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

connection, the workstations for the modified client
is a SUN Sparc 20 running Solaris 2.4 OS. The
workstation for the modified WWW server is a SUN
Sparc 10 running Sun OS 4.1.3 OS. The client is
located at the Institute of Computer Science,
National Chung-Hsing University, in Taichung,
Taiwan. The servers are located in Department of
Computer Science and Information Engineering,
National Taiwan University, in Taipei, Taiwan. The
two universities are the network centers for Taiwan
Academic Network (TANET).

A “sample” HTML file with 10 inline images is
also constructed for the experiment. The size of the
WWW objects has a big impact to the possible
performance improvement of the persistent
connection mechanism: If the size of the WWW
object is large, then the connection set-up/
termination time is small, compared to the total time
in retrieving the object. Therefore, selecting the
“right” size for the sample documents and objects us
important. We analyze the files in the WWW
proxy server cache located at the Computer Center
of the National Chung-Hsing University and obtain
the statistic about the files as listed in Table 1.

We select the median of the distribution,
2.8Kbytes as the standard WWW object size for the
experiments. This size is larger than the 2.0Kbyte
object size as mentioned in [6]. However, in [6],
Bray also notices the trend of increasing size for
the WWW objects. As a result, we think the size
we select is in accordance to the result presented in

[6].

Table 1: The statistics of the files in the proxy
cache of NCHU. (Size in Byte)

Number of Files 8,358
[Total size of all files 107,608,200
number for files with size 0 8
max. file size 2930811
min, file size 183
Average file size (excluding size 0) 12.887
Median of the file size (excluding size 2,818
0)

The measurement results are shown in Fig. 11.
As illustrated in the figure, the network latency
incurred by the modified client and server is
substantially smaller { about 55% less) than that of
the unmodified counterparts. The results indicates
that persistent connection can effectively reduce the
latency in retrieving WWW objects.

Proceedings of International Conference
on Networking and Multimedia

fletuork Latency ¢second)

ort~tern —+—

e.1% . L L L
e.htel 1.p3f S.0if 6.9if F.gif E.gif
“UW Objeet

Figure 11. The network latencies comparison of
the persistent connection and unmodified versions.

Z.etf J.eif d.air

9.9if to.old

5.2 Measurements for Proxy Query Protocol

In the experiments for Proxy Query Protocol,
the workstations we used for the modified clients are
SUN Sparc 20 running Solaris 2.4 OS. The
workstations for the modified proxy servers are SUN
Sparc 2 running Sun OS 4.1.3 OS. The client and
proxy servers are connected by a 10Mbps Ethernet.
The scenarios we are interested in are single level
proxy, two-level hierarchical proxy, and proxies
using proxy query protocol. (The configurations
for the three scenarios are as shown in Figs. 6, 7, and
9, respectively.) The eleven sample WWW objects
used for this experiment are listed in Table 2. For
the sake of simplicity, we also have the clients
retrieve objects in a sequential order (C1, C2, C3,
and then C4). In addition, a client will wait for an
object to be retrieved in full before it issues its
request for the same object..

Table 2. The sample WWW objects to retrieve.
URLs
http://fakeindy.linkease.com.tw/twnet/www.html
http://www.ntu.edu.tw
hitp://www.ntnu.edu.tw
http://www.nccu.edu.tw
http://sparc14.ncu.edu.tw
http://www.nthu.edu.tw
http://www.nctu.edu.tw
http://www.nchu.edu.tw
http://www.ccu.edu.tw
http://www.ncku.edu.tw
http://www.nsysu.edu.tw

Fig. 12 shows the performance measurement
results of the scenario of a single level proxy. With
the experiments we conduct, Clients 1 and 3‘s
requests result in “misses’ in the proxy servers and
the proxies have to retrieve the objects from the

156

servers. Clients 2 and 4°s requests can be fulfilled
by the proxy servers. The average retrieval times
of the eleven objects for the clients 1, 2, 3, and 4
are 4.53, 1.57, 4.8, and 1.64 seconds, respectively.

Fig. 13 shows the performance measurement
result of the scenario of a two-level hierarchical
proxy server. In this scenario, Clients | and 3 have
to go through 2 proxies to retrieve the objects, while
requests from Client 2 and 4 can be fulfilled by the
first-level proxies. The average retrieval times for
Clients 1, 2, 3, and 4 are 6.15, 1.66, 3.81 and 1.49
seconds, respectively.

1

10 b

Het: b Lat) condy)
- \
.
o 4 \‘; s
;
° “7~4~
./
o -.l“\.‘\\ +
° \“\‘\ v oe
Vo

° [2 4 = 3 * & = 1o

Figure 12. Latency of the single-level proxy server.

frect ——
ant g e
ent & &

3
et

=11

client 3 -
client 3

Hetvork Latency (seconds)

°

° 1 2 3 .) 3
...............

Figure 13. Latency of the two-level hierarchical
proxy servers.

onds)

Hotuort Lateney (see

Figure 14. Latency of thep oxi;as with proxy query
protocol.
With the proxy query protocol, Clients 2, 3,

and 4 all issues their queries to proxies and will

receive a cache hit answer as the objects have been
retrieved by Client 1 before. As a result, only
client 1 has a higher average retrieval time for the
objects. The measurement results are shown in Fig.
14.

6 Conclusion

As a result of growing user population and
traffic volume, the WWW users have experienced
increased latency while retrieving WWW objects.
This is" caused by deficiency in the interaction
between the HTTP 1.0 protocol and the underlying
TCP protocol, server overload, and network
congestion. In this paper, we have proposed to use
persistent connection for better interactions between
HTTP and TCP, and a proxy query protocol to
enhance the performance and robustness of proxy
servers to reduce WWW server overload and the
traffic volume flowing on the Internet. We have
also implemented the approaches and performed
measurements for the modified client, proxy and
WWW server. The results show that the approaches
can effectively reduce the latency of WWW object
retrievals.

However, the combined effect of the persistent
connection and the proxy query protocol remains to
be analyzed. In addition, a theoretical analysis of
the latency incurred by different proxy caches can
provide a better insight about the selections of the
parameters (the number of proxy servers in the server
set, the orders for accessing the proxies, etc.) for the
proxy query protocol. Another possible enhancement
might be to incorporate the proxy query protocol into
a hierarchical proxy structure (by extending the single
proxy in a level of the hierarchy to distributed, shared
proxies). These can be the topics for future
researches. ‘

References

[1] T. Berners-Lee, R. Caiiliuau, J.-F. Groff, and B.
Pollermann, "World-Wide Web: The Information
Universe," Electronic Networking: Research,
Applications and Policy, Vol. 1, No. 2, Meckler,
Westport, CT., Spring 1992.

[2] R. J. Vetter , C. Spell, and C. Ward, "Mosaic and
the World-Wide Web," IEEE Computer, pp. 49-
57, October 1994.

[3] "NSFNET Traffic Distribution Highlights,"
Available from Anonymous FTP nic.merit.edu,
December 1994.)

[4] T. Berners-Lee, R. Fielding and H. Frystyk,
“Hypertext Transfer Protocol - HTTP/1.0,”

157

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.O.C.

Internet Draft, IETF, August 1995.

[5] J. Postel, “Transmission Control Protocol,” RFC
793, Network Information Center, SRI
International, September 1981.

[6] T. Bray, “Measuring the Web,” In Proc.of the
Fifth International World Wide Web Conference,
Paris, May 1996.

[71 W. R. .Stevens, TCP/IP [llustrated, Volume I,
Addison-Wesley, 1994.

[8] A. Luotonen and K. Altis, “World-Wide Web
Proxies,” April 1994,
http://www.w3.org/hypertext/WWW/Proxies.

[9] S. Glassman, “A Caching Relay for the World
Wide Web,” In Proc. of the First International
World Wide Web Conference, pp. 69-76, Geneva.
Switzerland, May 1994.

[10] A. Chankhunthod, P. B. Danzig, C. Neerdaels,
M. F. Schwartz, and K. J. Worrell, *A
Hierarchical Internet Object Cache,” Technical
Report, USC/UCB, 1995.

[11] T. Berners-Lee, “Universal Resource ldentifiers
in WWW: A Unifying Syntax for the Expression
of Names and Addresses of Objects on the
Network as Used in the World-Wide Web,” RFC
1630, CERN, June 1994.

[12] Simon E. Spero, *“Analysis of HTTP
Performance Problems,” July 1994,
http://sunsite.unc.edu/mdma-realease/http-
prob.html.

[13]1J. C. Mogul, “The Case for Persistent-

Connection HTTP.” In Proc. SIGCOMM 93, pp.
299-313, Cambridge, Mass., August 1995.

[14] V. N. Padmanabhan and J. C. Mogul
“Improving HTTP Latency,” In Proc. af the
Second International ~ World — Wide — Weh
Conference, pp. 995-1005, Chicago, IL, October
1994,

[15] S. Spero, “Next Generation Hypertext Transfer
Protocol,” Internet Draft, IETF, March 1995.

[16] NCSA, “Common Gateway Interface,” 1994,
http://hoohoo.ncsa.uiuc.edu/docs/cgi/overview.ht
ml.

[17] NCSA, “Server Side Includes (SSI),”" 1994,
http://hoohoo.ncsa.uiuc.edu/docs/tutorials/
includes.html.

[18] R. Malpani, J. Lorch, and D. Berger, ** Making
World Wide Web Caching Servers Cooperate,” in
Proc. of the Fourth International World Wide
Web Conference, Boston, December 1995.

