Proceedings of International Conference
on Networking and Multimedia

GWB - A Web/RDBMS Gateway Program Generator

Wei-Jyh Lin, Computer Science Department,
National Chengchi University, Taipei, Taiwan,
R.O.C.

Kung Chen, Information Management
Department, National Taiwan Institute of
Technology, Taipei, Taiwan, R.O.C.

Abstract

This paper describes GWB, a WWW to RDBMS
gateway CGl generator. GWB is an HTML-centric tool
that generates ODBC code from an HTML-like
template. It is simple yet powerful enough for most
intranet as well as internet applications. This paper
surveys the current approaches; describes the design
goals, the language, and several intranet and internet
applications using GWB. This paper also discusses
Juture enhancement in terms of scalability, session and
State management, transaction management, and high-
performance.

1. Introduction

World Wide Web (WWW, or Web) browsers
have been called “The GUI's of the 90’s.” The
multimedia nature and the input form make Hypertext
Markup Language (HTML) [18] a good vehicle for
application user interface. The simplicity of HTTP [19]
and HTML spurs implement of Web browsers that
virtually all platforms have several implementations.
The universal interface and availability of Web

Chih-Hung Hsieh, Microtec, a Mentor Graphics
Company, 2350 Mission College Blvd.,
Santa Clara, CA 95054, U.S.A.
C. Jay Chen, Trilogy Technologies, Inc., 3F, No.
3, Alley 181, Section 2, An her Road, Taipei,
Taiwan, R.O.C.

browsers make them perfect graphical user interface
for internet and most intranet IS applications. Using the
Web to develop client/server applications involves
writing HTML as front-end user interface and
Common Gateway Interface (CGI) [20] programs for
back-end database access. This paradigm has many
advantages over traditional methods of hand crafting
user interface and database code using C/C++, or any
GUI builder. Among the advantages are quick
prototyping, instant deployment, and easy modification.

This paper describes GWB, a Web/RDBMS
gateway application generator. GWB is an HTML-
centric tool that generates ODBC (Open Database
Connection) code from an HTML-like template. We
describe the design goals, the language, and several
GWB applications. Specifically this paper is organized
as follows. The rest of this section gives a brief
introduction to the mechanism of Web clients
accessing databases. Section two surveys current
approaches. Section three identifies the GWB design
goals. Section four gives a detailed discussion of the
GWB language. Section five gives two GWB example
applications. Section six discusses future work.

The Architecture of the CG|

Name:[Vincent |
Addr: 75z Fara]
Submit . "\

NET

WWw
Client

The mechanism that a Web client accessing a
database is depicted as in Figure 1. Users submit a

GETAPOST

Query—

Database
Server

Gateway |
Program

[¥~—Results

?
[cal]
!

HTML
Pages

form or click on an anchor in an HTML page which
represents a user interface to databases. This action

Figure 1

134

triggers the client to send to web servers a GET or
POST HTTP message specifying a CGI program to run
with arguments from user input. The web server
executes the gateway program which is really a
database gateway to service SQL requests embedded in
input arguments. The database gateway connects to the
database server and sends the request for execution.
The results are then passed back to clients along the
same route, from database servers, to gateways, to web
servers, and finally to clients. Other mechanisms of
accessing databases from the Web exist. Please see
section 2.2 below. '

In the above CGI mechanism the database
gateway program has to do several tasks: (1) it has to
decode the parameters passed from a web server and
validate them; (2) it has to compose SQL statements
according to input values, including necessary binding
of SQL parameters to host variables; (3) it has to
performs database connection, sending requests,

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

examining execution status, and retrieving result sets if
any; and finally (4) it has to formulate results back into
HTML, which includes HTML-escaping database texts,
numeric values, and blob data before sending them
back to clients.

All the above tasks are tedious and repetitive in
developing Web/Database programs. They are low
level and should be automated. There is a clear need
for Web/Database gateway program generators to
automate these tasks.

GWB is designed to automate these tasks. The
following diagram depicts GWB architecture. GWB
users write HTML-like source programs. GWB first
compiles the source programs into ANSI C code. It
then invokes C compiler to compile the generated code
and link with GWB and ODBC libraries to produce a
database access gateway program. A separate HTML
form can be authored using any WYSIWYG HTML
editor to invoke the gateway program (see Figure 2.)

GWB Architecture Overview

Design time
HTML Form HTML-based Gateway Y
GWB template Builder)
Name:[Vincent | }
Addr: ANSI C code
[Submi E Jz oDBC
o ‘/’\J L(i-:;g?y i] .| Library
~ } Ccompiler ¥ " |
.................. l....“...“.‘..,.“.,...HA.,.H.A..‘.“H...A....A........;.A...AUH....A.AA....“H..“H....“_.
Run tim
n CGl
] A Sybase
Web ——inputs—}
Browse N HTTP & ODBC
_fa—resuits Server Gateway
= — o < Application
Oracle
Figure 2.

Z. Current approach survey

Since Arthur Secret's work on WWW access to
relational databases at CERN in 1992 [1], there has
been a growing interest in this area. Individual
researchers, database middleware vendors, and
database vendors all have their own tools to address
this issue. Richmond [2] and Kim {3] maintain
comprehensive lists of Web/DBMS tools and products.
Frank {4] explores various techniques and products
that are used to access databases from the Web. Brian

[S] wrote a good tutorial of application development
on the Web.

For the purpose of designing a Web/RDBMS
gateway program generator we surveyed existing tools
and products from three different perspectives:
programming model, architecture, and intended usage.

2.1 Programming model

By programming model we mean the abstract
model of a language in which applications are

135

Proceedings of International Conference
on Networking and Multimedia

programmed. A language's programming model
determines how naturally the intended Web database
processing and presentation can be expressed. The
language constructs and database access primitives
determine how general applications can be written. We
classified programming models of existing tools as
HTML-based, Perl-based, Script-based, and other-
programming-language-based.

HTML-based tools generally take HTML as a
base language and add a few extended tags for
application processing logic. A source program, called
a template, is simply the intended HTML output with
control constructs and SQL statements embedded.
Special syntax is provided for variables that act as
place holder for parameters passed from Web servers.
Variables can be printed as HTML texts, incorporated
in SQL statements, or used in branching or looping
constructs. These tools also provides mechanism to
iterate through and HTML-escape retrieved data before
presenting to clients. Since a source template bears the
look of HTML documents, this approach turns a Web
page into an “application page.”

This approach has the advantage of simplicity. A
WYSIWYG HTML editor can be used to write the
base HTML part of a template. Control structures can
then be added. The output presentation of an
application is thus clearly separated from its processing,
Typical tools in this category includes Cold Fusion [6],
WebBase [7], and WebDBC [8].

Tools in this category vary in how new tags and
variables are introduced syntactically. They also differ
in whether general operators and expressions are
provided. Limited expressions constraint the scope of
applications that can be written. Some tools do not
allow multiple SQL statements in one template.
Virtually none of these existing tools offer complete
data types and database access primitives such as those
provided by ODBC API.

The second category includes tools that use Perl
as their programming language. Perl-based tools are
among the first Web/RDBMS tools. Michael Peppler
in Switzerland and Kevin Stock in the UK have
developed sybperl [9] and oraperl [10], which are perl
implementations of the C library routines for Sybase
and Oracle databases. Since Perl has complete control
constructs, arbitrary complex Web applications can be
written using these libraries. As a result this approach
has been very popular in publishing databases on the
internet.

Although these tools provides all necessary
primitives for writing database applications they are
not specifically designed for Web/Database access.
The presentation of application output typically
disperses in Perl statements. Other tools, such as
Sybase's web.sql [11] and WDB [12], removes this
drawback by providing another layer's programming
paradigm on top of these Perl libraries.

The third category contains script-based tools
that define their own specific script languages. These
tools generally assume particular access patterns and
presentation styles and optimizes the script languages
accordingly. For example, Web/Genera [24] assumes
that most database access from Web is to query
information from a complex database. It thus provides
a schema description language that states the
information to be displayed, including their data types,
column and table name, etc. WDB [12] is another
example of script-based Web/Database tool that uses
Jorm definition files to describe which tables and fields
should be accessible through each query form. Writing
applications using these tools involves writing script
statements to access databases and format results.

Since these tools assumes access patterns and
presentation styles, applications that do not follow
these patterns or styles would be awkward to
implement. These script languages generally do not
have primitive control constructs. This further limits
the kind of applications that can be programmed. None
of these tools provide database access primitives.

Other-programming-language-based tools use
Java, C++, ete. as their programming languages. These
tools share the same characteristics of Perl-based tools:
complete language constructs and database access
primitives. These tools, however, differ from Perl-
based tools in that they generally have a visual
development environment. They are mostly designed to
support large scale intranet applications and thus all
provide mechanism to maintain state or perform load-
balancing. See the following section for tools in this
category such as [14], [15], [16].

2.2 Architecture

By architecture we mean the execution
mechanism and environment of generated applications.
The most popular architecture's are CGI, server API,
special web server, and three-tier architecture.

CGl is the simplest form of Web/Database
applications. A CGI application is simply a program
that is forked and executed from a web server. It can be
written in any language and virtually every web server
supports CGI. There are two approaches of using a
CGl architecture. In the first approach the
Web/Database tool is an interpreter which is run by
web servers as a CGI program. Applications, whose
paths are passed in URL query strings, are executed by
the interpreter. Template-based and Perl-based tools,
such as Cold Fusion and WebDBC, fall into this
category. In the second approach the Web/Database
tool compiles an application from a source format to a
CGI executable. Script-based tools fall within this
category.

CGl-based architecture suffers from poor
scalability and performance. The performance is not
optimal because each time a CGI is requested from

136

clients it has to be forked and executed by web servers.
When there are many requests arriving at the same time
web servers will be overloaded with CGI programs.

FastCGI from Open Market, Inc. [13] addresses
this problem by providing a network protocol library
which implements the CGI specification. Instead of
running an external process, web servers compiled with
this library communicate with a FastCGl program
using this network protocol for each client request.
This solves the performance issue. The scalability issue
is also solved because FastCGI applications can run on
multiple hosts which could be different from the one
running web servers.

Netscape [21] is the first to pioneer server API
architecture. The goal is the same as FastCGI: to avoid
running a separate process for each client request.
However, server APl architecture does not seek to
preserve the CGI mechanism between web servers and
application programs. Instead, application programs
are compiled as loadable modules, such as shared
libraries and DLL's, that are loaded by, and linked with,
web servers at run-time. The performance is improved
because each .client request becomes an internal
function call within web servers. Web.sql falls within
this category.

Although server API architecture improves
application performance most API's are complex and
difficult to use. Since application code is linked with
web servers, immature applications can corrupt servers.
In addition, applications do not scale up well since they
must run with web servers on the same host.

Using special web server is another way to
increase performance. Special web servers that can
complete application requests, in addition to servicing
HTML pages, are used in place of a regular web server.
When a request arrives, special web servers determine
if it is a request for an HTML page or for an
application. In case of the latter they would execute the
application as part of server functions without running
a separate process. Some HTML-based tools, such as
WebBase, fall within this category.

Special web server architecture shares the same
problems as server APl based architecture:
applications and web servers can interact in
unpredictable ways, and the applications do not scale
up well. Special web server approach is in general
easier to use than the complex server API's.

Three-tier architecture has become an
increasingly important architecture recently. A three-
tier architecture involves web servers and a number of
application servers and database servers working
together in servicing requests. The application servers
and database servers run as daemon processes and wait
for requests from web servers. When a request arrives
web servers pass the request to an available application
server through a small CGI or server APL The
application server would run a Java class or interpret a
template or a script as specified by the request. For

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

each databases access embedded in the request the
application server asks an available database server to
access the desired data. The results are then processed
by application servers before sending back to clients.
NetDynamics [14] and dbKona/T3 [15] are
representatives of three-tier architecture.

The three-tier architecture solves performance
and scalability problems simultaneously by employing
multiple application and database servers. In addition,
transaction, session, and state management can all be
addressed in this architecture. See section six for a
discussion on these issues and how a three-tier
architecture solves these problems.

2.3 Intended Usage

Existing Web/Database tools can also be
classified according to their intended usage's. The
simplest ones are those intended for browsing a
database. These tools generally lack the flexibility of
building arbitrary queries or presenting results in
arbitrary formats. Script-based tools generally fall
within this category. The second category contains
tools that are designed with internet database access in
mind. They are more flexible in building queries and
presenting results. Oraywww {22] and Decoux gateway
[23] can be considered among this category. Tools in
the third category are those that are designed to support
intranet client-server as well as internet database
applications. WebBase, Cold Fusion, NetDynamics are
among this category.

For programming simplicity, GWB uses HTML-
based programming model. GWB is designed to
support both intranet and internet applications.
Although currently GWB has a CGI architecture for
fast implementation, it can be changed to use a three-
tier architecture in the future without changing
programming interface and semantics of existing GWB
applications.

3. The GWB design goals

An ideal Web/RDBMS tool should be easy to
use without requiring specific programming expertise.
It should be designed for both internet and intranet
applications. Ideally, it should also scale up without
scarifying performance and ease-of-use. Specifically
the design goals of GWB are to fulfill the following
requirements.

1. Simplicity: Many of the tedious and low-level work
should be simplified. For example, a simple
mechanism should be provided to access arguments
without having to worry about decoding. High-level
constructs should be provided to validate user input
against various rules. Presenting results should be
straight-forward without having to worry about
HTML-escaping of data and whether the piece-meal

137

Proceedings of International Conference
on Networking and Multimedia

composition of HTML texts would produce the
desired layout.

2. Power: Not only should simple clieni/server
applications be easy to develop but writing complex
applications should also be possible. It should be
easy to specify multiple complicated queries using
user inputs or resulis from previous queries. Basic
constructs, such as branching, looping, and
assignment, should be provided for arbitrary
processing logic. It should be able to handle various
data types in heterogeneous databases. It should also
make presenting blob data easy.

3. Extendibility and easy to learn: The provided
constructs should be uniform and easy to learn. It
should be easy to add new capabilities without
conflicting existing features. The architecture should
also be scalable for high performance.

4. Flexibility: The generated application should be able
to work with any database, web server, and web
browser. It should also be easy to bridge to legacy
code.

GWB was designed to satisfy these requirements.
To free developers from details of presenting results in
HTML texts, GWB provides an HTML-based template
language. GWB adds only a few extended tags to
introduce essential programming structures into
templates. Three system predefined record are
provided to access program arguments easily in
templates. GWB also provides a rich set of data types
and operators that, coupled with extended tags, makes
complicated database application possible.

GWR has a rich set of functions to encapsulate
high-level operations such as data formatting and input
validation. It also allows user-defined -external
functions, which is called in the same way as system
functions. GWB generates CGI programs that access
database through ODBC libraries, but can be extended
to use a three-tier architecture with separate application
and database servers without changing semantics.
Because GWB generates ODBC codes and follows
CGl standards, it works with any RDBMS and any web
server.

4, The GWB language

GWB is a template based language for
automating ~ Web/database gateway application
generation. The language is based on HTML, with
eight extended tags introduced to bring database
connection and processing logic into a template.
Conceptually a GWB template is an "application page"
which is executed by a Web server. In reality, a
template is translated into efficient ODBC code, which
is compiled into a CGl program and executed by a
Web server.

GWB introduces variables into templates. A
GWB variable is a dollar sign leading identifier, e.g.,
$customer_id. A wvariable can be a record of

heterogeneous named values. Three system records,
$GWB FORM, $GWB_URL, and $GWB_CGI are
provided to access the three sources of parameters into
a CGI program. Dotted notation is used to qualify
individual components in a record; e.g,
$GWB_FORM.customer_id denotes an input form
field whose name is ‘customer_id. An unqualified
name can represent a member of either SGWB_FORM,
$GWB_URL, $GWB_CGI, or a local variable. GWB
automatically searches $SGWB_FORM, $GWB_URL,
$GWB_CGI, and local variables, in that order, for an
unqualified name. A database query result is the fourth
source of values into a CGI program and is also
presented as a record which contains members for
query execution status, error, and results.

GWB is a dynamically typed language. A
variable can hold values of different types throughout
its lifetime. GWB provides twelve primitive data types
and two compound types.

GWB also has functions. A GWB function is a
dollar sign leading identifier immediately followed by
a left parenthesis, zero or more parameters, and a
closing parenthesis, e.g.,
$GWB_is_date_format($datefield). GWB provides a
rich set of functions for various HTML formatting,
input validation, type coercion, etc. GWB also has a C
function hook for legacy code and for extending
GWB's capability.

In their simplest usage, GWB variables and
function values can be printed to HTML output
streams. But GWB offers operators and expressions.
Expressions can be composed from variables, literals,
functions and fourteen operators. Values of expressions
are the sources of processing logic provided by GWB
extended tags.

The following sections describe data types,
functions, operators, expressions, extended tags and
give examples to show the power of this compact
language.

4.1 Data types

Many template based Web/Database gateway
application generators ignore data types and treat all
values as character strings. This approach has many
disadvantages:

1. The values retrieved from databases can only be
displayed. Only limited operators, such as equality
operator, can be performed on retrieved values.

2. It is difficult to handle NULL and BLOB data in
databases.

3. Since values are converted to character strings when
retrieved from databases, lost of precision might
occur if the values are to be inserted back into
databases. For example, a floating point value may be
truncated to 10 digits of precision silently when
retrieved from databases and converted to character

138

strings. When this value is inserted back to databases
it may have less precision than the original value.

4. Due to lack of operators it is impossible to provide
embedded SQL level flexibility needed in a complex
application.

GWB provides twelve primitive types for
database and error values, and two compound types for
basic data structure.

4. 1.1 Primitive types

GWB has twelve primitive data types (table 1.)
The NULL type has a single value, 'GWB_undefined',
which is the undefined value of a GWB variable.
Existent GWB_FORM or GWB_URL member whose
value is not supplied at run-time has a GWB null value.
Retrieved database data whose values are database
NULL also has GWB null value.

Error type also has only one value: 'GWB_error'.
Referring a non-existent variable, applying operators
on wrong types of operands, or calling a function with
parameters evaluating to 'GWB_error' results in
'GWB_error'. 'GWB_error' carries an error cause string
which is printed by GWB at run-time.

Note the distinction of NULL type and Error
type. If a form field is defined but no value supplied at
run-time the value is ‘GWB_undefined'. If a form field
is not defined but referred the value is a'GWB_error'.

GWB distinguisheés between signed and unsigned
integer since some RDBMS distinguish between these
two types. GWB has Bigint type for 64-bit integer.
This data type is for RDBMS on 64-bit architecture's.

GWB has Numeric types for NUMERIC and
DECIMAL types in some RDBMS. Since precision
and scales in these values may carry special meaning,
GWB numeric types keep original database precision
and scale for faithful reproduction of values when
presented. GWB numeric types can be involved in
computation and comparison.

GWB has Date, Time and Timestamp types
whose values can come from a database column, or
converted from a string value. Date, Time and
Timestamp values can only be compared to values of
the same type. GWB has blob type for database BLOB
(Binary Large Object) data. GWB provides special
functions to automatically put blob data into file
systems and generate proper (in-line image) links to
blob files.

4.1.2 Compound types
GWB provides two compound types for basic

data structure: List and Record. A list is an ordered
collection of GWB values. A form field with multiple

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

values supplied at run-time has a GWB list type value.
These multiple values form the elements of a list. A
record is a special list where the elements are paired as
(name, value). Each pair denotes a named value within
a record. The "name" elements all has string types
while the "value" elements may be of any GWB types.

4.1.3 Data type determination

Values come into a GWB application from input
forms, query strings, CGI environment variables, or
SQL results. Each source introduces a record variable
with fields for individual value in the source. Since
CGl provides only character string passing between
web servers and CGI programs, GWB determines the
data type of a variable to be NULL, Integer, Float,
String, or List depending on if the value is supplied,
the format is appropriate, and multiple values are
supplied.

A set of coercion functions are provided for
cases when the determined types are not desired. For
example, a user input “1996-06-09” for an input field
called 'date' would have a String type. It can be coerced
into a date type in order to be compared with a date
value retrieved from databases. Using a simple rule and
a set of coercion functions, instead of a more
complicated one to determine more types such as Date,
Time and Timestamp, makes GWB a compact
language while providing maximal flexibility. For
example, the SGWB_date() function is flexible enough
to accept date format such as “1996-06-09”, “1996-6-9
”, “1996/6/9”, etc. This also has the advantage of
letting GWB users apply these functions consciously
instead of coercing silently.

For variables corresponding to values from a
database, GWB is able to query the database for data
types through ODBC API. Most appropriate GWB
data types would be assigned for such variables.

4.2 Functions

Functions are essential to express abstract
operations. They adds extendibility to a language
without complicating its syntax. GWB is designed to
be a compact language with a rich set of system
functions for various needs in typical Web/Database
applications. GWB also allows user-defined external C
functions. External C functions follow the same calling
convention as system functions, e.g.,
$my_legacy fen(8GWB_FORM.ship no). The first
function call serves as a forward declaration for the
called function. This language design decision not only
has the benefit of uniform function interface but also
results in simple implementation for system and user
functions.

NULL Error Boolean String Integer Bigint
Numeric Float Daie Time Timestamp Blob
Table 1.

139

Proceedings of International Conference
on Networking and Multimedia

Input validation functions

GWB is date format(expr) IGWB is time format(expr) |GWB is_timestamp format(expr)

GWB _is_integer_format(expr)

|GWB_is_ﬂoat__fonnat(expr)

GWB_name_exist(quoted_name)

HTML formatting functions

GWB format html(expr)

|GWB format url(expr)

IGWB format blob(var, mime)

Coercion functions

GWB signed integer(expr) GWB_float(expr)

GWB _unsigned integer(expr)

GWB_string(expr) GWB_date(expr)

GWB numeric(expr, pre, scal)

GWB bigint(expr) GWB_timestamp(expr)

GWB _list(expr)

GWB _time(expr) GWB_boolean(expr)

|GWB record(name_expr, value expr)

Data type validation functions

GWB is signed integer(var)

IGWB is_unsigned integer(var) |GWB is_float(var)

GWB is_string(var) GWB is numeric(var)

GWB is date(var)

GWB is bigint(var)

GWB is_timestamp(var)

GWB s list(var)

GWB is time(var) GWB is boolean(var)

GWB is record(var)

String, list, and record manipulation functions

GWB string_length(expr)

|GWB sub_string(expr, i, j)

GWB list_length(expr)

GWB._list_value_to_string(list_var, separator, pattern)

GWB_instr(str_exprl, str_expr2)

GWB_record_value_to_string(rec_var, separator)

Miscellaneous functions

GWB_resultset_returned(query_var)

|GWB_concate_datetime(date_expr, time_expr)

GWB_sql_table(query var, max_count, start_row, Next_label, Prev_label, offset, suffix, ...)

Table 2.

4.2.1 System functions

GWB provides several groups of functions. The
first group is for validation. It is essential to validate
input values before using them in a SQL statement.
GWB provides functions for validating if a variable
exists, or if it has the right input format. Since GWB is
a dynamically typed language it also provides type
validation functions to test the type of variable.

Since most data in databases are not of HTML
format they need to be properly HTML-escaped before
sent to browsers. A GWB variable is automatically
HTML-escaped before output to HTML streams. If this
is not desired, for example, if the variable contains
HTML texts, §GWB_format_html(expr) can be called
to prohibit HTML-escaping. Another function,
$GWB_format_url(expr), is provided to perform
special URL-escaping, which is needed in the SRC
attribute of an anchor or in-line image.

BLOB data generally contain images, audio,
video, or documents. Before BLOB data can be sent to
clients, proper in-line image tags or anchors need to be
generated in HTML output streams. GWB provides a
special function, $GWB_format_blob(var, mime), to
automatically save a blob variable's data into a file on
the server and generate a proper tag with the SRC
atiribute invoking a blob handler program. This
program is passed with the saved file name and the
mime type and is responsible for sending the BLOB

data file to clients and removing the data file after
being used.

As mentioned above, it is possible that a
variable's data type is not desired and needs to be
coerced. Coercion functions are provided for such

purpose. One of them: is of particular interest:

$GWB_List(expr). This function returns a list of a

single member which is the value of an expression.

Used with the overloaded '+ operator (discussed in a
later section,) arbitrary lists can be composed from
prime values.

GWB provides several string, list, and record
manipulation functions. Arbitrary complex SQL strings
can be composed by examining variable values, and
use branching statement and the overloaded '+
operator for string composition. Other miscellaneous
convenient functions are provided, e.g. one is to
automatically formulate the result set of a SQL into an
HTML table. ‘

4.2.2 User-defined external C functions

User-defined functions are useful to incorporate
legacy code and to extend GWB's capability. They are
called identically as system functions. No forward
declaration is needed. A set of C utility functions are
provided to create, retrieve, and set GWB values. User
functions and system functions are ireated the same by
the GWB compiler. This provides a simple mechanism
to link with legacy code. Users can even provide a new

140

implementation and override a system function at link
time.

4.3 Operators and expressions

Operators are essential in providing flexibility in
applications. GWB provides five arithmetic operators:
o e o six relational operators: 'EQ', 'NEQ',
'‘GT', 'GE!, 'LT, 'LE"; and three logical operators: 'AND',
'OR!, 'NOT". The operator '+ is overloaded for string
and list types. Expressions can be constructed by
applying operators on variables, literals, and function
values. All operands are checked for correct types at
run-time. Expressions with incorrect operand types or
function parameters evaluate to a GWB_error. Error
causes would be printed and the containing statement
would be skipped in case of error.

4.4 Statements

Statements are the extended tags that GWB
introduces into HTML-based templates. Statements are
the missing control and database access cperations that
are needed to turn an HTML page into an "application
page." In addition to database access statements, GWB
provides conditional and iterative constructs, which are
essential in programming languages. Conditional and
iterative constructs in GWB can be nested arbitrarily
with virtually no limitations of the nested level.

A GWB template thus can be viewed as a base
HTML file with GWB statements intermixed. The part
of a template that are not GWB extended tags are also
considered as statements in GWB grammar. They are
called "non-GWB-phrases." Thus a GWB template is a
sequence of GWB statements and non-GWB-phrases.

4.4.1 SET statement

The SET statement corresponds to assignment in
imperative programming languages. Assignment bring
convenience into a programming language. A variable
can be set to the value of any expression. The SET
statement has the following form:

<GWB_SET var=expr>

4.4.2 IF statement

Branching constructs are essential in any
programming language. It brings processing logic into
a CGI program. Any branch in a IF statement can
contains non-GWB HTML phrases or any GWB
statement. The IF statement has the following form:

<GWB_IF {(expr)> {any-statement}*

{<GWB_ELSEIF (expr)> {any-statement}*}*

{<GWB_ELSE> {any-statement}*}

</GWB_IF>

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.
4.4.3 FOR statement

Looping constructs are also essential. GWB
provides a FOR statement to iterative through all list
elements. The body of a FOR statement can also
contain non-GWB HTML phrases or GWB statements.
The new identifier introduced is only valid within the
body. The FOR statement has the following form:

<GWB_FOR ident in list_var>

{any-statement}*

</GWB_FOR>

4.4.4 SQL statement

The SQL statement brings database connection
into a template. The SQL statement has attributes to
specify data source, login id, password, and a query
string to be executed. It also has a name, which refers
to a record that carries the query execution result. The
SQL statement has the following form:

<GWB_SQL NAME="sql _name" SOURCE=

"Data Source" ID="id" PASSWD="passwd"

QUERY="query-string">
The following example select from a 'title' table all
rows whose ‘author' column starts with the prefix
specified in variable $author. A record variable,
$search_book, would be produced that contains the
executing results.

<GWB_SQL NAME="search_book"

SOURCE="INF_BOOK_DB" ID="guest"

PASSWD="public" QUERY="select * from

title where author like 'S$Sauthor¥'">

4.4.5 RESULTSET statement

The RESULTSET statement is used to iterate
through the result set of a query. The NAME attribute
specifies a corresponding GWB SQL statement whose
result set is to be iterated through. Since result sets
could be very large, attributes are provided to limit the
number of rows to retrieve. GWB has the nice
mechanism of automatically supplying HTML buttons
for scrolling through the result set. Three more
attributes are provided to specify the offset between
previous and next scroll screens, and the label on the
buttons. The RESULTSET statement has the following
form:

<GWB_RESULTSET NAME="sqgl name"

ITERATOR=id MAX_COUNT=int_expr

START_ROW=int_expr OFFSET=int_expr

NEXT="labal-text" PREV="label-text">

{any-statement}*

</GWB_RESULTSET>
The following example tests if a SQL statement
'serach_book' was executed successfully. It prints out
an error message with status code if the SQL was not
executed successfully. When successful, the 'author’,

141

Proceedings of International Conference
on Networking and Multimedia

title!, and ‘year' column values are printed using
iterator 'b":
<GWB_IF ($search_book.status NEQ "OK")>
Database accessing failure
$search_book.status
<GWB_ELSE>
<GWB_RESULTSET NAME="search book"
ITERATOR="b">
Author: S$b.author Title: $b.title
Publish: $b.year

</GWB_RESULTSET>
</GWB_IF>

4.4.6 Other statements
There are three other statements

<GWB_INCLUDE SRC=template path> is for template
source inclusion. <GWB_OUTPUT SRC=html_path> is for

inserting an HTML file to output streams at run-time.

<GWB_EXEC COMMAND=host command> is for executing
an external host command whose output is inserted into
the HTML output stream. This is useful for including
system related information, e.g., system date and time.

5. Example GWB templates
5.1 Data analysis

This application analyzes CD titles buying group
classified by customer ages. The kind of titles to
analyze and the classification scales are supplied at
run-time from an input form. This shows the flexibility
of GWB in data manipulation.
<html><head>

<title>CD buying pattern classified by
age</title></head>
<body>
<GWB_SQL NAME="sel" SOURCE="Sales" ID="xxx"

PASSWD="yyy" QUERY="select * from

CD_SALES where kind='$kind'">
<GWB_IF ($sel.status NEQ "OK")>

Error accessing Database: $sel.status;
<GWB_ELSE>

<GWB_SET bl=0 b2=0 b3=0>

<GWB_RESULTSET NAME="sel" ITERATOR="i">

<GWB_IF ($i.age LT $scalel)>
<GWB_SET bl=$bl+1>
<GWB_ELSEIF ($i.age LT $scale2)>
<GWB_SET b2=$b2+1>
<GWB_ELSE>
<GWB_SET b3=$b3+1>
</GWB_IF>
</GWB_RESULTSET>

The $kind CD bought by group 1: $b1

The $kind CD bought by group 2: $b2

The $kind CD bought by group 3: $b3

</GWB_IF>

in GWB.

</body></html>
5.2 Internet electronic shopping

This application is a typical internet database
access example. Here the partial name of an electronic
product is entered by users from an input form. This
template would retrieve matched items from databases.
Audio and picture of the items would be automatically
formulated as anchors and in-line images. In case of
error a technical person is automatically notified by
running a host command to call a beeper number. This
example demonstrates that it is very easy to access
databases and presenting multimedia information in
GWB.
<html><head>

<title>Product Information</title>
</head><body>
<GWB_SQL NAME="sel" SOURCE="Items" ID="xux"

PASSWD="yyy" QUERY="select * from Items

where name='S%$name%'">
<GWB_IF ($sel.status NEQ "OK")>

Sorry, database is inaccessible at this

moment. Technical persons have been

notified. Please try again later.

<GWB_EXEC COMMAND="beep 9-456-7766">
<GWB_ELSE>

<GWB_RESULTSET NAME="sel" ITERATOR="i"

MAX_COUNT=1>
Product Name: $name

Price: $price

<GWB_IF ($pic NEQ GWB_undefined)>
Picture: $GWB_format blob(
$pic, "image/gif")

</GWB_IF>
<GWB_IF ($music NEQ GWB_undefined)>

Music: $GWE_format blob(

$music, "audio/wav")

</GWB_IF>

</GWB_RESULTSET>
</GWB_IF>
</body></html>

6. Discussion and future work

GWB in its current implementation fulfills its
design goals: it is easy to learn and easy to use; it is
powerful enough for most internet and intranet
applications; it is flexible to work with any database,
any web server, and any web browser; it is also
extensible by adding more system functions and user-
defined external functions easily. The next generation
would tackle the problems of scalability, session, state,
and transaction management.

To address the scalability issue the next
generation of GWB would use a three-tier architecture
to distribute the requesting load. One possible

142

approach would configure GWB application servers as
server-side Java applications. The GWB templates
could be compiled into Java classes, which are
dynamically loaded and run by application servers. The
protocol between application and database server
would be carefully designed to facilitate caching
database connections and cursor states within database
servers.

The issues of session, state, and transaction
management originate from the stateless of HTTP.
Two-tier client-server applications are able to maintain
states and manage transactions because they constantly
maintain a session with the server. This is impossible,
at least not efficient, for web applications which use
HTTP.

To support session a Web/Database tool needs to
provides virtual session for applications. A virtual
session maintains session related information, such as
database connections and user privileges, from web
pages to web pages. A popular approach is to generate
a unique session key that is kept on the client page with
associated data stored on the server. A session
manager can be added into the three-tier architecture
to perform the job of generating session key and
storing session data.

References

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

GWB in its current implementation supports
client state management by the SET command. Local
variables can hold the state information and can be
carried from page to page using hidden form fields or
URL query strings. Server state management can be
provided by the session manager which keeps state
information along with the session data.

Finally, to support transaction management
GWB simply has to add functions that export ODBC's
SQLSetConnectionOption and SQLTransact functions.
Next generation of GWB will export more ODBC
functions, such as SQLTables, SQLStatistics, etc., to
extend the range of applications that can be written.

7. Acknowledgment

Many thanks to Addison Lin of Trilogy Inc. for
working on the implementation of GWB. He has been
very helpful in implementation and testing which lead
to early capture of some original design flaws. Thanks
also goes to Jichang Tan of NTU for his contribution
of the original database access code and the experience
of building an earlier version of GWB.

[1] W3C, WWW Access to Relational Database, http:/www.w3.org/pub/WWW/RDBGate/.

[2] Alan Richmond, Web Developer's Virtual Library: Database, http://www.stars.com/Vlib/Database.html.

[3] Pyung-Chul Kim, WWW-DBMS Gateways, http://grigg.chungnam.ac.kr/~uniweb/documents/www_dbms.html.
[4] Maurice Frank, Database and the Internet, DBMS magazine, December 1995.

[5] Marshall Brian, Web Development Series, Interface Technologies, Inc.,

http://www.iftech.com/classes/webdev/webdev4/htm.

[6] Cold Fusion Profession 1.5 White paper. htp://www.allaire.com/allaire/pages/cfwhiteppr.htm.

[7] WebBase User's manual, hitp://www.webbase.com/docs/WB23/UserVars.htm.

[8] WebDBC 2.0 Smart Introduction, http://www.ndev.com/qref/default.htm.

[9] sybperl, http://www.sybase.com/WW W/Sybperl/index.html.

{10] Perl and Oracle, hitp://www.bf.rmit.edu.au/~orafag/perlish.html.

[11] Sybase's Web tools strategy, SunWorld on line, March 96.

[12] WDB - A Web to Database Interface, http://arch-http.hq.eso.org/bfrasmus/web/intro.html.

[13] Open Market, Inc., FastCGI: A High-Performance Web Server Interface, April 1996,

http://www . fastcgi.com/kit/doc/fastcgi-whitepaper/fastcgi.htm.

[14] Spider Technologies, Inc., NetDynamics - Delivering Applications in Web Days instead of Man Year,

hitp://www.w3spider.com/ndwhite.html.

[15] WebLogic dbKona/T3 White Paper, Weblogic Technologies, 1995, http://Weblogic.com/t3 . html.
[16] Nick N. Duan, Distributed Database Access in a Corporate Environment Using Java, Fifth International

World Wide Web Conference, May 1996, Paris, France,

http://wwwS5conf.inria.fr/fich_html/papers/P23/Overview.html.

[17] PageBlazer Overview and Features, http://www.PageBlazer.com/overview/main.htm.
[18] T. Berners-Lee and D. Connolly, Hypertext Markup Language - 2.0, September 22, 1995,
http://www.w3.org/pub/W W W/MarkUp/html-spec/html-spec_toc.html.

{19] Basic HTTP, http://info.cern.ch/hypertext/ W W W/Protocols/HTTP/HTTP2.html.

[20] The Common Gateway Interface, http://hoohoo.ncsa.uiuc.edu/cgi/.

[21] The Netscape Server API, http://home.netscape.com/newsref/std/server_api.html.

[22] Orawww, hitp://www.nofc.forestry.ca:80/oraywww/.

[23] Decoux' extension of Sectret's work, INRA, Paris, http://moulon.inra.fr/oracle/www_oracle_eng.html.
[24] What Web/Genera Does, hitp://gdbdoc.gdb.org/letovsky/genera/genexamples.html.

143

