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Abstract

In a secure partially blind signature scheme, the
signer assures that the blind signatures issued by
him contains the information he desires. The tech-
niques make it possible to mintmize the unlimited
growth of the bank’s database which storing all
spent electronic cash when we use the technigques
to construct anonymous electronic cash systems.
In this paper, we propose an efficient partially
blind signature scheme for electronic cash. In our
scheme, only several modular additions and modular
multiplications are required for a signature requester
to obtain and verify a signature. It turns out that
our scheme is suttable for mobile users or requesters
because no exponentiation and inverse computations
are required. Comparing with the ezxisting blind
signature schemes proposed in the literatures, our
method rteduces the amount of computations for
signature requesters by almost 97%.
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1. Introduction

Blind signatures are important techniques of modern
cryptography since the techniques make it possible
to protect the privacy of users and to prevent digital
signatures from being forged [1, 4, 5, 14, 16, 23]. Typ-
ically, a blind signature scheme consists of two types
of participants, a signer and a group of signature re-
questers. A signature requester requests signatures
from the signer, and the signer computes and issues
blind signatures to the requesters. There are two
sets of messages known to the signer: (1) the signing
results actually computed by the signer and (2) the
signatures shown by the requesters for wverification.
The key point is that the actual correspondence be-
tween these two sets of messages is unknown to the
signer. This property is usually referred to as the
unlinkability property. -

Owing to the unlinkability property, blind signa-
ture techniques have been widely used in an ad-
vanced communication service proposed in the litera-
tures. That is the anonymous electronic cash system
[6, 15, 16, 20]. In an electronic cash system, payers

. can pay electronic cash (e-cash) to payees through
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electronic communication networks. In this commu-
nication service, blind signatures are the key tech-
niques to avoid the forgery of e-cash and to protect
the privacy of payers {2, 3, 6, 12, 15, 16, 20].

Due to the characteristics of electronics, e-cash can
be easily duplicated. Hence, to prevent a payer from
double-spending his e-cash, the bank has to keep
a database which stores all spent e-cash to check
whether an e-cash has been double-spent or not by
searching this database. This operation is referred
to as the freshness checking (or the double-spending
checking) of e-cash. Clearly, the database kept by
the bank may grow unlimitedly [1, 6, 15, 16, 20].

The techniques of partially blind signatures make
it possible to prevent the bank’s database from
growing unlimitedly. In a partially blind signature
scheme, the bank (or signer, respectively) assures
that the e-cash (or signatures, respectively) issued
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by him contains the information he desires, such as
the date information [1]. This property is referred
to as the partial blindness property. Armed with
the partial blindness property, we can deal with the
unlimited growth problem of the bank’s database,
which storing all spent e-cash, in an electronic cash
system. Hence, to guarantee the quality of this ever-
growing popular communication service, an efficient
and secure partially blind signature scheme is ur-
gently desired. ‘

In this paper, we propose a low-computation par-
tially blind signature scheme based on quadratic
residues [18, 30, 29]. Since only several modular ad-
ditions and multiplications are performed by a sig-
nature requester in the proposed scheme, it is es-
pecially suitable for mobile clients and smart-card
users. In the existing blind signature schemes of
(1, 4, 3, 16, 23], it is necessary for a signature re-
quester to perform modular exponentiation compu-
tations and inverse computations to obtain and ver-
ify a signature. Since these computations are time-
consuming [8, 11, 19, 29], these schemes are imprac-
tical for the situations where computation capacities
are limited such as smart cards and mobile units.
Comparing with the blind signature schemes pro-
posed in the literatures [1, 4, 5, 16, 23], our scheme
reduces the amount of computations for signature
requesters by almost 97% under a 1024-bit modulus.

Our proposed scheme is based on the theories
of quadratic residues. Under a modulus n, z is a
quadratic residue (QR) in Z7, if and only if there ex-
ists an integer y in Z7 such that y? =,, © where Z}, is
the set of all positive integers less than and relatively
prime to n [18, 29, 30]. Given n and z, it is com-
putationally infeasible to compute the square root y
of x in Z% if n contains large prime factors and the
factorization of n is unknown [26]. The security of
our scheme depends on the difficulty of computing a
square root of an integer in Z}, without the factoriza-
tion of n, which has been proven to be as intractable
as factorization [26].

The rest of the paper is organized as follows. In
section 2, we present the proposed partially blind

signature scheme. The performance of the scheme.

is examined in the section 3. Finally, a concluding
remark is given in section 4.

2. The protocol

There are two kinds of participants, a signer and a
group of requesters, in a partially blind signature

scheme. A requester requests signatures from the’

signer, and the signer computes and issues partially
blind signatures to the requesters. In addition to the
unlinkability property, the signer has to ensure that
any signature issued by him contains the common

constant negotiated and agreed by the requesters and
him in advance, and the requesters cannot change the
common constant embedded in the signatures. That
18 the partial blindness property.

Qur proposed partially blind signature scheme
consists of four phases: (1) initialization, (2) request-
ing, (3) signing, and (4) extraction. In the initial-
ization phase, the signer and requesters negotiate
and agree on a common constant, and the signer
publishes the necessary information. To obtain the
signature of a message, a requester submits an en-
crypted version of the message to the signer in the
requesting phase. In the signing phase, the signer
computes the partially blind signature of the mes-
sage, and then sends the result back to the requester.
Finally, the requester extracts the signature from the
result he receives in the extraction phase. The details
of our partially blind signature scheme are described
as follows.

(1) Initialization. The signer randomly selects
two distinct large primes p; and ps where p; =,
p2 =4 3. The signer computes n = p; - p» and
publishes n. Since p; =4 p2 =4 3, given a QR in
Z:, there are four different square roots (or 2nd
roots) of the QR in Z}, and one of these roots is
a QR in Z, too [29]. Hence, in addition to the
2nd roots of a QR in Z},, we can derive the 4th
roots, 8th roots, and (2%)th roots of the QR in
Z7 where i is an integer greater than 1. Such a
special form of primes p; and ps does not affect
the difficulty of factoring n {33]. In addition, let
H be a public one-way hash function.

Let A with appropriate redundancy be the con-
stant negotiated and agreed by requesters and
the signer in advance, so that they can produce
A independently, such as the date.

(2) Requesting. To request a signature of a plain-

text m, a requester randomly chooses. two inte-
gers u and v such that a = (H(m) - (u® + Av?)
mod n) is in Z%. Then the requester submits
the integer « to the signer.

After receiving «, the signer randomly selects x
such that (- (22 + A) mod n) is a QR in Z%,
and then sends the integer z to the requester.

After receiving xz, the requester chooses an in-
teger b in Z; at random, and then computes
6§ = (b mod n) and B = (6 - (v — vz) mod
n). The requester submits the integer 8 to the
signer.

(3) Signing. After receiving (3, the signer computes
A = (87! mod n) and derives an integer ¢ in Z7,
such that

t*=, a0 (22 +4)-N°
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since the signer knows the primes p; and ps [21,
26]. Hence, t is one of the 4th roots of («- (z2 +
A)- A2 mod n) in Z7. The signer sends (,\) to
the requester.

(4) Extraction. After receiving the tuple (¢, A), the
requester computes

s=b-t mod n
c=6-A-(ux + Av) mod n.

The tuple (s,¢) is a signature of m. To verify
the signature (s, ¢) of m, one can examine if

st=, H(m) - (c* + A).

Theorem 1 ensures that a signature (s,c¢) of a
plaintext m produced by the proposed blind signa-
ture scheme with the common constant A satisfies
that s* =, H(m) - (¢* + A).

Theorem 1 If (s,¢) is a signature of a plaintext m
produced by the blind signature scheme of section 2
with the common constant A, then

st =, H(m) - (c® + A).

Proof. By the Chinese remainder theorem [29], every
integer w in Z7 can be represented by < wy,ws >
where w; = (w mod p;) and wy = (w mod pa).
For convenience, < wy,ws > is denoted by < w >
sometimes. For every < k > =< ky, kg >and < w >
= < wy,wy > in Z%, < kw mod n > = < kywn
mod py, kewy mod p; >, and < k™! mod n > =
< kT ! mod py, ky ! mod p; >. In addition, for every
< ki,ky > and < wy,we > in ZF, < ky,ke > =
< wy,wy > if and only if k) =,, wy and ky =p, wo.

Let [£] denote the Legendre symbol g over h
where h is a prime [29]. Since both (« - (22 + A)
mod n) and (A\? mod n) are QR’s in Z7,,

Therefore, we have that
a-(z%+ A)- 22 mod n
=, a (22 +A4) - ?modn
=, H(m) - (u? + Av?) - (22 + A) - (B*(u — vz))~2
=, b=% H(m) - (u® + Av?) - (22 + A) - (u — vz)~?
=, b= H(m)-((uz+Av)? + A(u—vz)?)-(u—vz) 2
=, b~%. H(m) - ((uz + Av)*(u —vz) "2 + A)
=, b™%- H(m) - (((uz + Av)(u —vz)"1)? + A)
=, b~ H(m)- ((0*b~2(u —vz) " uz + Av))2 + 4)
=, 07 H(m) - ((6- M- (uz + Av))* + A)
=, b7 H(m) - (c* + A)

(o (22 + A) - A2] _ [a- (22 + A)] [2*] 1121
L h ] L n 1 LP1]

and

[a - (22 + A) - A?%] _ [a- (22 + A)] [A?] 11o1
L P2 i L P2 1 1LP2]

isa QR in Z;. Since [%}] = {%] =1, the integer

(H(m) - (c® + A) mod n) is also a QR in Z7. Let <
dy,ds > be one of the 4th roots of the integer (H(m)-
(c? + A) mod n) in Z%. Then the four 4th roots of
that integer in Z;, are < +d;, =do >. Thus, the four
4th roots of (b=*- H(m) - (¢ + A) mod n) in Z}, are
< #b7ldy, by de >, Astt =, b7 H(m) - (2 + A),
t belongs to {< +b7'dy, £b5dz >}. Since s = (b-t
mod n), s is an element in {< +b1b7'dy, £b2b3tdy >
} = {< £di,£d> >}. It follows that s is a 4th root
of the integer (H(m)- (¢ + A) mod n) in Z},. Hence,
st=, H(m) (c* + A).

Q.ED.

Based on the proposed protocol, an on-line elec-
tronic cash system can be constructed through the
methods introduced in (6], where the signer of the
blind signature protocol is regarded as the bank of
the electronic cash scheme. An e-cash issued by the
bank is of the form (s, m,¢, 4) where (s.¢, 4) Is a
signature of a plaintext m produced by our blind sig-
nature protocol with a common information A. Let
(s,m, ¢, A) be an e-cash withdrawn by a payer from
the bank by performing an electronic cash scheme
based on our proposed protocol. To pay a payee the
e-cash, the payer gives him (s, m,c, A). The payee
verifies the correctness of the e-cash by examining if
s* =, H(m) (c®+ A), and then he immediately calls
the bank to verify if the e-cash is fresh. An e-cash is
fresh if and only if the e-cash has not been deposited
into the bank, i.e., the e-cash has not been spent. If
the e-cash has not been spent previously, the payee
accepts this payment, and deposits the e-cash into

" the bank. Then the bank stores the e-cash in its

database. In other words, the bank has to record
all the used e-cash in its database to check whether -
a specified e-cash has been spent or not. Hence,
the bank’s database may grow unlimitedly. With
the help of the partial blindness techniques, the size
of the bank’s database can be controlled. Let the
common information A contain an expiration date
of e-cash in an electronic cash scheme based on our
proposed partially blind signature protocol. If an
e-cash (s, m,c, A) is with an expired A, then it can-
not be used in any transaction. Hence, every e-cash
(s,m,c, A) with an expired A recorded in the bank’s
database can be removed. Certainly, any fresh e-cash
(s,m, ¢, A) with an unexpired A can be exchanged for
another fresh e-cash (¢',m/, ¢/, A') with a newer A’
by performing another run of our proposed protocol.

In our scheme, the signer perturbs the message
received from a requester before he signs it by us-
ing a random integer x. This is usually referred to
as the randomization property [16]. A randomized
blind signature scheme can withstand the chosen-
text attacks [28]. Our scheme and the blind signa-
ture schemes of [4, 16, 23] possess the randomiza-
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Table 1: Property Comparisons.

Our Scheme | [1] [4] 5] | [16] [23]*
Mathematical Foundation QR RSA | DL/DL | RSA | RSA | DL/RSA
Unlinkability Yes Yes | Yes/Yes | Yes | Yes | Yes/Yes
Randomization Yes No | Yes/Yes | No | Yes | Yes/Yes
Partial Blindness Yes Yes | No/No | No | No | No/No

*Two blind signature schemes are proposed in [4] and [23].

tion property, while the blind signature schemes of
(1. 5] do not have this property. In the requesting
phase of our scheme, a requester chooses and sub-
mits an integer « to the signer, and then the re-
quester receives the integer z from the signer. Let
3 be an integer such that a - (z2 + 4) - % =, a.
Then, 37 =, (z* + A). Hence, §’ is a square root
of (2 + A) mod n) in Z},. Since the integer z is
randomly chosen by the signer and n contains large
prime factors, it is infeasible for the requester to com-
pute a square root of ((x? + A) mod n) in Z;, during
the requesting phase of the scheme without the fac-
torization of n [26].

Given an integer ¢ and a plaintext m, let s be an
integer such that s* =, H(m)-(c*+ A). Thus, sis a
4th root of the integer (H(m)-(c*+A) mod n) in Z.
Since n contains large prime factors and these factors
are unknown to the requesters, computing a 4th root
of an integer in Z is computationally infeasible [26].

Given A and B in Z7, one can efficiently compute
g and h without the factorization of n such that
g® + AR? = B (mod n) through the lattice-based
attack methods shown in [24]. However, given two
integers A and B, it is still computationally infeasi-
ble to compute g without the factorization of n such
that ¢° + A = B (mod n) because g is a square root
of (B — A mod n) in Z},. :

In the requesting stage of the scheme, the signer re-
ceives two integers « and [ submitted by a signature
requester for requesting a signature of a plaintext m,
where

o = H(m) - (u® + Av®) mod n
B=0b(u—vz) mod n

Then in the extraction stage, the requester obtains
a signature (s, ¢) of m, where

s=b-tmodn
c=(uzr+ Av) - (u—vz)~! mod n

and t* =, o - (22 + A) - 372 The signer cannot link
the tuple (e, 8) to the signature (s,¢) of m because
the integers (u,v,b) are randomly selected and kept
secret by the requester in the scheme.

In our scheme, by theorem 1, a correct signature
(s,c) of a plaintext m with the constant A has to

satisfy that s* =, H(m) - (c* + A). Since it is com-
putationally infeasible to derive a square root of an
integer in Z7* without the factorization of n [26], the
requesters cannot change the common constant A4
embedded in their signatures. In our scheme, the
signer ensures that all signatures issued by him con-
tain the common constant A.

The comparisons of the properties between our.
scheme and the schemes of [1, 4, 5, 16, 23] are sum-
marized in table 1. The mathematical foundation of
our scheme is QR [26]. The security of the schemes
of [1, 5, 16] depends on the RSA assumption [27].
while the schemes of [4, 23] are based on the discrete
logarithms (DL).

3. Performance

Typically, under a modulus n, the computation time
for a modular exponentiation operation is about
O(|n|) times that of a modular multiplication where
|n| denotes the bit length of n [29]. The modulus n
is usually taken from 512 bits to 1024 bits in a prac-
tical implementation [29]. In [8, 11, 19], some fast
exponentiation algorithms are proposed. In (11], it
requires 0.3381|n| modular multiplications and large
amount of storage, e.g. 83370 stored values for a 512-
bit modulus, to compute a modular exponentiation
computation. An enhanced version of [11] is intro-
duced in [8]. However, it still requires 0.3246|n| mod-
ular multiplications and large amount of storage, e.g.
36027 stored values for a 512-bit modulus, to com-
pute a modular exponentiation computation [8]. The
algorithm of [19] needs (1.164|e| 4+ 3) modular mul-
tiplications to compute (z® mod n) where |e| is the
bit length of e and |e| has to be large enough (say
128 bits) in the RSA-type blind signature schemes
of [1, 5, 16] to resist possible low-exponent attacks
[9, 17, 31, 32]. :

In our partially blind signature scheme of section
2, no exponentiation and inverse computations are
performed by signature requesters. Moreover, only
several modular additions and multiplications are re-
quired for a requester to obtain and verify a signa-
ture,

In the blind signature schemes of [1, 4, 5, 16, 23],
modular exponentiation computations and inverse
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Table 2: Performance Comparisons.

Our Scheme | [1] | [4]* | [3] | [16] | [23]*
No. of Exponentiation Computations 0 2 4 2 4 6
No. of Inverse Computations 0 1 2 1 1 0
No. of Hash Computations 2 2 0 2 2 2
No. of Multiplications 16 2 6 2 3 5
Computations Reduced: 97% | 99% | 97% | 99% | 99%

*The fastest scheme mentioned in the paper is selected for comparison in this table.

_to obtain
and verify signatures, while these tlrne-consul‘mng
computations are not required in our scheme. The
comparisons of the numbers of computations per-
formed by a signature requester between our scheme
and the schemes of (1, 4, 5, 16, 23] are summa-
rized in table 2. Comparing with the schemes of
(1, 4, 5, 16, 23], our scheme reduces the amount of
modular computations for signature requesters by al-
most 97% under a 1024-bit modulus.

4. Conclusion

In this paper, we have proposed a low-computation
partially blind signature scheme based on quadratic
residues to minimize the bank’s storage in an elec-
tronic cash system. Since no exponentiation and in-
verse computations are performed by signature re-
questers, our scheme is suitable for the situations
where computation capacities are limited such as mo-
bile clients and smart-card users. Comparing with
the existing blind signature schemes, the computa-
tion amounts are greatly reduced for the requesters
to obtain and verify signatures in our partially blind
signature scheme.
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