FERENAT/\E2EEHeS

Discovery of Quantitative Association Rules from a Large
Database of Sales Transactions

Pauray 5.M. Tsai Chien-Ming Chen

Department of Information Management
Ming Hsin Institute of Technology
Hsin-Feng, Hsinchu 304, Taiwan, R.O.C.
e-mail: pauray@mis.mhit. edu.tw

Abstract

In this paper, we examine the issue of mining
quantitative association rules in a large database of
sales transactions. When purchased quantities are
considered, most of the supports for items associated
with their purchased quantities may be low, and the
number of potentially interesting association rules
discovered may be few. In order to discover more
potentially interesting rules, we present two parti-
tion algorithms to partition all the possible quanti-
ties into intervals for each item. We also propose an
efficient mechanism to discover all the large itemsets
from the partition result. Experimental results show
that by our approach, the total execution time can be
reduced significantly. Moreover, the number of po-
tentially interesting association rules discovered from
our partition result is larger than that of rules dis-
covered from the original data, which demonstrates
the significance of our work.

1 Introduction

Data mining has attracted much attention in
database communities because of its wide applica-
bility (1, 2, 5, 6, 7, 9, 11, 13, 15]. One major applica-
tion area of data mining is mining association rules
among items in a large database of salses transactions
[3, 10, 17]. Specifically, given a set of transactions,
where each transaction consists of a set of items, an
association rule is an expression X == Y, where X
and Y are sets of items. A set of items is called
an jtemset. An example of such an association rule
might be “80% of customers who buy itemset X also
buy itemset Y”. The percentage 80% is called the
confidence of the rule.

The problem of mining association rules can be
decomposed into two subproblems. Let the support
of an itemset Z be the ratio of the number of trans-
actions containing itemset Z and the total number
of transactions in the database. First, all itemsets
whose supports are no less than the user-specified
minimum support are identified. Each such item-
set is referred to as a large itemset. Second, the
association rules whose confidences are no less than
the user-specified minimum confidence are generated
from these large itemsets. For example, let Z be a
large itemset. The confidence of a rule X == Y
is the ratio of the supports of itemset X UY and
itemset X. All rules of the form X == Y satisfying
XUY =Z, XNY =0, and the minimum confidence

constraint are generated. Once all large itemsets are
discovered, the desired association rules can be ob-
tained in a straightforward manner.

An algorithm for finding all association rules, re-
ferred to as the AIS algorithm, was first explored in
(3]. The AIS algorithm requires to repeatedly scan
the database. It uses the large itemsets discovered
in the previous pass as the basis to generate new
potentially large itemsets, called candidate itemsets,
and counts their supports during the pass over the
data. Specifically, after reading a transaction, it is
determined which of the large itemsets found in the
previous pass are contained in the transaction. New
candidate itemsets are generated by extending these
large itemsets with other items in the tramsaction.
However, the performance study in [4] shows that
AIS is not efficient since it generates too many can-
didate itemsets that turn out not to be large itemsets.

In [4], the Apriori and AprioriTid algorithms were
proposed for efficiently mining association rules. Dif-
ferent from the AIS algorithm, these two algorithms
generate the candidate itemsets by using only the
large itemsets found in the previous pass. For ex-
ample, at the (k — 1)th iteration, all large itemsets
containing k — 1 items, called large (k — 1)-itemsets,
are generated. In the next iteration, the candidate
itemsets containing k items are generated by joining
large (k — 1)-itemsets. The heuristic is that any sub-
set of a large itemset must be large. By the heuristic,
the Apriori and AprioriTid algorithms can generate
a much smaller number of candidate itemsets than
the AIS algorithm.

Another effective algorithm for the candidate set
generation, called DHP, was proposed in [14]. By uti-
lizing a hash technique, DHP can efficiently generate
all the large itemsets and effectively reduce the size
of the transaction database. The performance study
in [14] shows that the number of candidate 2-itemsets
generated by DHP is smaller than that by the Apriori
algorithm. Moreover, the transaction database size
is trimmed at a much earlier stage of the iterations,
As a result, the total execution time can be reduced
significantly by DHP.

The notion of mining multiple-level association
rules was introduced in {10]. In many applications,
association rules discovered at multiple concept lev-
els are useful. Usually, the association relationship
expressed at a lower concept level provides more spe-
cific information than that expressed at a higher con-
cept level. The approach is to first find large items at
the top-most level, and then progressively deepen the
mining process into their descendants at lower levels.



A similar idea of extracting generalized association
rules using a taxonomy was presented in [18].

The issue of mining optimized association rules
for numeric and categorical attributes was investi-
gated in {8, 16]. An optimized association rule has
the form (X € [v1,v2]) A Cy = C2, where X is a
numeric attribute, v; and ve are uninstantiated vari-
ables, and C; and C: are conditions containing only
instantiated attributes. The problem is to determine
values for variables v, and vz such that either the
support or confidence of the rule is maximized. In
[8], only a single optimal interval for a single nu-
meric attribute can be determined. [16] generalized
the optimized association rules problem to contain a
number of uninstantiated attributes.

The problem of mining quantitative association
rules in large relational databases was introduced in
[19]. The attributes considered in a relation are quan-
titative or categorical. The values of the attribute
are partitioned using an equi-depth approach (that
is, each interval resulted from the partition contains
roughly the same number of tuples), and then adja-
cent intervals are combined as necessary. A related
problem is clustering association rules [12], which
combines similar “adjacent” association rules to form
a few general rules. [12] proposed a geometric-based
algorithm to perform the clustering and applied the
Minimum Description Length principle as a means of
evaluating clusters.

In this paper, we examine the issue of mining
quantitative association rules in a large database of
sales transactions. A transaction in the database typ-
ically consists of the customer identifier, the items
bought in the transaction, and the quantity associ-
ated with each purchased item. The previous ap-
proaches for mining association rules in the trans-
action database focus on discovering associations
among items without considering the relationships
between items and their purchased quantities. In
real applications, it is essential to discover associa-
tions among items associated with their. purchased
quantities. For example, a quantitative association
rule for a given transaction database might be “40%
of customers who buy two loaves of bread also buy
three bottles of milk”. This kind of rules will be use-
ful to improving marketing strategy.

When purchased quantities are considered, if most
of the supports for items associated with their pur-
chased quantities are low, the number of potentially
interesting association rules discovered will be few.
In order to discover more potentially interesting as-
sociation rules, we present two partition algorithms
to partition all the possible quantities into intervals
for each item. The basic idea is to combine adjacent
values into intervals such that the support for each
single interval could exceed the minimum support.
As a result, we could obtain a quantitative associ-
ation rule such as “80% of customers who buy two
or three loaves of bread also buy two or three bot-
tles of milk”. We also propose a mechanism, called
LqiTid, to discover all the large itemsets from the
partition result. By recording the identifiers of trans-
actions containing the large itemset, we can scan the
database only once. Experimental results show that
the performance of LqiTid greatly outperforms that
of the modified Apriori algorithm. Moreover, the
number of potentially interesting association rules
discovered from our partition result is larger than
that of rules discovered from the original data in all
cases. Especially when the minimum support exceeds

a critical value, there is almost no rules discovered
from the original data, but there are still some po-
tentially interesting association rules discovered from
the partition result. Our work is different from the
work in {19]. [19] considered the problem of mining
association rules in large relational tables containing
quantitative attributes, in contrast to our algorithms
designed for transaction-type items.

This paper is organized as follows. In Section 2,
the problem description is given and two partition al-
gorithms are introduced. The algorithm LqiTid pro-
posed for efficient generation of all large itemsets is
described in Section 3. In Section 4, the performance
results are presented. Finally conclusions are given
in Section 5.

2 Partition Algorithms

Let DB be a transaction database. A g-item, de-
noted as < i,q >, represents a purchased item ¢ and
a quantity ¢ associated with this item. A transac-
tion in the database consists of a transaction identi-
fier (TID) and a set of q-items (q-itemset) purchased
in the transaction. We assume that g-items in each
transaction are sorted according to their items in the
lexicographic order.

The support for a q-item is defined to be the value
of dividing the number of transactions containing
this g-tem by the total number of transactions in
database DB. Since g-items with the same item can
have different quantities, the support for a g_item can
be low. If most of qditems have low supports, the
number of potentially interesting association rules
discovered will be few. In order to discover more
interesting information embedded in the transaction
database, we partition the values of the quantity into
intervals for each item and map each quantity to an
integer which represents its corresponding interval.

Let {< i,q10 >,< t,¢2 >,...,< i,gn >} be the
set of g.tems in DB, which have the same item g,
and 1 < g2 < ... < ¢n. Assume that ¢,c2,...,
and ¢, are the numbers of transactions containing
< i,q >,<1i,q >,..., and < i,¢, >, respectively.
In the following, we consider two partition meth-
ods: the PARTITION1 method, as shown in Fig-
ure 1, and the PARTITION2 method, as shown
in Figure 2. The PARTITIONI scheme can be
outlined as follows. Let T be the total number of
transactions. First, we find a minimum integer ki

k
such that Lmﬁi is greater than or equal to the
minimum support, say s, and the interval [g1..gx,]
is generated. Then, we find a minimum integer k-
ko em
(k2 > k1) such that Z#z’}l-ﬂ——— > s, and the inter-
val [g(k, +1)--Gk.] is generated. The rest is deduced by

n
c
m=kj +1 m

analogy. If < s, the last generated in-
terval (gqx;_,,+1)--Qk;] is combined with [g(i;41)--¢n]
to form the interval [q(x_, +1)-¢2). The PAR-
TITIONZ scheme can be described as follows. If
S > s, where 1 < m < n, then g is considered to
be a separate interval represented as [¢.,]. Note that
£z denotes the support for the gitem < ¢,gm >.
Assume that the supports for g.tems < i,g; > and
< %,qx > are no less than s and those for g-items
< 4,q41) >, < §,4(4+2) >,y and < 4, gp—1) > are
less than s. Then the interval [g(;+1)--9x—1)] iS gener-



/¥ PARTITION1 */
i=1
cnt = 0,
V;.first = qu;
/* V;.first represents the first value
in the interval V; */ -
for (k=1;k < n; k++) do
cnt = cnt + cx;
if (53 > s) then
begin
V;.last = gg;
/* V;.last represents the last value
in the interval V; */
J++
cnt = 0;
if (k < n) then Vj.first = qu41);
end
else if (k = n) then
if (j > 1) then V;_i.last = qn;
else Vj.last = qn;
end for

Figure 1: The PARTITION1 method.

ated. The generated intervals are mapped to consec-
utive integers such that the order of these intervals
is preserved. The effects of these two methods on
mining results will be examined in Section 4.

Example 1: Let {< i,1 >,< 4,2 >,< 4,3 >, <
i,4 >,< 1,5 >} be the set of q.items in database
DB, which have the same item %, and 50, 30, 100,
20, and 40 be the numbers of transactions contain-
ing <4,1>,<4,2>,<4,3>,<4,4> and <1i,5 >,
respectively. Assume that the total number of trans-
actions is 500 and the minimum support is 10%. By
PARTITION1, we have three intervals for item i:
(1), [2..3], and [4.5]. The intervals [1], [2..3], and
[4..5] are mapped to integers 1, 2, and 3, respectively.
Thus, qitem < 7,3 > will be mapped to the gener-
alized form < i,2 > (ie, < 4,[2..3] >). By PAR-
TITIONZ2, we have four intervals for item 7: [1], [2],
(3], and [4..5]. The intervals [1], (2], [3], and [4..5]
are mapped to integers 1, 2, 3, and 4, respectively.
Thus, q-item < 7,3 > will be mapped to the gener-
alized form < 4,3 > (ie, <4,[3] >).

After the partition process, each q.item in each
transaction is mapped to a generalized form. Let
DB’ be the transaction database after perform-
ing partition process on database DB, and X =
{z1,%2,...,Tm} the set of qitems in DB’. A quanti-
tative association rule is of the form Y = Z, where
YCX,ZCX,andYNZ=0. TheruleY = 2
holds in the transaction database DB’ with confi-
dence ¢ if ¢% of the transactions in DB’ that contain
Y also contain Z. The rule Y = Z has support s in
the transaction database DB’ if s% of the transac-
tions in DB’ contain Y U Z. A transaction supports
a qitemset Y, if all the q.items in Y are contained
in the transaction. The support for a g_itemset is de-
termined by dividing the number of transactions sup-
porting the g.itemset by the total number of trans-
actions. A q.temset is called a large q_itemset if its
support is greater than or equal to the minimum sup-

/* PARTITION2 */
i=1
V. first = q;
[* V;.first represents the first value
in the interval V; */
flag=0;
/* flag = 0 indicates that at present
there is only a value in interval V; */
for (k =1,k < n; k++) do
if (3% > s) then
begin
if (flag = 0) then V;.last = qg;
/* V;.last represents the last value
in the interval V; */

else
begin
Vjlast = qr_1);
J++
V. first = q;
V;.last = qp;
end
J++;
‘/}fZT‘St = Q(k+1);
flag =10;
end

else if (k = n) then V,.last = gn;
else if (flag = 0) then flag =1;
end for

Figure 2: The PARTITION2 method.

port. A g temset of size k is called a k—q_itemset.
The problem of mining quantitative association
rules mainly consists of two steps:

1. Partition the values of the quantity into inter-
vals for each item. The partition methods have
been introduced in this section.

2. Find all large g.temsets. A new algorithm
named LqiTid is presented in the next section.

After discovering large q.itemsets, the quantita-
tive association rules can be extracted. Let X be a
large qitemset, Y UZ = X and Y N Z = (. Then
Y == Z is a quantitative association rule if its con-
fidence is greater than or equal to the minimum con-
fidence.

3 Large Q_itemset Generation

In this section, we propose a mechanism by which
the database is scanned only once for discovering
large q-itemsets. Example 2 is used to illustrate
our approach.

BExample 2. Let Figure 3 be the original transac-
tion database DB. Assume the minimum support is
20%. By PARTITIONI (illustrated in Section 2),
the mapping information and the resultant transac-
tion database DB’ after performing the partition on
database DB are shown in Figure 4 and Figure 5,
respectively.

A-278



[ TID | g.itemset H
<B,1> <C;2> <F 1> <G,3>

<C,1> <D,1> <G,1>

<C,1> <F,3> <G,1>

<A 2> <B1> <C.3> <G,2>
<A,1> <B,1>

<B,3> <C,2>

<B,3> <C,2> <D,1> <E 5> <F,1>
<B,1> <C,2> <G,3>

<BA> <F,2>

<A 2> <B,2> <C,3> <F,1>

<B,2> <C,3> <F,1>

<A 1> <B,2> <G,2>

<B,2> <C,2> <G4>

<A1> <B2> <C3> <F;3> <G5>
<A 3> <C4d> <G,3>

Ol ool ~3| D] Gy =] O O]

[y S e et
Bl =o

—
o

Figure 3: The transaction database DB.

Mapping Item A Mapping Item B
[ quantity | integer | [ quantity [ integer |

1 1 1 1
2.3 2 , 2 2
3.4 3

Mapping Item C Mapping Item D
quantity | integer | [ quantity [ integer |

1.2 1 | 1 | 1 |
3.4 2
Mapping Item B Mapping Item F
quantity integeLI quantity | integer |
5 1] 1 1
2.3 2

Mapping Item G
quantity | integer |
1.2 1
3.5 2

Figure 4: The mapping information.

3.1 Information for Discovering
Large Q_itemsets

Let TS({z}) be the set of TIDs for transactions
containing q.item z. For example, in database DB’,
TS({< 4,1 >}) = {5,12,14} and TS({< B,1 >
b = {1,4,5,8}. The set TS({z1,2}), representing
the set of TIDs for transactions containing the two
gitems z1 and z3, can be obtained by performing
the set intersection on TS({z1}) and T'S({z2}):

TS({z1,22}) = TS({z1}) N TS({z2})

where the symbol “N” denotes the set intersection.
For example, TS({< 4,1 >,< B,1>}) = TS({<
A 1>)NTS(H{< B,1>}) = {5}.

Definition 1: Suppose 21, T2, ..., and  are g-items.
TS({z1, 2, ..., zx}) is the set of TIDs for the trans-
actions containing all the g.items in the g-itemset
{z1,22,....,ar}. SP({z1,22,..,xx}), which repre-
sents the number of TIDs in T'S({z1,z2, .., Tx}), is
defined as:

SP({z1, 2, ..., 2 }) = Card(TS({z1, 22, ..., Tk }))
= Card(TS({z1}) N TS({z=}) N ... N TS({xr}))

[ TID | g.itemset-

<B,1> <C,1> <F,1> <G2>

<C,1> <D,1> <G,1>

<C,1> <F 2> <G,1>

<A 2> <B,1> <C.;2> <G,1>
<A1> <B,1>

<B,3> <C,1>

<B,3> <C,1> <D,1> <E,1> <F,1>
<B,1> <C,1> <G,2>

<B,3> <F.2>

<A 2> <B2> <C2> <F,1>

<B,2> <C,2> <F,1>

<A 1> <B2> <G,1>

<B,2> <C,1> <G,2>

<A 1> <B2> <C,2> <F 2> <G,2>
<A 2> <C2> <G,2>

| O] 00| ~3I| | G | WO D}

=] | | =
B W N = O

[
o

Figure 5: The transaction database DB'.

where Card(S) denotes the cardinality of set S.
After scanning the transaction database DB’, the

. information for discovering large qitemsets is ex-

tracted as shown in Figure 6. TS({z1,z2, ..., Zx})
can be obtained according to the information.

qitem | TS SP
<A]1> | {5,12,14} 3
<A,2> | {4,10,15} 3
<B,1> | {1,4,58} 4
<B2> | {10,11,12,13,14} | 5
<B,3> | {6,7,9} 3
<C,1> | {1,2,3,6,7,8,13} 7
<C,2> | {4,10,11,14,15} 5
<D,1> | {2,7} 2
<B1> | {7} 1
<F1> | {1,7,10,11} 4
<F,2> | {3,9,14} 3
<G1> | {2,3,4,12} 4
<G,2> | {1,8,13,14,15} 5

Figure 6: The information for discovering large
g-itemsets.

3.2 Algorithm LqgiTid

In this subsection, we introduce the algorithm
LqgiTid for efficient generation of large g-itemsets.
Let T be the total number of transactions in the
transaction database. minsup is defined as

minsup = [T x minimum support].

Lemma 1: If SP({z1,z2,..,%x}) is greater than
or equal to minsup, then {r1,Z2,..,zx} is a large
k—q.dtemset.

Proof: According to the definition of
SP({z1, 22, .-, 21}), SP({z1, %2, ..., Tx}) is the num-
ber of transactions containing all the q-items in

- the q_itemset {z1,Z2,...,zx}. If SP({z1,22, ..., Tk})

> minsup, then the support for the q.itemset
{z1, %2, ..., Tk} is no less than the minimum support.
Thus {1, T2, ..., Tx} is a large k—q-itemset.




Lemma 2: If'the qitemset {z1,z2,..., 2} is a large
k—q.itemset, k > 2, then any proper subset of the
q-itemset is also a large q.itemset.

Proof: Assume that the q_itemset {z1,zs,..., 2} is
a large k—q.itemset. Namely, SP({z1, z2, ...,z }) >
minsup. Let S be a proper subset of {z1, 23, ...,z }.
Then, SP(S) > SP({z1,z2,..., +}). Therefore,
SP(S) > minsup and S is a large q.itemset by
Lemma 1.

According to Lemma 2, candidate k—q_itemsets
are generated from the set of large (k—1)~q.itemsets,
Li-1. The idea is similar to Apriori [4]. We
use the notation xz[1],2[2],...,z[k — 1] to represent
the k — 1 q.tems in the (k — 1)-q.itemset z. Let
item(z[j]) be the item value in qitem z[j]. For
the q-itemset {z[1], 2[2], ..., z[k — 1]}, we assume that
wem(z[1]) <item(z(2]) < ... <item(z[k — 1]).

Definition 2: The set of candidate k—g.itemsets
(k 2 2), Cy, is defined as

Gk = {{zpll)p[2), -, plk = 1],z fk ~ 11 |
Tp € Lr—1and 24 € Lr-y and z,[1] = x,[1],
2p(2] = 24[2], ..., and zp[k — 2] = zy[k ~ 2],
and item(zp(k — 1]) < item(zq[k — 1))}

The TS value of candidate
k—q.itemset {zp[1], 2,[2), ..., zp[k — 1], z4[k — 1]} can
be computed as

TS({zs[1], 2p[2], .., zp[k — 1], 3o [k — 11

=T8(zp) NTS(zq)

Different from Apriori, we need not scan the database
anymore. Once a candidate q-itemset is generated,
we can immediately determine whether it is a large
q-itemset by computing its TS and SP values. The
set of large k—q-itemsets is defined as:

Ly = {z|z€Cy and SP(z) > minsup}

The algorithm LqiTid consists of three phases:
information extraction phase, large 1-q_itemset gen-
eration phase, and large k-q_itemset generation phase
(k > 2). The algorithm is as shown in figure 7.

In the following, we use the transaction database
DB’ shown in Figure 5 to illustrate our approach.
Assume that the minimum support is 10% (i.e., min-
sup is 2). First, the set of large 1-qditemsets, Lq,
is determined using the information in Figure 6.
According to Lemma 1, Ly is the set of g-items
satisfying SP > 2, as shown in Figure 8. Then
the set of large 2-q.itemsets, Lo, is determined us-
ing the information in Figure 8. For example,
{<A,1>, <B,1>} is a candidate 2-q.itemset. How-
ever, it is not a large 2-q_itemset since TS({<A,1>,
<B,1>})= {5} and SP({<A,1>, <B,1>})=1 which
is less than minsup. {<A,2>, <C,2>} is a large 2-
q-itemset since TS({<A,2>, <C,2>})= {4,10,15}
and SP({<A,2>, <C,2>})=3 which is greater than
minsup. Figure 9 shows the information for L.
Next, L3, is determined using the information in
Figure 9. For example, {<B,2>,<C,2>,<G,2>}
is a candidate 3-q.itemset generated from large 2-
qtemsets {<B,2>,<C,2>} and {<B,2>,<G,2>}.
However, it is mnot a large 3-q.itemset
since TS({<B,2>, <C,2>,<G,2>}= TS({<B,2>,
<C2>})NTS{<B,2>,<G,2>})= {14}

/* Information extraction phase */
Scan the transaction database once.
For each q-item z, compute TS({z}) and SP({z}).
/* Large 1-q_itemset generation phase */
Ly ={z | z is a qitem and SP({z}) > minsup}
/* Large k-q.itemset generation phase */
for (k=2; | Lr-1 |> 1; k++) do begin
According to Definition 2, generate Cj,
using Lz—;.
forall candidates ¢ € Cy do begin
Assume that ¢ is generated from large
(k — 1)-g-itemsets Si and S,.
TS8(c) =TS(51) NTS(S2);
SP(c) = Card(TS(c));
If SP(c) > minsup then
Ly=L;U {c};
end for
end for

Figure 7: The algorithm LqiTid.

and SP({<B,2>, <C,2>,<G,2>})=1 which is less
than minsup. {<B,2>, <C,2>, <F,1>} is a large
3-qitemset since TS({<B,2>, <C,2>,<F,1>})=
TS({<B,2>,<C,2>})NTS({<B,2>,<F,1>})=
{10,11} and SP({<B,2>, <C,2>,<F,1>})=2 which
is equal to minsup. Figure 10 shows the information
for L3. Since C4 =0, L4 = 0 and the mining process
terminates.

| large 1-qtemset | 7S | SP]
{<A1>} {5,12,14} 3
{<A2>) {4,10,15) 3
{<B,1>} {1,4,5,8} 4
{<B2>} {10,11,12,13,14} | 5
{<B,3>} {6,7,9} 3
{<C1>} {1,2,3,6,7,8,13} 7
{<C,2>7 {4,10,11,14,15} 5
{<D,1>} {2,7} 2
{<F,1>} {1,7,10,11} 4
{<F,2>} {3,9,14} 3
{<G,1>} {2,3,4,12} 4
{<G,2>} {1,8,13,14,15} 5

Figure 8: The information for large 1-q_itemsets.

Let X be a large q.itemset, Y UZ = X, and
YNZ =0. Y = Z is a quantitative association rule
if its confidence is greater than or equal to the min-
imum confidence. The confidence of ¥ == Z is de-
termined by g};gy; . Let us continue from the above
example. Assume that the minimum confidence is
65%. We can obtain the following quantitative asso-
ciation rules, referencing the mapping information in
Figure 4: :

{<A, 1>} = {<B, 2>} (67%)

{<A, [2.3]>} = {<C, [3.4]>} (100%)
{<B, 3.4]>} = {<C, [1.2]>} (67%)
{<D, 1>} = {<C, [1..2]>} (100%)

{<B, 2>,<C, [3.4]>} = {<F, 1>} (67%)

A-280



[ large 2-qg-itemset | TS

| 5P |
{<A1>,<B,2>} | {12,14} 2
{<A2>,<C.2>) | {4,10,15}
{<B,1>,<C1>} | {1,8}
{<B,1>,<G,2>} | {1,8}

{<B,2>,<C,2>} | {10,11,14}
{<B,2><F,1>} | {10,11}
{<B,2>,<G,2>} | {13,14}

{<B,3>,<C1>} | {6,7}
{<C1><D,1>} | {2,7}
{<C1><F1>} | {17}
{<C,1>,<G,1>} | {2,3}

o b0 Wi po| B2 80| B2 RO B[ Wi | B W

{<C1><G2>} | {1,813}
{<Cz2><F,1>} | {1011}
{<C,2>,<G,2>} | {14,15}

Figure 9: The information for large 2-q-itemsets.

[ large 3-qitemset | TS [ SP]

{<B,2>,<C,2> <F 1>} | {10,11} 2

{<B,1>,<C,1>,<G,2>} | {1,8} 2
Figure 10: The information for large 3-

g-itemsets.

{<B, 2>,<F, 1>} = {<C, [3.4]>} (100%)
{<C, [3.4]>,<F, 1>} = {<B, 2>} (100%)
{<B, 1>,<C, [1..2]>} = {<G, [3..5]>} (100%)
{<B, 1>,<G, [3.5]>} = {<C, [1..2]>} (100%)
{<C, [1.2]>,<G, [3.5]>} = {<B, 1>} (67%)

4 Experimental Results

To assess the performance of LqiTid, we conduct
several experiments on Sun SPARC/20 workstation.
We first describe the gemeration of synthetic data
used in the experiments. Then, we compare the
performance of LqiTid and the modified version of
Apriori [4]. Finally, the effects of the proposed par-
tition algorithms on the number of rules discovered
are evaluated.

4.1 Generation of Synthetic Data

The method used to generate synthetic transac-
tions is similar to the one used in [4]. Table 1 sum-
marizes the parameters used in our experiments.

| D | | Number of transactions

[T | | Average size of the transactions

| I| | Average size of the maximal potentially
large g-itemsets

| L] | Number of maximal potentially large
g-itemsets
N Number of items

M@ | Maximum value of the quantities

Table 1: Parameters.

We first generate a set of potentially large
g.temsets L. The size of each potentially large

L, = {large 1-q_itemsets};
for (k= 2;Lr-1 # 0;k++) do
begin
According to Definition 2 described in
Section 3.2, generate Cy, using Lx—1-
forall transactions ¢ € the database do begin
C; = subset(Cr, t);
/* the set of candidate q.itemsets
contained in ¢ */
forall candidates d € C; do

d.count++;
end
Ly = {d € C) | d.count > minsup }
end

Figure 11: Algorithm M_Apriori.

q.itemset in L is determined from a Poisson distri-
bution with mean equal to | I |. Q.temsets in L
are generated as follows. Items in the first qitemset
are chosen randomly from N items and quantities are
chosen randomly from the range [1..MQ)]. In order to
have common ¢.items in subsequent g itemsets, some
fraction of q.items in a q.itemset are chosen from
the previous q-itemset generated. For each gitem
< z,q > in the previous g.itemset, we flip a coin to
determine whether the item z will be contained in
the current large q-itemset. If item « is retained in
the current q-itemset, a coin is flipped to determine
whether the associated quantity is ¢. If the answer
is “no”, we randomly choose a value from {1.MQ)]
as the associated quantity for item x. The remaining
Q-items are picked at random.

Then we generate transactions in the database.
The size of each transaction is determined from a
Poisson distribution with mean equal to | T |. Bach
transaction is generated as follows. First a poten-
tially large q-itemset is chosen randomly from L,
whose size is less than or equal to the transaction
size. To model the phenomenon that all the g items
in a large q.itemset are not always bought together,
we flip a coin to determine whether the q.itemset

will be contained in the transaction. If the answer is

“yes”, the remaining q-items are picked at random.
Otherwise, for each q-tem in the chosen g-itemset,
we flip a coin to determine whether the g-item will
be retained in the current transaction. Similarly, the
remaining q.items are picked at random.

Comparison of LqiTid and the modi-
fied Apriori

In order to process q.items, the algorithm Apriori
is modified to the version shown in Figure 11. The
modified version is called M_Apriori. In the following
experiments, the dataset is generated by setting N =
1,000, | L |= 2,000, and MQ = 10. Weuse T'a.Ib.Dc
to represent that | T |= a, | I |[= band | D |=
¢ % 1,000.

Figure 12 shows the relative execution times for
LqiTid and M_Apriori over various minimum sup-

- ports. It indicates that LqiTid constantly takes much

less time than M_Apriori. The reason is that Lqi-
Tid only scans the database once, whereas M_Apriori
needs scan the database repeatedly. Figure 13 shows



LaiTidM_Apriori in execution
time

minimum support (%)

25

i

Execution time (se)

g

Figure 12: Execution time comparison between
LqiTid and M_Apriori.

1020100
T10.14.D100

T15.12.D100.

LTt _Aprioriin execution tme

Number of items

Figure 13: Relative execution time (Lgi-
Tid/M.Apriori) when the number of items in-
creases. '

the relative execution times when the number of
items increases from 1,000 to 10,000. The minimum
support is set to 1% for this experiment. It can
be observed that as the number of items increases,
the relative execution time increases gradually. This
is because as we increase the number of items, the
number of database scans required in M_Apriori de-
creages gradually. In the experiment for Figure 14,
the minimum support is set to 1%. It shows that the
execution time of LgiTid increases gradually as the
database size increases. The reason is that the exe-
cution time of LqiTid is dominated by the database
s1ze.

Effects of partitions

It is the responsibility of the user to determine
whether a rule is useful or not. In general, the more
the number of rules generated is, the more the num-
ber of potentially interesting rules will be. Figures
15, 16 and 17 show the numbers of rules generated
with confidence no less than 80%, where “original”
indicates that no partition is applied on the transac-
tion data, and “partitionl” and “partition2” repre-
sent that the PARTITION1 scheme and the PAR-
TITION2 scheme are used, respectively. From these
experiments, we find that the numbers of rules gen-
erated form the data after partition using the PAR-
TITION1 or PARTITIONZ schemes are larger
than that generated from the original data in all
cases. Especially when the minimum support ex-
ceeds a threshold value, the number of rules gener-
ated from the original data is very few, whereas there
is still many rules generated from the data after par-
tition using the PARTITION1 or PARTITION2
schemes. The threshold values in Figures 15, 16 and
17 are 2%, 8% and 4%, respectively. It is interesting
to note that the PARTITION2 scheme performs

Figure 14: Performance of LqiTid when the
database size increases.

8 & %

0
E]

number of rules with confidence >= 0%

©

minimum support (%) |

Figure 15: Number of rules generated with con-
fidence > 80% (T5.12.D100).

better than the PARTITION1 scheme when the
minimum supports are between 1.5% and 6% in Fig-
ure'15, between 5% and 9% in Figure 16, and between
5% and 7% in Figure 17.

5 Conclusions

In this paper, we examine the issue of mining
quantitative association rules in a large database of
sales transactions. When purchased quantities are
considered, most of the supports for items associated
with their purchased quantities may be low, and the
number of potentially interesting association rules
discovered may be few. In order to discover more
potentially interesting rules, we present two partition
algorithms to partition all the possible quantities into
intervals for each item. As a result, we could obtain
a quantitative association rule such as “80% of cus-
tomers who buy two or three loaves of bread also buy
two or three bottles of milk”. We also propose an ef-
ficient mechanism to discover all the large q_itemsets
from the partition result. Experimental results show
that the performance of LqgiTid greatly outperforms
that of the modified Apriori. Moreover, the number
of potentially interesting association rules discovered
from our partition result is larger than that of rules
discovered from the original data in all cases, which
demonstrates the significance of our work.

Acknowledgement
This work was partially supported by the Republic of

China National Science Council under Contract No.
NSC 89-2213-E-159-002.



number of reles with confidence >=

it

minimum support (%)

Figure 16: Number of rules generated with con-
fidence > 80% (T10.12.D100).

number of rules with confidence >=80%

minimum support (%)

Figure 17: Number of rules generated with con-
fidence > 80% (T15.12.D100).

References

(1)

R. Agrawal, S. Ghosh, T Imielinski, B. Iyer, and
A. Swami, An Interval Classifier for Database
Mining Applications, Proceedings of the VLDB
Conference, (1992) 560-573.

R. Agrawal, T Imielinski, and A. Swami,
Database Mining: A Performance Perspective,
IEEE Transactions on Knowledge and Date En-
gineering, (1993) 914-925.

R. Agrawal, T Imielinski, and A. Swami, Min-
ing Association Rules between Sets of Items
in Large Databases, Proceedings of ACM SIG-
MOD, (1993) 207-216.

R. Agrawal and R. Srikant, Fast Algorithms
for Mining Association Rules, Proceedings of the
VLDB Conference, (1994) 487-499.

Y. Cai, N. Cercone, and J. Han, An attribute-
Oriented Approach for Learning Classification
Rules from Relational Databases, Proceedings of
the IEEE International Conference on Data En-
gineering, (1990) 281-288.

M.S. Chen, J. Han, and P.S. Yu, Data Min-
ing: An Overview from a Database Perspective,
IEEE Transactions on Knowledge and Data En-
gineering, (1996) 866-383.

U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy, Advances in Knowledge
Discovery and Data Mining, AAA 1/MIT Press,
(1996).

T. Fukuda, Y. Morimoto, S. Morishita, and
T. Tokuyama, Mining Optimized Association
Rules for Numeric Attributes, Proceedings of the
ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, (1996).

J. Han, Y. Cai, and N. Cercone, Data-Driven
Discovery of Quantitative Rules in Relational

[10]

(11]

(12]

[13]

(14]

(17]

(18]

[19]

Databases, IEEE Transactions on Knowledge
and Data Engineering, (1993) 29-40.

J. Han and Y. Fu, Discovery of Multiple-Level
Association Rules from Large Databases, Pro-
ceedings of the VLDB Conference, (1995) 420-
431.

X. Hu and N. Cercone, Mining Knowledge Rules
from Databases: A Rough Set Approach, Pro-
ceedings of the IEBE International Conference
on Data Engineering, (1996) 96-106.

B. Lent, A. Swami, and J. Widom, Cluster-
ing Association Rules, Proceedings of the IEEE
International Conference on Date Engineering,
(1997) 220-231.

R. Ng and J. Han, Efficient and Effective Clus-
tering Method for Spatial Data Mining, Proceed-
ings of the VLDB Conference, (1994) 144-155.

J.8. Park, M.S. Chen, and P.S. Yu, Us-
ing a Hash-Based Method with Transaction
Trimming for Mining Association Rules, IEEE
Transactions on Knowledge and Date Engineer-
ing, 9(5), (1997) 813-825.

G. Piatetsky-Shapiro and W.J. Frawley, Knowl-
edge Discovery in Databases, AAAT/MIT Press,
(1991).

R. Rastogi and K. Shim, Mining Optimized As-
sociation Rules with Categorical and Numeric
Attributes, Proceedings of the IEEE Interna-
tional Conference on Data Bngineering, (1998)
503-512.

A. Savasere, B. Omiecinski, and S. Navathe,
An Efficient’ Algorithm for Mining Association
Rules in Large Databases, Proceedings of the
VLDB Conference, (1995) 432-444.

R. Srikant and R. Agrawal, Mining Generalized
Association Rules, Proceedings of the VLDB
Conference, (1995) 407-419.

R. Srikant and R. Agrawal, Mining Quantitative
Association Rules in Large Relational Tables,
Proceedings of the ACM SIGMOD, (1996) 1-12.



