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Exact Solution of a Minimal Recurrence

Keh-Ning Chang*

Abstract

In this note we find the ezact solution for the min-
imal recurrence S, = min,Lc'f_:/fJ {aSp—i + bSi}, where
a and b are positive integers and a > b. We prove
that the solution is the same as that of the recur-
rence relation Sp, = aS[p 21 +bS|n2). In other words,
Sp = S1+(a+b—1)S; 0 axDplien)==() where 2 (i)
is the number of zeros in the binary representation of
i. The proof follows from an interesting combinatorial
property.

Keyword: analysis of algorithms, computational
complexity

1 Introduction

Divide-and-conquer is a very useful method for de-
veloping efficient algorithms. The strategy is to par-
tition a problem into several subproblems, find solu-
tions for the parts, and then merge the subsolutions
as the final solution for the whole. The time com-
plexity of a divide-and-conquer algorithm can be ex-
pressed as a maximin recurrence. To analyze a divide-
and-conquer algorithm, we usually need to solve a re-
currence. However, it becomes more difficult to ob-
tain the exact solution with the min or max oper-
ators in a recurrence, since we cannot simply apply
known methods [6] directly. Recurrence of the form

Sy = min,&’;/fj{sk + Sp—r + f(k)} has been studied.

by various researchers [1, 5, 2, 7], where f can be any
non-decreasing or convex function. All of the previous
results have the coefficients of Sy and S5,— as 1.

The so called AND/OR problem [4] is as folows:
Given a boz of AND gates, each of fan-in 2, it is known
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that k OR gates are mistakenly put into a box of AND
gates. Suppose that there is no tool to test which are
OR gates. In order to compute the AND function of
two values correctly, how many gates are necessary to
construct an error-free circuit? This toy problem is for
studying fault tolerant computation. A block circuit is
a leveled circuit and consists of a single gate or three
disjoint block subcircuits where the outputs of the two
lower-level block subcircuits serve as the input of the
top block subcircuit. This is a special leveled circuit
model. A typical technique in circuit complexity is
restricting the circuit model in order to obtain a better
bound when strong bounds under general models are
difficult to obtain. When proving the optimality of
a block circuit design for the AND/OR problem, we
solved a minimal recurrence: S, = min,Lc’_l_/fJ {28p—k +
Si} [3]. It is crucial to solve the recurrence exactly.
We found it difficult to prove the optimality without
knowing the exact solution.

By extending the above recurrence, we solve ex-
actly the recurrence S, = minkl/fj{aSn_k + bSk},
where a > b. Previously, the exact solutions are known
only for the casesa =b=1and a = 2,b= 1. Our
proof follows from a crucial and interesting combina-
torial property. Since there is no known systematic
approach for solving this type of recurrence, we hope
shed some light on tackling similar or even more com-
plicated recurrence. To solve exactly the general re-
currence S, = min,L;/fJ {aSn—k + bSk + f(k)}, where
f is any integer function, may not be as easy and new
technique may be necessary. We leave it as an open
question.

/
2 Definitions and results
We need some definitions to prove our results.

Definition. z(i) is defined to be the number of zero
bits in the binary representation of i.

For example, z(5) = z(101,) = 1. Let k and i be
non-negative integers. For any two consecutive inte-
gers k and k+ 1, z(k) < 14 z(k+1), since if k is even
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then z(k) = 1+ z(k+1); else z(k) < 1+ z(k + 1).
For the last inequality, % is odd and thus adding 1 to
k will flip the least significant block of 1’s into 0,
where the number of zero will not decrease. Sim-
ilarly, for 0 < j < 2!, it is not hard to see that
2(2°%k + J) < 1+ 2(24(k + 1) + j).

Definition. Let B; be any positive integer. For
any positive integer k > 2, B is defined as
a*(Mpllekl=2(¥) B "where a and b are positive integers
and a > b.

For convenience, let n = 2'k-+ j. Since z(n) <
14+ z2(n+2 welet d = 1+ z(n + 29 —
z(n). It is clear that d is a non-negative integer.

z(n42° lg(n+2')|—z(n+2°
Then aByy5i /0B, = L bint Sl =
(a/b)t+1plle(n+2))-lle(n)] > 1 In other words, for
any positive integer n and non-negative integer ¢,
aBp 2i > bB,. Thus, it is not hard to see the fol-
lowing is true.

Lemma 1 Let k and i be non-negative integers
and a > b be positive integers. Then (1) b

Yoo Boikes < aYils Bai(krry+si (2) For 0 <

0 < 2, Y55 Boikyy + b0 Boirenyas <
2t-1 -1

ay i Boi(ernyas + 025500 Boigraa)+s-

The above lemma shows that for any two consec-
utive blocks of B;’s (each of size 2!) the inequality
holds. We prove that the inequality actually holds for
any two equal-sized consecutive blocks of B;’s in the
following lemma.

Lemma 2 Let A be a positive integer such that
2= < A < 2% for some positive integer i. For

any positive integer n > A, szA:Ol Bpat+; <
A-1
azj:O Bn-l-j'

Proof.

We prove by induction on . It is clear for i = 1.
Suppose that the claim is true for smaller cases up to
i — 1, i.e. up to the case of 212 < A < 2i~1. Now we
want to prove the case for 21! < A < 2!, For any two
consecutive blocks of B;’s, each of size A, there is an
integer n such that these two blocks can be written as
Bp-a,Bpn-At1,+++, By and Bn;Bp+1: oy Bpya-1.
It is clear that for j = 0,--+,(2A -2 1), bBr_a4; <
aB,_at2i+;. Now the problem is reduced to check if
the relation holds for the last 2° — A B;’s of the first
block and the first 2° — A B;’s of the second block. In
other words, we are checking the relation between two
consecutive blocks of B;’s, where each block has size
28 — A < 2i-1. This is true by induction hypothesis

and lemma 1 for A as a power of 2. This completes
our proof. O

Similarly, by induction, we can prove the following
lemma, where the two blocks of B;’s are not consecu-
tive.

Lemma 3 Let A be a positive integer such -that

21 < A < 2% for some positive integer i. For
e . A-1

any positive integer n > A, szzo Bnoay; <

A
a Zj:l Bn+j.

Proof. Note that B, doesn’t belong to these two
blocks. First we prove the cases for A as a power
of 2. Let A = 2¢, where 4 can be any non-negative
integer. Then it is clear that these two blocks con-
sist of the followings: B, _s:i, B,_si1y, -+, Bs-1, and
Bnyi, -+, Bpyoi. It is clear that for j = 1,---,2¢ — 1,
bB,_2itj < aBpyj. Also, it is clear that bB,_s: <
aB . Thus, our claim is true for A as a power of 2.

Next we are to prove the cases when A is not exactly
a power of 2. We prove by induction on 7. It is clear
for i = 1. As above we suppose that the claim is true
for smaller ¢, i.e. for the cases up to 272 < A < 2¢-1,
Now we want to prove the case for 26~ < A < 2. The
two blocks as stated in the claim can be illustrated
as: Bn_A,Bn-a+41,",Bp-1, and Bpiy,--+, Bpya,
where B, is not in the blocks. It is clear that for
j = 0, ey, (QA d 2i), an_A+j S aBn_A+2i+j. Now
the problem is reduced to check if the relation holds for
the last 2 — A — 1 B;’s of the first block and the first
2!~ A —1 B;’s of the second block. In other words, we
are checking the relation between two smaller blocks
of Bj’s, where each block has size 28 — A — 1 < 271,
While this is true by induction hypothesis and the
proof for A as a power of 2. This completes our proof.
O

Next we solve the recurrence relation S, =
aSfn 2] + bS|n /2, whose solution will be used to solve
the minimal recurrence relation.

Lemma 4 Let a and b be positive integers and a > b.
The recurrence relation S, = aSp, /21 +08n/2) has the
solution S, =S + (a+b—-1)5; Z;:ll a*(Dpllgi)==()
where z(t) is the number of zero in the binary repre-
sentation of i.

Proof. Let Dn = Sn+1 - Sn Then Dgn = SQn_|.1 -
S2n = (aSp41+bS,)—(a+b)S, = a(S,41—5,) = aD,,.
Dant1 = Sopg2 = Sopp1 = (@ 4+ 0)Spt1 — (@Sp41 +
bSn) = b(Sp41 ~ Sp) = bD,,. Note that D, can be
determined by checking if it is even inductively by
checking the bits in the binary representation of n.
Thus we have D,, = a*(Mplign]=2(0) D, and S, = S, +
S Dy = Si+(a+b-1)8; i a*(Oplisid—=() | Tis
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clear that Dy = S2—8; = (a+b)5:—5; = (a+b—-1)5:.
Note that D; is the same as B;, if we let B; = D;. O
Next we prove that the above solution actually
achieves the optimality for S, = min\™* {aS,_;, +
bSy}. Le. the minimum happens when k = |n/2].

Theorem 5 S, = mmk Ln/2 J{aSn_k + b5} and S, =
aS[n/21 + bS\ny/2) have the same solution.

Proof. It is clear for n = 2. By induction, suppose it
is true for the cases less than n. Let k < [n/2]. Then
n—k>n-—|n/2]=[n/2].

aSn—k + bSk — aStnja1 — bS|ny2)
= G(Sn-—k - an/Z]) - b(Sl_n/2J - Sk)

n—k—1 ln/2]-1
= a ) Bi—b Z B;
i=[n/2] i=

> 0.

The inequality follows from the previous two lemmas,
i.e. if n is even, it follows from Lemma 2; otherwise
by Lemma 3. The above shows that the minimum of
the first recurrence relation occurs when k = |n/2].
This completes the proof. O

3 (Conclusion and remarks

We have solved exactly the recurrence S, =
mmk’i/ 2! {aSn—k + bSi}. This type of recurrence does
happen in analyzing algorithms and circuit designs.
Our proof does not apply to the case when a < b.
Also the range in the summation of the recurrence
cannot go beyond |n/2]. For these cases, new tech-
nique may be needed. One interesting open question
is: Is it possible to extend our method to solve exactly
the recurrence S, = mmkn/lj{aSn k+0Sk + F(K)}?
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