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Abstract

Given an application problem, a hardware-software
solution is derived such that the synthesized soft-
ware, a parallel pseudo-program, can be sched-
uled and ezecuted on the synthesized hardware, a
set of system-level parallel computer specifications,
with heuristically optimal performance.  This 1is
known as system-level cosynthesis of application-
oriented general-purpose parallel systems for which
a novel methodology called Cosynthesis Methodology
for Application-Oriented Parallel Systems, s pre-
sented.

Keywords: application;oriented general-purpose
multiprocessor systems, comodeling, cosynthesis

1 Introduction

A system is often designed from a set of behavioral
or architectural specifications, than from the original
requirements of a user. This is called system design.
Before system design, a user’s requirements must of-
ten be analyzed to derive system specifications. This
is called requirements analysis. Much research work
have been done in developing methods, either techni-
cal or formal, to design a system from specifications.
A user often has to specify in elaborate detail the
behavior or architecture of the designed system. As
far as design automation is concérned, it would be
certainly desirable if a user’s requirements could be
directly input to a synthesis tool or methodology and
a system designed from the requirements. This pa-
per provides a solution within the hardware-software
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codesign perspective.

Synthesis is the process of automatically trans-
forming a set of high-level system specifications to a
lower-level design schematic that includes more ar-
chitectural details required for the physical design
of the system. Hardware synthesis has helped de-
signers to reduce design time, effort, and cost. Sev-
eral methodologies and tools have been proposed at
each level of synthesis [10, 9, 3, 7]. When software
is simultaneously synthesized, it is called cosynthe-
sis or codesign which requires system partitioning,
hardware-software tradeoff refinements, and cosimu-
lation. Embedded digital systems and DSP applica-
tions are often targets of hardware-software cosyn-
thesis {21, 13].

Increasing diversity in user requirements for com-
puter applications implies higher budget allocation
for several different specialized systems. The over-
all cost expended by a user needing to run sev-
eral applications can be lowered at the expense of
a slight decrease in performance by using a general-
purpose parallel computer system whose subsystems
are appropriately configured for executing some given
applications. OQur target system of cosynthesis is
somewhat different from the traditional application-
specific parallel (ASP) systems. We consider the
codesign of application-oriented general-purpose par-
allel (AOGPP) systems, which are defined as general-
purpose systems with their subsystems designed for
the efficient execution of some software solution to a
given problem. The reason for selecting such a target
system is intuitive. On one hand, a purely general-
purpose system is a performance-balanced system
which may not give the best performance in solv-
ing a specific problem, and on the other hand, an
application-specific system often cannot be used to
solve any problem besides the original application
that it was designed for.

Section 2 describes some previous and related
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work. Section 3 defines AOGPP system cosynthesis
and the three repositories used in the design. Section
4 describes our cosynthesis methodology for AOGPP
systems. A conclusion is drawn in Section 5.

2 Previous and Related Work

As far as hardware design is concerned, method-
ologies for the system-level synthesis of general-
purpose multiprocessor systems have been proposed
recently. Performance Synthesis Methodology (PSM)
(10] and Intelligent Concurrent Object-Oriented Syn-
thesis (ICOS) methodology [9] are two of the most
recently proposed methodologies. Some other suc-
cessful methodologies for hardware design include the
MICON System (3, 7] and the Megallan System [6].

Current codesign researches are all devoted to
application-specific systems such as heterogenous
multiprocessor systems [16], DSP applications [13],
embedded digital systems [8], and distributed embed-
ded computing systems {21, 24, 22, 23]. Application-
specific systems typically require system partitioning
into hardware and software parts. Therefore, current
researches are typically devoted to hardware-software
partitioning and tradeoffs exploration [17, 2], which
include strategies to move operations from software
to hardware [5] and from hardware to software [8], to
allocate functions in an 1-CPU/n-ASIC system [20],
to use multiple task graphs for heuristic cosynthe-
sis [24], and to derive method dataflow graphs from
object-oriented specifications for the construction of
distributed hardware-software topologies [22].

The codesign framework proposed by Kumar et
al. [14] presented an important concept of iterative
system refinements using an integrated hardware-
software model. The codesign methodology pro-
posed by Thomas et al. [18] used a mixed hardware-
software system model that facilitated cosimulation
and cosynthesis. Gupta and De Micheli [8] proposed
the cosynthesis of digital systems which used timing
constraints to delegate tasks between hardware and
software. Yen and Wolf [21] considered the codesign
of embedded computing systems. Their target de-
sign consisted of a hardware engine made up of sev-
eral processing elements (PE) which could be either
CPUs or ASICs and an application software architec-
ture with allocation and scheduling of processes and
communication [24]. The advantages of an object-
oriented (OO) specification were explored by Wolf
[22], including the two levels of partition granularity
inherent in OO specifications, the encapsulation of
system objects, and the natural cut points provided
by method decomposition.

From the above literatures, we have adapted a few
techniques into our methodology such as the itera-

tive refinement of an integrated system, the mixed
hardware-software model, and the graph-based soft-
ware models.

3 Cosynthesis Problem

System-level cosynthesis of application-oriented
general-purpose parallel systems is defined as follows.

Definition 1 AOGPP System Cosynthesis;
Given an application problem composed of several el-
ementary subproblems, a complete parallel system in-
cluding the hardware system architecture description
and the software program solution, is to be synthe-
sized such that the given problem can be optimally
solved by executing the synthesized software on the
synthesized hardware system.

Optimal execution of software tasks on a paral-
lel system requires multiprocessor task scheduling [15]
which is a known NP-complete problem [19], hence
it is concluded that AOGPP system cosynthesis is at
least NP-hard.

Since we work at the system-level of design, scal-
ability in terms of the complexity of the applica-
tion problem and the upgradability to new technolo-
gies are two major issues of any proposed codesign
methodology. Scalability is increased in our method-
ology through the use of modularized problem mod-
els. A user can specify a complex application problem
by referring to the elementery problems in a Prob-
lem Base and describing how the selected elementary
problems compose into the desired application prob-
lem. Upgradability is made easy through the use
of elementary algorithms which act as off-the-shelf
building blocks for software and the use of subsystem
architecture models for hardware. Three repositories
are used in our methodology, namely Problem Base
(PB), Algorithm Base (AB), and Model Base (MB),
which represent the modularizations of specification
input, of software synthesis, and of hardware synthe-
sis, respectively.

PB is used to store elementary problems and re-
lated information such as the unique problem name
and pointers to the corresponding elementary algo-
rithms that can be used to solve the specific problem.
For example, sorting a sequence, solving a set of lin-
ear equations, generating permutations and combina-
tions, and computing the discrete Fourier transform
are all elementary problems. A list of elementary
problems is shown in Table 1. AB is a collection of
elementary parallel algorithms that can be used to
solve the problems in PB. Related information, such
as the time and space complexities, and the require-
ment restrictions on the hardware architecture are
all stored along with each algorithm. A partial Al-
gorithm Base is shown in Table 1. The algorithms
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Table 1: The three repositories: PB, AB, and MB

p# | Problem a# | t(n) p(n) CM | ML A4 co
Names
Po | Sorting a aqs, | O(1) n’ SM | NUMA CRCW | SIMD
sequence aa, | O(nlogn) N SM | NUMA CREW | SIMD
Gas | Olnlogn/N) | N SM | NUMA | EREW | SIMD
aay | O(n) n SM | NUMA EREW | SIMD
p» | Solving sys- as, | O(n) n* SM | NUMA CREW | SIMD
tems of linear
equations ap, | N/A N SM | NUMA CREW | MIMD
pe | Finding roots of | ac, | O(logy aw | N SM | NUMA- CREW | SIMD
nonlinear
equations Qc, | NfA N SM | NUMA CRCW | SIMD
Pa | Minimum aq, | O(*/N) N SM | NUMA | EREW | SIMD
spanning tree
pe | Prefix sums ae, | O(logn) n SM | NUMA EREW | SIMD
a., | O(logn) 2n—1| MP | Tree EREW [ SIMD
aes | O(n'/7) n MP | Mesh EREW | SIMD
are from Akl’s book on parallel algorithms [1]. MB itialization
...... alization Phase
is a repository of models for hardware subsystems, ~  —<
such as Communication models (CM), Memory La- Prbien @ .
tency models (ML), Memory Access models (M .4), : Bl
and Control models (CO). Sofowars PrITa— @
Modeling [ ModclinL} o '”;:;‘;‘

4 Cosynthesis Methodology

Having gone through the basic concepts, we explain
our methodology called Cosynthesis Methodology for
Application-Oriented Parallel Systems (CMAPS) in
this section. As shown in Fig. 1, the design flow
is divided into three main phases: (1) Initialization,
(2) Modeling and Evaluation, and (3) Synthesis and
Simulation.

In brief, designers can input their specifications
by constructing a Problem Graph using elementary
subproblems from a Problem Base, along with sub-
problem sizes and other related constraints. First,
CMAPS maps this graph into an initial solution.
Then, CMAPS transforms the initial solution into
hardware models and software models, and coevalu-
ates them while checking which models can be elim-
inated to decrease the complexity of synthesis. Fi-
nally, the hardware and software models are synthe-
sized into hardware system-level specifications and
software pseudo-programs, respectively, and a cosim-
ulation of hardware and software is performed after
having chosen an appropriate scheduling algorithm.

4.1 Initialization Phase

The designer specifies his or her problem us-
ing a Problem Graph (PG) which is a directed
acyclic graph Gp(Vp, Ep), such that Vp = {vi |

Modeling and
Evaluation Phase

Synthesis and
Simulation Phase

Next SWHW Model
Application-Oricnted
Parallel Syste

Figure 1: CMAPS Design Flow

v; represents a problem p; € P} and Ep = {(vr,vs) |
v, must be splved before v, and v,,vs € Vp}, where
P is a set of problems in PB. This graph is simi-

~ lar to the traditional task graph specification used in

distributed system synthesis [4] and cosynthesis algo-
rithms [16, 24, 22, 23]~

The result of this phase is a Solution Graph (SG),
which is defined to be a directed acyclic graph
Gs(Vs, Es), where each vertex in Vg represents an
elementary algorithm from AB and each edge in £3
represents the order of precedence between two algo-
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rithms.

A PG input (Gp(Vp, Ep)) is transformed into an
SG result (Gs(Vs, Eg)) through the following solu-
tion modeling process:

model_solution(G_P, G_S, 4)
begin
for each v_i in V_P do
select a_i from A such that
(1)a_1i solves p_i
(2)c(a_i)=MIN{c(a_k)la_k solves p_i}
where c(a_i)=time(a_i)x*#cpu(a_i)
V_S = set_union(V_S, {a_il})
endfor
for each (v_r, v_s) in E_P do
E_S = union(E_S, {(a_r, a_s)})
endfor
end.

The resulting SG is most probably not a feasible so-
lution, but it serves as a useful initial solution for the
Modeling and Fvaluation phase. The various phases
in this section are illustrated using a small running
example given in Fig. 2. The Problem Graph con-
sists of five subproblems, pi, p2, ..., Ps, each being
an elementary problem from the Problem Base. Five
subalgorithms, ai, az, ..., as, are selected from the
Algorithm Base, each being the algorithm that best
solves the corresponding problem. These subalgo-
rithms are composed into the initial Solution Graph,
as shown in Fig. 2.

4.2 Modeling and Evaluation Phase

Solution Graph (SG) obtained in the Initialization
phase is made feasible iteratively through an inter-
leaving of hardware and software modeling processes.
This phase consists of three subphases: Hardware
Modeling, Software Modeling, and Coevaluation. Us-
ing SG, a Hardware Model (HM) is generated in the
Hardware Modeling subphase by going through the
following steps: Initialization, Model-Space Ezplo-
ration, and Model Configuration steps. The Software
Modeling subphase mainly constitutes the transfor-
mation of a Solution Graph (SG) into a Software
Model (SM), the difference is that SG may be non-
feasible, but SM has to be feasible, that is, its re-
quirements match those provided by the correspond-
ing HM. The final Coevaluation subphase reduces the
number of hardware and software models to be con-

sidered for synthesis, thus significantly decreasing the -

complexity of cosynthesis.

4.2.1 Hardware Modeling Subphase

In the following, we assume that a given problem
has n subproblems, that is, |Vg| = n, where SG =

(Vs, Es) is the Solution Graph of the given prob-
lem. We also assume that a Hardware Model (HM)
has m features, where a feature is a hardware de-
sign characteristic; for example. some features can
be the memory organization, the system intercon-
nection network, etc. Further, each hardware feature
may have different values assigned to it, we call them
feature options; for example, Shared Bus, Mesh, and
Hypercube are feature options for the system inter-
connection network feature. As described below, this
subphase consists of three steps Initialization, Model-
Space Ezploration, and Model Configuration.

Step a. Initialization: An nxm hardware require-
ment matriz, M(m;;), is constructed as follows such
that m;; represents the jth hardware model feature
(f;) of the ith subalgorithm (a;). i = 1,2,...,n and
i=12,...,m.

1. Sort the hardware model features in a descend-
ing order of the overall degree of effect that a
feature has on the system or in a descending or-
der of the degree of importance as stipulated by
a system designer. c— -

2. Denote feature options using binary values from
the set {1,10,100,...} such that a larger value
indicates a functionally stronger option, e.g.,
CRCW = 100, CREW = 010. and EREW =
001 in the case of memory access models.

3. Let bit(m;;, k) return the kth least significant bit
of m;; and let b; be the number of significant bits
in the binary representation of the jth feature f;,
forall k=1,2,...,b;.

bit(m;j, k) = 1 if a; requires kth option of f;

(1)

For instance, the matrix M for the small running
example given in Fig. 2 is given in the figure.

Step b. Model-Space Ezploration: In this step,
as given in Equation (2) the kth option of the jth
feature is considered for further software modeling
(denoted by tji = 1) if the option demand (sji) is at
least the mean demand (n/b;), k =1,2,...,b;. Here,
the option demand is defined as the number of sub-
algorithms which demand the kth option of the jth
feature and the mean demand is the average weight
assigned to each feature, that is, the mean demand
for fj is n/b;.

- Lif sj, 2§+, where s;p = iL; bit(my;, k)
771 0 otherwise
(2)

For the running example in Fig. 2, n = 5, m =
4, and using Equation (1) and Equation (2) %;; are
computed.

Step c. Model Configuration: In this step, the
hardware model configurations are generated from
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reselected giving synthesis RAM, Muitistage
SMs = (@, 21, Au. 3ur. 352) Interconnection Network,
Suftware Models 4 provessor/cluster
cosirmulat perf | TS, TS: TS,
SM, | U610 60D 1/520 Final result: (HM,, SM:, TS3)
_— sM; I 1700 160 1500 I - )|
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Figure 2: CMAPS Running Example

the hardware model vector, T, which is defined from
tjk as T = (t11..-twey 121 ~~t2b2 cotmi e tmbn )
For the running example, ¥ = (10, 1001, 101,01). A
designer may specify some hardware requirements
which will be represented by a hardware specifica-
tion vector 4. The hardware model configurations
are then generated.

The configurations are generated starting from the
functionally strongest one. Non-feasible hardware
models are eliminated. For our running example in
Fig. 2, after eliminating non-feasible hardware mod-
els, the final feasible configurations generated are
(10,1000, 100, 01) and (10, 1000,001,01) correspond-
ing to HM; = (SM, NUMA, CRCW, SIMD) and HM»
= (SM, NUMA, EREW, SIMD).

4.2.2 Software Modeling Subphase

Considering one at a time the feasible hardware mod-
els generated in the Modeling and Evaluation Sub-
phase, software models are generated by transform-
ing the Solution Graph (SG) into a feasible soft-
ware solution. This transformation process checks
the compatibility of each subalgorithm in SG with
the hardware model under consideration. Compati-
bility is defined in terms of the hardware model fea-
tures, {CM,ML,MA,CO}, of which Communica-
tion (CM) model and Control (CO) model require
an exact match, whereas Memory Latency (ML)
model and Memory Access (M A) model are defined
compatible when the hardware feature is functionally
stronger than the software requirement; for example,
CRCW PRAM and CREW algorithm are assumed
compatible. Due to space limitations, the software

modeling phase is not explained in detail here.

4.3 Synthesis and Simulation Phase

In this phase, the hardware and software models
are now individually synthesized into parallel system
specifications and parallel pseudo-programs, respec-
tively, and then cosimulated by scheduling the paral-
lel program on the parallel architecture defined by the
parallel system specifications. The Hardware Synthe-
sis subphase consists of four steps: System Configu-
ration, Processor Clustering, System Interconnection
Selection, and Cluster Design. The Software Synthe-
sis subphase interconnects the final choice of algo-
rithms by Algorithm Interface Construction, Serial-
ization of Memory Accesses, and Addition of Com-
munication Constructs. In the Cosimulation sub-
phase, the hardware and software solutions generated
in the previous two subphases are now inter-related
by scheduling the software on the hardware using:

1
T(SL\/I,;, H}.\Ij, TS[;) X C(H)/IJ)

' 3)
where T(SM;, HM;, TS;) is the execution time of
SM; on HM; scheduled using TS, and C(HM;) is
the total hardware cost of the system.

For the running example, the results of hardware
and software syntheses are given in Fig. 2

7(SM;, HM;, TSy) =

5 Conclusion and Future Work

A methodology called Cosynthesis Methodology for
Application-Oriented Parallel Systems (CMAPS) was
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presented for synthesizing both the software and
hardware of AOGPP systems. CMAPS uses an it-
erative procedure beginning with a solution graph
and going through interleaved phases of software and
hardware modeling. The software-hardware model
combinations are coevaluated in order to decrease the
size of the design space to be explored. Hardware and
software are then synthesized separately and cosim-
ulated by scheduling the synthesized software on the
hardware using multiprocessor task scheduling algo-
rithms. These three repositories: PB, AB, and MB,
constructed using OO technology [12], also contribute
toward easily upgrading to new technologies such
that new hardware components, new algorithms, and
new elementary problems can always be integrated
into existing repositories. .

Future work would be applying OO technology not
only to the repositories, but to the codesign process
itself [22]. Hardware and software dependence on
each other also need further investigation. A formal
verification model [11] for the codesign of AOGPP
systems would also be an interesting research topic.
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