i RE\+/\FERERTER R

A New Bus Allocation Algorithm for Interconnection Networks
of Multiprocessor Systems

Kuochen Wang and Tony Wu
Department of Computer and Information Science
National Chiao Tung University
Email: kwangQ@cis.nctu.edu.tw

Abstract

In shared multiprocessor systems, the interconnec-
tion network is usually the bottleneck of system
performance. Memory references usually have two
kinds of locality: temporal locality and spatial lo-
cality. If a processor references a memory mod-
ule, it tends to reference the same memory module
again. If we do not release a bus that connect the
processor and the memory module immediately, we
can use the same bus directly without reconfigura-
tion when the processor references the same mem-
ory module again. Thus, we propose a new bus
allocation algorithm for interconnection networks
of multiprocessor systems. A pipelined one-sided
crossbar switch, which is essentially a multiple bus,
is used to illustrate our design approach. Ezperi-
mentel results show that the new algorithm uses
buses more efficiently and reduces the number of
reconfigurations. The performance (throughput)
using the new bus allocation algorithm is up to
8 times higher than that using the original algo-
rithm. The contribution of this work is designing a
high throughput interconnection network to match
high performance multiprocessors and to eliminate
the performance bottleneck.

Keywords: arbiter, bus allocation, interconnec-
tion network, multiprocessor system.

1 Introduction

In order to achieve high performance, modern
multiprocessor systems emphasize on increasing
their parallel computation power. A multipro-
cessor system is shown in Figure 1.. In'a shared
memory multiprocessor system, there are several
processors and a shared memory. The shared
memory is divided into several independent mem-
ory modules. The processors are connected to
these memory modules by an interconnection net-
work. An interconnection network is a key com-
ponent in high performance multiprocessor sys-
tems [1] [2] [3]. There are several structures for the
interconnection network such as single bus, multi-

ple bus, crossbar switch, multi-port memory, and
multistage interconnection network {4] [5], which
have been proposed for shared memory multipro-
cessor systems. The crossbar switch provides the
highest throughput and interconnection capabil-
ity among these interconnection networks. It al-
lows all possible simultaneous, non-blocking, one-
to-one connections between processors and mem-
ory modules. When a bus is allocated for a trans-
action, it takes at least one clock cycle to recon-
figure the interconnections network. Therefore, if
we reduce the number of reconfigurations, we can
improve the system performance.

1 2 M

I I

interconnection Network

TT 1

— N ~—

Figure 1: A multiprocessor systerm.

As we know, memory references have two kinds
of locality [4]:

e Temporal locality : If a memory address is
referenced, it will tend to be referenced again
soon.

o Spatial locality : If a memory address is ref-
erenced, memory addresses that are close by
will tend to be referenced soon.

Therefore, if a processor references a memory
module, it tends to reference the same memory
module again soon. Based on this observation,
we propose a new bus allocation scheme for the
one-sided crossbar switch. This scheme allows the
bus ownership to be retained by the current bus
owner even if it currently does not have a pending
transaction. Since the one-sided crossbar switch

A-481

is a nonblocking switch, it is especially suitable
for this scheme. In contrast, in an Intel Pentium
Pro processor, the bus ownership can also be re-
tained. However, it increases arbitration latency
by two clock cycles if other processors generate
new transactions [13].

2 Existing Approach

A pipelined one-sided crossbar switch was pro-
posed in [12]. This pipelined switch, as shown in
Figure 2, includes four parts:

o One-sided crossbar switch
o Arbiter
e Processor interface

e Memory interface

|Processor |Processor} ... | Processor

Pipelined switch

Processor
Inteitace

|

Processor
Intertace

I

3

|Processor
""" | Intertace

L)

One-Sided Crossbar Switch Arbiter

¥ [T
Memory Memory jet..... Memory
Intartace Interface interiace

Memory Memory , Momory
Module Module Module

— R

Figure 2: The multiprocessor system architecture.

Note that we add memory interfaces to the origi-
nal design in [12] to simplify the design of proces-
sor interfaces in [12]. Each processor is connected
to a processor interface and each memory mod-
ule is connected to a memory interface. The pro-
cessor interfaces are connected to these memory
interfaces by the one-sided crossbar switch. The
arbiter controls the one-sided crossbar switch and
arbitrates each transaction. The processor inter-
face handles the data transfer between the pro-
cessor interfaces and the memory interfaces. The
switch is a non-blocking switch, and each bus-line
includes an address bus and a data bus. The
widths of the address and data buses are both
32 bits. The arbiter arbitrates the connections
between processor interfaces and memory inter-
faces. It controls whether crosspoints are activated
or not for connections. The arbiter determines
which request will be allocated a bus to estab-
lish a connection. The processor interface receives
an address (READ transaction) or an address and

data (WRITE transaction) from a processor, and
sends them to a memory interface through the one-
sided crossbar switch. It also receives data (READ
transaction) from a memory interface, and sends
them back to the corresponding processor. A pro-
cessor interface controls the sending and receiving
of addresses and data in a pipelined way. It keeps
track of a transaction in the arbitration and re-
quest phases. The memory interface receives an
address (READ transaction) or an address and
data (WRITE transaction) from a processor in-
terface through the one-sided crossbar switch, and
send them to the memory module. It also receives
data (READ transaction) from the memory mod-
ule, and sends them back to the corresponding pro-
cessor interface. Pipelined (split) transactions of
the one-sided crossbar switch was designed [12].
The state diagram of the proposed pipelined pro-
tocol is shown in Figure 3. A pipelined interface
controls the sending and receiving of addresses and
data in a pipelined way. It tracks the transactions
in the snoop, response, and data phases.

Address

Enor |

Memory
Contentivo

Device
Not Ready

Figure 3: The state diagram of the proposed
pipelined protocol. ‘

In [12], a transaction is divided into five phases:

o Arbitration: A transaction in a processor is
selected to become the owner of a bus on a
round-robin basis. After that, the processor
will send transaction information (R/W, ad-
dress, data for write) to the pipelined inter-
face.

e Request: The processor interface sends the
transaction information to the memory inter-
face through the one-sided crossbar switch. In
this phase, the bus that is selected for the
transaction is busy for data transfer.

¢ Snoop: The transaction in this phase waits for
the memory module ready.

A-482

o Response: The target device (memory mod-
ule) sends a response message (R/W, ac-
knowledgment) back to the pipelined inter-
face.

e Data: If there is no data error, the read data
are transferred to the processor via the pro-
cessor interface.

3 Design Approach

We use connection tables to record the states of
each processor, each memory module, and each
bus, respectively. For each processor or each mem-
ory module, the entries in the connection table, as
shown in Figure 4, consists of two fields: C and
bus. The length of C'is one bit and it is used to in-
dicate if a processor/memory module is connected
to a bus or not. If Cis 0, the processor/memory
module is not connected to a bus. Otherwise, the
processor/memory module is connected to a bus.
If the processor/memory module is connected to a
bus, the bus field is used to indicate which bus is
connected to the processor/memory module, and
its length is logB bits, where B is the number of
buses.

Cc bus

1 logB

Figure 4: The entries in the connection table for
a processor /memory module.

For each bus, the entries in the connection ta-
ble, as shown in Figure 5, consists of three fields:
state, processor, and memory module. The length
of state is two bits, and it is used to indicate the
state of a bus:

e 00: The bus is not connected to any processor
or any memory module.

e 01: The bus is assigned to a processor and a
memory module, but not connected.

o 10: The address and data information of a
transaction are in the bus.

e 11: The bus is connected to a processor and a
memory module, but there is no information
in it.

The processor field is used to indicate which pro-
cessor to connect to the bus, and its length is
logP bits, where P is the number of processors.
The memory module field is used to indicate which
memory module to connect to the bus, and its

A-483

state processor memory module

2 logP logM

Figure 5: The entries in the connection table for
a bus.

length is logM bits, where M is the number of
memory modules. The new bus allocation algo-
rithm is described as follows. First, the arbiter se-
lects a transaction, processor p referencing a mem-
ory module m, to become the bus owner on a
round-robin basis. There are four situations:

e Processor p is connected to bus i, and mem-
ory module m is connected to bus j. If i is
equal to j, the transaction can skip the ar-
bitration phase and enter the request phase
immediately. If i is not equal to j, we select
bus i for the transaction, and the transaction
will enter the arbitration phase.

e Processor p is connected to bus i, and mem-
ory module m is not connected to any bus.
We select bus ¢ for the transaction, and the
transaction will enter the arbitration phase.

e Processor p is not connected to any bus, and
memory module m is connected to bus j. We
select bus j for the transaction, and the trans-
action will enter the arbitration phase.

e Processor p and memory module m are not
connected to any bus. Because the pipelined
one-sided crossbar switch is a non-blocking
switch, there is at least one bus available. We
select one available bus for the transaction,
and the transaction will enter the arbitration
phase.

Note that in [12], a bus allocated for a transaction
is waiting for being released when the transaction
enters the snoop phase. We do not release the bus
in the new bus allocation algorithm. If the proces-
sor issues a new transaction which references the
same memory module later, the transaction can
skip the arbitration phase and enter the request
phase immediately.

4 Evaluation and Discussion

We implement the new bus allocation algorithm
in the pipelined one-sided crossbar switch {12] and
compare the throughput of the pipelined one-sided
crossbar switch with the new bus allocation algo-
rithm with that with the original bus allocation
algorithm. There are five parameters for simula-
tion:

e P: number of processors

e M: number of memory modules

e B: number of buses

e P.: the probability that a processor issues a_

transaction in each clock cycle

L]

P;: the probability that a processor issues a
new transaction and references to the same
memory module as the last transaction

And we define throughput as the average number
of transactions completed per clock cycle. Figure
6 shows the relationship between throughput and
Pior M = B =P and P, = 1.0. The results show
that the throughput is in proportion to P when
M =B =Pand P, =1.0.

JU—,
> @
S]

N s
_—

B e e e ot

[——Ps=0.5,01d |
l—i- Ps=0.0, New
|—2—~Ps=0.5, New |
f——Ps=1.0, New.

SN &~ O o O

o B/ -

Throughput

4 8 12 16 20 24 28 32 36 40
Number of processors ()

Figure 6: Throughput of each one-sided crossbar
switch for P from 4 to 40.

Figure 7 shows relationship between throughput
and M for B = P = 4, and P, = 1.0. The re-
sults show the more memory modules, the higher
throughput. The reason is that if we have fewer
memory modules, there are more memory conflicts
and it results in lower throughput. More memory
modules means higher hardware cost and lower P;.
Figure 7 also shows that the throughputs are al-
most the same in the original design no matter
P; is equal to 0.0 or 0.5. However, in our new de-
sign, throughput increases up to 1.3 times when P
increases from 0.0 to 0.5. Figure 8 shows the rela-
tionship between throughput and P, for M = B =
P and P, = 1.0. The results show the higher P;,
the lower throughput in the original design. This
is because, if processor p; and processor p, refer-
ence the same memory module at the same time,
the higher P;, the higher probability that proces-
sor p; and processor p; reference the same memory
module again later. It results in the more mem-
ory conflicts, the lower throughput. In the new
design, although there are more memory conflicts
when P; is higher, more transactions can skip the
arbitration phase and enter the request phase im-
mediately. Therefore, the higher P; is, the higher
throughput is in our new design.

[
25 ——Ps=0.0, Old
é’ 2 —8—Ps=0.0, New
2.5 /MA’“’MH —&—Ps0.5, 0d
E ~ ——Ps=0.5, New
1 %’ﬁ —#—~Ps=1.0, New

012345678910
log(M/P)

Figure 7: Throughput of each one-sided crossbar
switch for M from P to 1024P.

45
4
35
33 —&=P=4, 0ld
£25 8~ P=4, New
3 2 —4—P=8, Old
F 15 :E_H._—‘.ﬂ:‘:‘_:‘,u-adﬂ —~P=8, New
1 o — ;
05 . M
0

0 010203 040506070809 1
The same memory module rate (Ps)

Figure 8: Throughput of each one-sided crossbar
switch for Ps from 0.0 to 1.0.

Figure 9 shows the relationship between
throughput and P, for M = B = P. The results
show that:

e The throughput difference between the two
designs is getting smaller as P, is smaller.

e The throughput will not increase when P, is
greater than 0.33 in the original design.

e The throughput will not increase when P, is
greaterthan 1 / [2 x (1 — Py) + 1 x P,]
in the new design.

[
o

~

——P=4, Ps=0.5, Old
—8P=4, Ps<0.5, New
—i—P=8, P5=0.5, Old
—6=P=8, Ps=0.5, New

Throughput
&

Frd
w»

0 ||||||||||
0010203040506070809 1

The request rate (Fr)

Figure 9: Throughput of each one-sided crossbar
switch for Pr from 0.0 to 1.0.

A-484

The corresponding reasons are as follows:

e When P, is small, all transactions can be com-
pleted in the two designs, so the throughputs
are almost the same.

e In the original design, if a transaction is se-
lected to become the bus owner at time ¢,
it enters the arbitration phase. It takes one
clock cycle to reconfigure the one-sided cross-
bar switch, so the transaction enters the re-
quest phase at time t+1. After sending ad-
dress and data information to the memory in-
terface through the one-sided crossbar switch,
the transaction enters the snoop phase at time
$+2. Since the bus allocated for the transac-
tion is waiting for release, it can not be al-
located for other transactions until time ¢+3.
Therefore, for two simultaneous transactions,
it needs to wait three clock cycles to allocate
a bus to the second transaction when the first
transaction is allocated the same bus. So,
if P, is greater than 1/3 = 0.33, the band-
width of the one-sided crossbar switch is not
enough to complete all transactions. There-
fore, the throughput will not increase when
P, is greater than 0.33.

o In the new design, if a transaction is selected
to become the bus owner at time ¢, it enters
the arbitration phase. The transaction enters
the request phase at time ¢+1. At the same
time, a new transaction is also selected to be-
come the owner of the same bus. The first
transaction enters the snoop phase at time
t+2. If the second transaction is for the same
processor and the same memory module as
the first transaction, it can enter the request
phase immediately at time ¢+2. So the dis-
tance of the two transactions is one clock cy-
cle. If the second transaction is not for the
same processor and the same memory mod-
ule, it enters the request phase at time t+3.
The distance of the two transactions is two
clock cycles. Therefore, the average distance
of two transactionsis 2 x (1 — Py) +1 %
P, clock cycles. So the throughput will not
increase when P, is greater than1 / [2 x (1
- P)+1x P

5 Conclusions

We have presented an efficient bus allocation algo-
rithm for interconnection networks of multiproces-
sor systems. The main difference between our new
bus allocation algorithm and the original bus allo-
cation algorithm is that we fully utilize the locality
of memory references. By not releasing a bus that

connects a processor and a memory module imme-
diately, we can use the same bus directly without
reconfiguration when the processor references the
same memory module again. It helps us to reduce
the number of reconfigurations and to improve the
throughput of the interconnection network. Ex-
perimental results have shown that the through-
put of the pipelined one-sided crossbar switch with
the new bus allocation algorithm is up to 3 times
higher than that with the original bus allocation
algorithm. Therefore, our new bus allocation al-
gorithm indeed can improve the throughput of the
pipelined one-sided crossbar switch. Our new bus
allocation algorithm not only can be implemented
in the pipelined one-sided crossbar switch, but also
can be extended to other interconnection networks
of multiprocessor systems.

6 Acknowledgement

This research was supported in part by the Na-
tional Science Council, ROC under Grant NSC88-
2213-E-009-039.

References
[1] K. Hwang, "Advance Computer Architec-

ture: Parallelism, Scalability, Programmabil-
ity,” McGraw-Hill, 1993.

[2] L. Hammond, B. A. Nayfeb, and K. Oluko-
tun, ”A Single-Chip Multiprocessor,” IEEE
Computer, pp. 79-85, Sep. 1997.

[3] F. Pong, M. Browne, A. Nowatzyk, and
M. Dubois, ”Design Verification of the
$3.mp Cache-Coherent Shared-Memory Sys-
tem,” IEEE Trans. on Computers, pp. 135-
140, Jan. 1998.

[4] J. L. Hennessy and D. A. Patterson, ” Com-
puter Architecture: A Quantitative Ap-
proach, Second Ed.” Morgan K aufmaenn
Publishing Company, 1996.

[5] W.-J. Hahn, K.-W. Rim, and S.-W. Kim,
"GPAX: a New Parallel Processing System
for Commercial Applications,” in Proceedings
11th International Parallel Processing Symp.,
Apr. 1997, pp. 744-749.

[6] T. Lang, M. Veloro, and M. A. Fiol, "Band-
width of Crossbar and Multi Bus Connections
for Multiprocessors,” IEEE Trans. on Com-
puters, vol. 31, no. 12, pp. 1227-1234, Dec.
1982.

[7) K. Hwang and F. A. Briggs, ”Computer Ar-
chitecture and Parallel Processing,” McGraw-
Hill, 1984.

A-435

8]

[11]

A. Varma, C. J. Ceorgious, and J. Ghosh,
"Rearrangeable Operation of Large Cross-
point Networks,” IEEE Trans. on Commu-
nications, vol. 38, no. 9, pp. 1616-1624, Sep.
1990. .

C. J. Georgiou, ”Fault-Tolerant Crosspoint
Switching Network,” in Proceedings of the
14th Int. Foult-Tolerant Computing, July
1984, pp. 240-245.

A. Varma and S. Chalasani, ” Fault-Tolerance
Analysis of One-Sided Crossbar Switch Net-
works,” IEEE Trans. on Computers, vol. 41,
no. 2, pp. 143-158, Feb. 1992.

K. Wang and C. K. Wu, "Design and Simula-
tion of Fault-Tolerant Crossbar Switches for
Multiprocessor Systems,” IEE Proceedings -
Computers and Digital Techniques, pp. 50-56,
Jan. 1999.

K. Wang and A. Y. Liu, "HDL Design
and FPGA Implementation of a Pipelined
One-Sided Crossbar Switch for Multipro-
cessor Systems,” in Proceedings of the 9th
VLSI/CAD Symposium, Aug. 1998, pp. 419-
422,

[13]

[14

[15]

[16]

A-486

Intel Corp., "Pentium Pro Family Developer’s
Manual, Volume 1: Specifications,” 1997.

K. Wang and Y. H. Hsiao, ”A High Perfor-
mance Pipelined One-sided Crossbar Switch
for Multiprocessor Systems,” in Proceedings
of the 1998 International Conference on Chip
Technology, Apr. 1998, pp. 264-269.

H. C. Hsiao and C. T. King, ”Performance
Evaluation of Cache Depot on CC-NUMA
Multiprocessors,” in Proceedings of the 1998
International Conference on Parallel and Dis-
tributed Systems, Dec. 1998, pp. 519-526.

J. Carter, C. C. Kuo, R. Kuramkote, and
M. Swanson, "Design Alternatives for Shared
Memory Multiprocessors,” in Proceedings of
the International Conference on High Perfor-
mance Computing, Dec. 1998, pp. 41-50.

