e R+ F R R TR

Object-Oriented Data Warehousing from Multiple Sources

Wei-Chou Chen
Inst. of Computer and Information Science
National Chiao-Tung University
Hsinchu, 30050, Taiwan, R. O. C.
sirius @cis.nctu.edu.iw

ABSTRACT

A data warehouse is an information provider that collects
necessary data from individual source databases to support
analytical processing of decision -support functions. In th
past, we introduced the concept of object-oriented data
warehousing in a single data source and proposed
view-maintaining algorithms to support OLAF. In this
paper; the proposed data model of the object-oriented data
warehousing is extended to be suitable in multiple-source
environments. Meta-objects are also used to keep th
management and maintenance of object -oriented data
warehousing efficient. Moreover, two vie -related
algorithms in such a data model are also presented to kee p
views desired in a data warehouse.

Keywords: data model, data warehousing, algorithm
object-oriented data warehousing, OLAP.

1. Introduction

A data warehouse is an information provider that
collects necessary data from individual source
databases to support analytical processing of
decision-support functions [1, 6]. For a data warehouse to
work well, large amounts of source data are needed and
appropriate views must be adopted in order to provide
up-to-date information to users. Inthe past decades, t he
relational data model gained much attention, and most
researches on data warehousing primarily focused on this
model. Recently, object -oriented techmologies grown
rapidly and have been widely adopted in the fields of
databases, artificial intelligence, software engineering and
geographic information systems. Applications of large
object-oriented database systems may also require a data
warehouse to improve the efficiency of queries for decision
support, especially when the databases are distributed over
several places.

In [11], Zhuge and Garica-Molina proposed vie
maintenance algorithms in a graph-structured data
warehouse, initiating the idea of research in object -oriented
data warehousing. In [2, 4], we introduced the concept of
the object-oriented data warehousing and proposed three
data warchouse models suitable in object -oriented
environments with a single data source. That proposed
model maintained the original structures in the source
database to store the materialized views in the
object-oriented data warehouse. That is, the attributes and
relationships of the classes and instances necessary, with
their original structures, were duplicated from the source
daiabases to the data warehouse [3, 5}. In this paper, we
extend this data model to manage views derived from
multiple-source environments. Two view-related algorithms
including the view-creation and view -deletion, are als

Tzung-Pei Hong and Wen-Yang Lin
Dept. of Information Management
[-Shou University
Kaohsiung, 84008, Taiwan, R.O.C.

{tphong,wylin} @csa500.isu.edu.t

proposed to keep the views and their classes and instances
desired in the data warehouse.

2. Data Warehousing

The concept of data warehousing was first proposed by
Inmon [6] in 1993. A data warehouse contains information
that is collected from multiple, individual data sources and
integrated into 2 common repository for efficient query and
analysis. When the data sources are distributed on several
locations, a data warchouse has the responsibility to collect

the necessary data and save them in appropriate forms.
Figure 1 shows the architecture of a typical data

warehousing system.
(OLAP & Query Processor)

Data
Warehouse

Data
Collector

Data Source 1 Data Source 2 Data Source n

Figure 1. Architecture of a typical data warehousing system

In Figure 1, there are three major components in a data
warehousing system: the data collector, the data
warehouse, and the OLAP and query processor. The data
collector is responsible for collecting necessary information
and transaction messages from several individual data
sources through communication networks with respect t
the requirements of end users and the views defined in the
data warehouse. The data warehouse receives data from the
data collector, then filters them and stores them in its own
database. The OLAP and gquery processor provides all
necessary information for users queries and OLAP
requirements.

3. Problem Definitions

In an object-oriented database, each class is associated with
a unique object identifier, a set of attributes, and a set of
procedures called methods. Each attribute has its data type,

A-256

which may be atomic or be another class. The classes can
be organized into a hierarchical structure, with the function
of inheritance among them [7, 8, 9].

Formally, let B be a set of source databases, I be a set of
identifiers, A be a set of symbols called attribute names, T
be a set of data types allowed for A, V be a set of values
presenting the meaning of A, and M be a set of processing
methods. A class in an object-oriented data warehouse can
be defined as follows.

DEFINITION 1 (Class): A class ¢ is a quadruple {cid, ca,
ct, cm}, where cidel, ca = <cay,..., ca;> with ca;eA and
i=l to n, ct = <cty, ..., cty> with ¢t; €T and j=1 to n, and
cmc M.

Example 1: Figure 2 gives a simple example of four
classes, Studinfo, Name, Dept and Classes, in the first
source database DS1. The class StudInfo has three attributes
StudID, StudInfo, StudClass and one method Counter().
The attribute StudID is of type character; the attribute
StudName and StudClass are of types Name and Classes,
which are classes. Figure 3 shows the second source
database, called DS2, which has the same four classes,
Studinfo, Name, Dept and Classes, as DSI has. The class
StudInfo however has four attributes, StudID, Studinfo,
StudClass, StudPic and two methods, Counter() and
ImageView(). The attributes StudID, StudName and
StudClass have the same types as those in the class
Studinfo in DS; have, and the atiribute StudPic is of type
image.

For the class Studlnfo in DS, cid = StudInfo, ca = {StudID,
StudName, StudClass}, ct = {char(10), Name, Classes), and
cm = { Counter()}.

Class StudInfo {
StudID char(10),
StudName Name,
StudClass Classes,
Counter() int

}
Class Name {

First char(20),
Middle char(20),
Last char(20)
}
Class Dept {
DeptID char(3),
DeptName char(40)
}
Class Classes {
ClassID char(5),
DeptOf Dept,
Grade - int,
Counter() int

}

Figure 2. An example of classes in DSI.

Let C; be the set of classes defined in the k-th source
database. That is C. = {Cis» Ci2s ---» Cin}, Where cy; is the i-th
class in the k-th source database, 1 <i < n. Let C be the set
of C's in the object-oriented data warehouse, that is C =
{Cy, Cs, ..., G}, where j is the number of source databases.
An instance is created by referring to a class and inheritin
some particular characteristics from the class. Similarly,
each instance is associated with a unique instance

Class StudInfo {

StudID char(10),
StudName Name,
StudClass Classes,
StudPic Image,
Counter() int,
ImageView() Image

}

Class Dept {
DeptID char(3),
DeptName char(40)

}

Class Name {
First char(20),
Middle char(20),
Last char(20),
Nickname char(20),

}

Class Classes {
ClassiD char(5),
DeptOf Dept,
Grade int,
Counter() int

}

Figure 3. An example of classes in DS2.

identifier, a set of attributes, and a set of procedures called
methods. Each attribute value can be an atomic value or an
instance from another class. Formally, an instance in an
object-oriented database can be defined as follows.

DEFINITION 2 (Instance): An instance ¢ = {tid, ta, tv, tm,
tc} is created and inherits from a certain class ¢ = {cid, cq,
ct, cm} such that fidel, ta = ca, tv = <tv, tvy, ..., 1v,> with
tv;eV and tv; being of type ct; and i = I to n, and tm < cm.

Example 2: For the example in Figure 2, assume two
instances are created by referring to the class Dept in DSI.
One is called CS with attribute values (001, Computer
Science) and the other is called /M with attribute values
{002, Information Management). Similady, assume two
instances Al and BI respectively with atiribute values (001,
CS, 1) and (102, IM, 2) are created by referring to the class
Classes, two instances WCC and TPH respectively with
attribute values (Chen, Wei, Chou) and (Hong, Tzung, Pei)
are createdbyreferring to the class ~ Name, and two
instances STOI and ST02 respectively with attribute values
(863201, WCC, A1) and (853001, TPH, B1) are created b
referring to the class SrudInfo in DSI.

For the instance ST01, tid = $T0I, ta = { StudID, StudName,
StudClass}, tv = {863201, WCC, Al}, m = {Counter(}},
and tc = StudInfo.

A view is characterized by a unique view identifier, aset of
attributes and a query sentence. The number of attributes is
equal to that in the query sentence. Formally, a view can be
defined as follows.

DEFINITION 3 (Data Warchouse View): A data
warehouse view WV in an object -oriented data warehouse
is a quadruple { wvid, wva, wvs, wvf} such that wvidel, wva
= <wva,, wvas, ..., wa,> with wa;,eAand i = 1ion, wvs
is a object-oriented query statement (Select 5, From F,
Where W), where S = <5y, 53, ...,5;> with 5;€A, i=11on,
and ISl=lwval, F = <b, f), bofo, ..., bfi> with beB, fieC i
=1t k and Wdenotes the condition sentences.

A view in the data warehouse can be defined to retrieve the
objects from more than one datasource, with the
relationships between these data sources being determined
by the condition sentences. Twokinds of condition
sentences may be used here. One is the independence
condition sentence, in which variables can be retrieved in a
single source database. The other is the dependence
condition sentence, in which variables must be retrieved
from more than one source database. Restated, when a
condition sentence can be checkedin a single source
database, it is called an independence condition sentence,
Otherwise, it is called a dependence condition sentence.

Example 3: Figure 4 gives a simple example of a vie
definition, BothClassList. The condition sentence
"DS1.Dept.DeptName = DS2.Dept.DeptName” is a
dependence condition sentence.

View BothClassList (DeptName char(40), ClassID
char(5)) as {
Select

DeptOf.DeptName,

ClassID
From DS1.Classes, DS2.Classes,
Where DS1.Dept.DeptName = DS2.Dept.DeptName;
}

Figure 4. An example of view definitions

Let V be the set of WV in the object-oriented data
warehouse. Thatis V.= {WV,, WV, ..., WV}}, where WV, is
the i-th view in the data warehouse, 1 < i <j and j is the
number of views defined in the object -oriented data
warehouse. Also, meta-objects are used in the
data-warehouse to keep the class identifiers and instance

identifiers used in view definitions for later management.
They are defined as follows.

DEFINITION 4 (Meta-Object): A meta-object mo is a
triple {Meta-mv, mec, mi}, where mv is the identifier of a
view, mc is the set of classes used in mv, and mi is the set of
instances kept in the data warehouse for mv.

Let O be the set of mo's in the object-oriented data
warehouse. That is, O = {mo;, mo,, ..., mo;}, where mo; is
the i-th meta-object, 1 < i < and j is the number of view
defined in the data warehouse.

DEFINITION § (Warehouse): An object-oriented data
warehouse W is a quadruple { C, V, I, O}, where C is a set
of classes, V is a set of view definitions, 7 is a set of
instances generated according t C and V, and O is a set of
meta-objects generated according to V.

4. View-Related Algorithms for an
Object-Oriented Data Warehouse

In this section, two view-related algorithms are proposedt
keep the views desired in anobject -oriented data
warehouse. They are respectively used for view creation
and view deletion. Details are described as follows.

4,1 View Creation

A new view WV in the object-oriented data warehouse can
be created using the following statement

Create Warehouse View WV (wva;, wva,, ..., wva,) as
Seleet b .a,,b _a,,..b a

5°n

From
Where

by.c,bycyy0b) 0

Wy, Wo, ..., Wy,

In the above statement, wva, denotes the n-th atiribute in
the view WV, b, .a, denotes the n-th attribute from a class

in the source database b, (if the attributes and the classes

of the attributes exists in all the source databases of the
view, the parameter b, can be omitted), b 7 denotes
n k

the &-th class form the source database l} , and w;, denotes
Ik

the k-th condition. The view-creation algorithm for
processing the above statement is proposed as follows.

The view-creation algorithm:

Input: A data warehouse W (C, V, I, O) and a view -creati
statement for creating a view WV.

Output: A revised data warechouse W’ (C', V’, I’, O").

Step 1: For every class p i in WV, dothe

class-integration procedure, which is used to
integrate the class bf <, in the class set C. (lts
k

procedure is stated below)

Step 2: Create a new meta-object with its name as
Meta-WV in O of the warehouse W.

Step 3: Set mc in the meta-object Meta-WV as all the
classes bg.cy's in WV.

Step 4: Collect all the source datab ases existing in WV,
denote them as A.

Step 5: For every source database by in A, collect all the
attributes, classes and independent conditions for by
to from the following query statement Q¢

Select bf.af,, bf.aﬂ, ey bf.aﬁ
From bf.cﬂ,bf.cﬁ,...,bf.cﬁ
Where LWy, Wa, LW

In the above statement, 1<i<n, 1<i<k 1<I/<m,
and the select part, from part and where part are
respectively the subsets of the corresponding parts
in WV.
Step 6: For every query statement Qyy, do the following:
Step 6-1. Initially set the counter m = 1, where the
counter m is used to countthe looping
number.
Step 6-2. Rea a, from the select part of the query
statement.
Step 6-3. Find all the atiribute names in a,, whose
types are classes; denote them as B.
Step 6-4. For every element in B, do the following
" sub-steps:

Step 6-4 (a). Find its class cid and do the
class-integration procedure to
integrate the class cid with the
classed Cin W.

Step 6-4 (b). Add it into the attribute mc of the
meta-object Meta-WV.

Step 6-4 (¢). Form the following query
statement Q;} to retrieve the

instances desired:

Select tid
From p cid
Where Wy, Wi, W

where each w; (j=1 to I) contains
the attribute name of class cid.
Step 6-5. Setm=m+ 1.
Step 6-6. If m < i (i is the number of items in th

select part of the query statement Oy, go to
Step 6-2.

Step 7: Send all of the query statements formed in Steps 5
and 6 to the data collector through the
communication network.

Step 8: Receive the instance identifiers (tid’s) retrieved
from the data collector, which satisfy the quer
statements.

Step 9: Check whether the instance identifiers exist in/ of
the warehouse W. Let D denote the set of instance
identifiers from the source databases and not
currently in 1.

Step 10: Request the data collector to reirieve the instance
contents of D through the communication
network. :

Step 11: Receive the instances with their contents
retrieved from the data collector. Denote them as
P.

Step 12: Check whether the instances in P satisfy all the
dependence condition sentences in WV. Denote
the instances desired as G.

Step 13: Add the instances set G into I of the warehouse
w.

Step 14: Find all the instances in 1 which satisfy the query
statement in WV and find all their referrin
instances; dd their instance identifiers (with the
source name by into the attribute mi of the
meta-object Meta-WV.

Step 15: Add WV to V in warehouse W.

After Step 15, the data warehouse contains all the desired
instances, the new view definition WV, and the new
meta-object. In Step 1, the Class-Integration Procedure is
used to handle the integration of the multiple classes in the
multiple source databases. I had bee stated and described
in [2).

4.2 View Deletion

A view WV existing in the object -oriented data warehouse
can be deleted using the following statement

Delete Warehouse View WV,

In the above statement, WV denotes the view to be deleted
in the object-oriented data warehouse. The view-deleti
algorithm for processing the above statement is proposed as
follows.

The view-deletion algorithm:

Input : A data warehouse W (C, V, I, O) and a
view-deletion statement for deleting view WV.

Qutput : A revised data warehouse w,v,r,o).

Step 1. Search the data warehouse W for view WV; If view
WV exists in W, do the next step; otherwise, set W'
= W and exit the algorithm.

Step 2. Initially set the counter m=1, where the counter m
is used to count the looping number.

Step 3. Read the m-th item mc, (representing bycid, the
class cid of the source database by from the mc
part in Meta-WV.

Step 4. Check whether the class cid is used by the other
meta-objects in O of the data warehouse W. If the
class cid is used by some other views, do nothing;
Otherwise, remove the class cid and all the
instances inheriting from the class cid.

Step 5. Setm=m+ 1.

Step 6. If m < Imcl, go to Step 3; otherwise, do the next
step.

Step 7. Set the counter m = 1, where the counter is used
to count the looping number.

Step 8. Read the m-th item mi, (representing bytid, the
instance fid of the source database by) from the mi
part in Meta-WV.

Step 9. Check whether the instance i is used by the other
meta-objects in O of the data warehouse W. If the
instance #i is usedby other views, do nothing;
Otherwise, remove the instance i from I of the
data warehouse W.

Step 10. Setm=m+ 1.

Step 11. If m < Imil, go to Step 8; otherwise, do the next

step.

Step 12. Remove WV from V and remove the meta-object

Meta-WV from O in the warehouse W.

After Step 12, the data warehouse removes the view
definition WV, the meta-object Meta-WV, and all the unused
classes and instances from the data warehouse. Moreover,
the OLAP supporting abilities which involves
drill-down/roll-up operations of this model has been
described in [2].

5, Conclusion

The research of object -oriented data warehousing is quite
new and promising. Many important issues still remain
unexplored and deserve further investigation. In this paper,
we have extended our previous data model for a single
source to multiple-source environments. The meta-objects
are presented to make the management and maintenance of
views in the object-oriented data warehousing easy and
efficient. Moreover, two incremental view-related
algorithms, including view-creation and view -deletion,
have been proposed to keep the data desired in an
object-oriented data warehouse. In the future, we wiil
attempt to design other datamodels to make the
object-oriented data warehousing flexible and efficient in
different application domains.

References

[11 S. Chaudhuri and U. Dayal, " An Overview of Data
Warehousing and OLAP Technology", ACM
SIGMOD Record, vol. 21, no. 1.

[2] W. C. Chen, Object-Oriented Data Warehousing and
its Maintenance Technologies, Master Dissertation,
I-Shou University, Taiwan, R.0.C., April 1999.

[3] W. C. Chen, T. P. Hong and W, Y. Lin, “View
Maintenance of Object-Oriented Data Warehousing
Using the Composite Model,” accepted and to appear
in The Fifth International Conference on Information
Systems Analysis and Synthesis, Orlando, U.S.A,
1999.

4] W.C. Chen, T. P. Hongand W. Y. Lin, “A Compressed
Data Model in Object-Oriented Data Warehousing,”
accepted and to appear in The IEEE 9 International
Conference on Systems, Man and Cybemneiics, Japan,
1999.

[5] W.C. Chen, W. Y. Lin and T. P. Hong, "View Update
in Object-Oriented Data Warehousing usin
Uncompressed Data Model,” accepted and to appear
in The Fourth World Conference on Integrated Design
and Process Technology, Kusadasi, Turkey, 1999.

[6] W. H. Inmon and C. Kelley, Rdb/VMS: Developing
The Data Warehouse, QED Publishing Group, Boston,
Massachusetts, 1993.

A-259

[7]
(8]

9]

W. Kim, "Modem Database Systems", ACM Press,
New York, New York, 1995.

Y. G. Ra and E. A. Rundensteiner, "A Transparent
Schema-Evolution System Based on Object-Oriented
View Technology”, IEEE Transaction on Knowledge
and Data Engineering, Vol. 9, No. 4, 600-624.

E. A. Rundensteiner, "A Methodology for supportin
Muliiple Viewsin Object -Oriented Databases",
Proceedings of 18th International Conference on Ver
Large Databases 1992, Vancouver, Canada, 187-198.

[10]

{11]

A260

M. H. Scholl, C. Laasch, M. Tresch, "Updateabl
Views in Object-Oriented Databases”, Second
International Conference on Deductive an
Object-Oriented Databases, Munich, Germany,
1991, 189-207.

Y. Zhuge and H. Garica-Molina. "Graph structured
views and their incremental maintenance,”
Proceedings of the International Conference on
Data Engineering, Orlando, FL, 1998.

