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Abstract. One of the most difficult tasks in computer-
aided fashion design is to separate the clothing of interest
on a model from backgrounds such thai changes can be
done on the clothing. There exist folds, shadows, diverse
texiures efc. on the clothing which make the
segmentation work difficult. In ihis paper, a color texture
segmentation method for clothing segmentation is
proposed. Color quantization is first performed fo reduce
the number of colors and shadow/highlight effects on the
image. The color texiure feaiures are then exiracted
based on the finite prolate spheroidal sequences (FPSS).
By these feaiures, a hierarchical coarse-to-fine
segmentation method is used to separate the clothing
from backgrounds. Finally, posi-processing is applied io
obtain a smooth clothing boundary. The experimental
resulis achieved are satisfactory.

Key words. Finite prolate spheroidal sequences, Color
quantization, Texiure segmeniation, Local centroid
clustering.

1 Introduction

One of the most .difficult tasks in computer-aided
fashion design is to separate the desired clothing from
backgrounds automatically. Few commercial image
processing packages can perform the segmentation well.
The users either have to specify by hand the clothing
boundary or tolerate the unsatisfactory result by an
automatic segmentation functioni. There are folds,
shadows, diverse textures etc. on the clothing which
make the segmentation difficult. In this study, designing
an algorithin that can automatically separate the clothing
texture of interest from backgrounds is our aim.

To extract texture features, the statistical based
methods have been widely used [1-4]. For example, the
gray level co-ocurrence matrix [2], which characterizes
the relationship between pixels in the spatial domain, is
good for representing the random field textures with
different means and variances. However, it can not
characterize the structural characteristics of texiures. The
structural based methods [4] are good for textures which
are composed of well-defined texture elemenis. Since
many textures violate this property, the structural based
methods are .of limited utility. In the last decade, the
space/spatial-frequency based methods {4-11] had been
found of great use in texiure segmentation, For examples,
the orientation and frequency selective methods, such as

the Gabor and Wavelet transform [6-10], have been
widely used and good segmentation results have been
shown. Their main drawbacks are the complicated
computation and the need of prior determination of
parameters. The finite prolate spheroidal sequences
(FPSS) [5-7], used in this paper, was presented early in
1978 by Slepian [5], but used on image processing until
1987 by Wilson [6, 7]. Using the FPSS, we can specify
intervals of both the spatial and frequency domains
simultaneously, and thus. can characterize textures easily
in both domains. That is, the local information
(relationship among pixels within a texture element) and
global information (relationship among texture elements)
of textures can be characterized.

The earlier methods for color image segmentation or
classification used three dimensional histogram clustering
techniques to segment color images in a single phase [12-
16]. Different color spaces were utilized to compute the
color features, such as the (R,G,B) space [12], the
Munsell space [13], the (L*,a*,b*) space [14], the (X,Y.])
space [15], and the (L',C",H') space [16]. Since a
significant amount of computational effort is required in
the above methods, two-phase coarse-to-fine approaches
were proposed [18-20]. In the two-phase methods, the
histograms were first smoothed for segmenting the color
image coarsely, then clustering algorithms were applied
in the fine phase to refine the segmentation resulis. A
primary weakness of the above approaches is that they
can not overcome the problem of shadows and highlights.

There are rare methods proposed for color texture
image segmentation. Panjwani and Healey [21] applied
the Markov random fields to model color textures. Caelli
and Reye [22] presented a unified scheme to extract
features in a single spatial-chromatic space. These
methods performed well when no rotation, shadow,
highlight, and fold existed on the textures.

In this paper, a color texture segmentation method is
proposed to separate or segment the clothing of interest
from backgrounds. The clothing to be segmented is
specified by the user using a seed point. The clothing
where the seed point locates is the one of interest. There
are mainly three stages in our segmentation method. In
the first stage, we first quantize the input color image to
reduce both the computational cost in segmentation and
the effect of shadows and highlights on the image. Then
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we use the FPSS, which can characterize the textures in
both spatial and frequency domains, to extract features on
the clothing. In the second stage, a coarse-to-fine
segmentation method is applied based on the exiracted
features. A clustering method (the local centroid
clustering method [7]) is performed to coarsely segment
the textures, and a hierarchical refinement process is
utilized to refine the texture boundaries. After
segmentation, each region contains textures which are
homogeneous with respect to the extracted features. A
simple region growing algorithm is then performed from
the given seed point to locate the clothing boundary.
Finally, post-processing is applied in the third stage to
smooth the clothing boundary. The experimental results
indicate that our proposed approach is indeed effective,
which can somewhat tolerate shadows, highlights, folds,
and texture orientation on the clothing.

In the remainder of this paper, detailed descriptions of
the proposed approach is given in Section 2, including
introduction of FPSS, the feature extraction method, the
color texture segmentation method, and post-processing
for boundary smoothing. Experimental results are
presented in Section 3. Conclusions appear in the last
section.

2 Proposed approach

There are mainly three stages in the proposed approach
to separate the clothing of interest from backgrounds,
including feature extraction, color texture segmentation,
and post-processing.

2.1 Feature extraction based on FPSS
A. FPSS

Before introducing FPSS, we first define two operators:
the truncation operator and bandlimiting operator. The

truncation operator, T, ., . is defined as

T oM <M>M ifnl<k<n2
nla27E = 0 otherwise ¢)]
<

0<nl<n2<n 0<(<gq

where M denotes an nxqg matrix and (M) o Tepresents

the entry in row £ and column £ of matrix M. T,; . can

also be considered as an nxn matrix:

{1 ifk=Candnl<k<n2

<Tn1,n2> w0 otherwise )

0<nl<n2<n, 05?l<n

The ouiput matrix T, ,,M obtained from applying the
truncation operator T, ,, to the matrix M is called a

truncated matrix. A vector V is called index limited if it
satisfies
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Tnl,nZV =V (3)

The bandlimiting operator B, ,, is defined as

Bml,m:z = F*Tml,m2F (4)

where F is the Discrete Fourier Transform (DFT) matrix
[24], which is defined as

1 o227kt

(F)=er

)Y, 0Lk f<n (5)
n

and F, the conjugate of F, is the inverse DFT (IDFT)
matrix. B,, .- can also be regarded as an nxn matrix. A

vector u is called bandlimited if the following equation is
satisfied: ‘

Bml'mzu =u (6)

When a truncation operator T,;,, is applied to a

matrix, the values of elements within the specified range
(from nl1 to n2) in the matrix are unchangeéd, but the
values of elements outside the range are set to zero. The
region formed by the unchanged elements in this matrix
is called the truncated region. Since the truncation
operation is performed directly on a matrix, it is a spatial-
domain operation. The bandlimiting operator is very like
the truncation operator. When applying the bandlimiting
operation to a matrix (see Equation (4)), we first
transform the matrix from the spatial domain to the
frequency domain using the DFT matrix F, then perform
the truncation operation on the transformed matrix, and
finally, transform the truncated matrix from the frequency
domain to the spatial domain using the IDFT matrix F".
Note that the bandlimiting operation is a frequency-
domain operation whereas the truncation operation is a
spatial-domain operation.

We frequently need to specify the interval of time and
the interval of frequency in analyzing a signal. We can
specify the interval of time by a truncation operator with
two parameters nl and n2, and specify the interval of
frequency by a bandlimiting operator with two
parameters /m1 and m2. However, can we use a single
operator which can specify both intervals at the same
time? As Equations (3) and (6) show, an index limited
vector is an eigenvector of T, ., and a bandlimited

vector is an eigenvector of B, . Itis clear that T, ,,
and B, .. are both Hermitian [25], and that in general
T,

2B m2 # By 2Ty nz - Furthermore, it can be
shown that no vector exists which is an eigenvector of

both T, ,, and B, - [25]. Thus, the answer of the

above question is ‘no’. That is, we can not find such an
operator to specify both intervals at the same time. The
question is now changed for an alternative solution, “Can
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we find an index limited vector which can approximate
the bandlimited vector with the smallest loss of energy, or
vice versa.” The answer is ‘yes’ [6], and it is the index
limited eigenvector e, corresponding to the largest

eigenvalue 6 of the operator T, ,,nB ) o

T n2B i meer = Orey,
OSk<n a.nd 90 29] 2"'29’1_1

(M

or the bandlimited eigenvector g, corresponding to the

largest eigenvalue 6 of the operator B 0Ty 50

By mo T no8r =085
0_<_k <n and 90 ..>..91 2”'29}1—1

®

The eigenvectors e, 0<k<n, form the FPSS. The
relation between e, and g, [6]is

gr = 67"y ey, 0Sk<n )

The eigenvector e, is index limited and can
approximate g, with the minimum loss, so as to the
bandlimited vector g, to approximate the e;. Fig. 1

shows the spatial response and the frequency response of
e, and gg. Using the FPSS, we can specify both

intervals in the spatial and frequency domains.
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Fig. 1. Spatial and frequency response of ey and g
with (n=25, n1=10, n2=14, ml=7, m2=17): (a) spatial
response of e ; (b) frequency response of € ; (C) spatial
response of g ; (d) frequency response of gg.

B. 2-D FPSS

The FPSS introduced above is of one-dimensional (1-D)
form. To process two-dimensional (2-D) images, we
extend it to the 2-D form. The FPSS of 2-D form is just
the combination of two 1-D FPSS’s in respectively the

horizontal (x) and vertical (y) directions of the Cartesian
coordinate system. The truncation and bandlimiting
operators of 2-D form are therefore the Kronecker
products [25] of those of 1-D form. Thus, the 2-D-form
of Equation (7) is

TBek =TX ®TVBX ®B‘,exk ®evk
) A ) 10
=9xk9ykexk ®eyk, 0<k<n ( )
where T and B are both nxn matrices, denoting
respectively the 2-D truncation operator and the
bandlimiting operator. T, and B, are respectively the

1-D truncation operator and bandlimiting operator in the
x direction, and T, and B, are respectively the 1-D

truncation operator and bandlimiting operator in the y
direction. e, are the eigenvectors (2-D FPSS) of TB.

e, and O are respectively the eigenvectors (1-D FPSS)
and eigenvalues of T, B, with parameters (xnl, xn2, xmll,
xm2),and ey and O are respectively the eigenvectors

(l-D' FPSS) and eigenvalues of T,B, with parameters

(ynl, yn2, yml, ym2). Given the parameters (xnl, xn2,
xml1, xm2) and (ynl, yn2, yml, ym?2), we can use two 1-D
FPSS’s ey and e, to obtain the 2-D FPSS e, . With

these parameters, the truncated region in the spatial
domain and that in the frequency domain are both
rectangular. The regions truncated to rectangular shapes
are of Cartesian separable form [7].

C. Color texture feaiures

Selection of texture features is important for color image
segmentation. Without good features, no miatter how
good the segmentation scheme is, the result will not be
satisfactory. FHence, many approaches have paid
emphasis on selecting or extracting promising features
for texture segmentation.

In this paper, the- FPSS is used to extract texture
features on the clothing. Using the FPSS, we can
characterize textures in both the spatial and frequency
domains. Hence, the local and global information of
textures can be obtained. That is, we can use the FPSS to
characterize the relationship among pixels within a
texture element (local information) and that among
texture elements (global information). Before extracting
texture features, we first transform the input.image from
the RGB space to the HSI space. Next, we apply the
circular hue histogram approach [27] to quantize the hue
image such. that both the number of colors and the
influence of shadows/highlights on the image can be
reduced. Fig. 2 shows two color model images, and Fig. 3
shows their quantized resulis.

The texture features will be obtained by convoluting
the FPSS with the quantized image. Let the truncated
region of a FPSS in the spatial domain be §, and that in
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Fig. 2. Two color model images.

(a) (b)
Fig. 3. Quantized resulis of images in Fig. 2: (a)
quantized to 7 colors; (b) quantized to 6 colors.

the frequency domain be . Assume that the areas of S
and  are A(S) and A(Q), respectively. If they satisfy
A(S)A(Q)= MN an

where M and N are the width and height of the image,
respectively. The first eigenvector e, of the FPSS is an

effective basis for the whole spatial and frequency
domains [6, 7]. Consequently, if we choose the
parameters of the FPSS such that the Equation (11) holds,
the texture features generated from the first eigenvector
of each FPSS will be promising for segmentation.

We can truncate the frequency domain to a set of

disjoint regions, which constitute a tessellation. Different

FPSS’s ‘can be generated when we use different
tessellations. In the spatial domain, the truncated region
is located in the center, and its size is the same as that of
the convolution window. In the frequency domain, the
Cartesian separable tessellation [7], as shown in Fig. 4, is
used.

Fig. 4. Tessellations used in the frequency domain:
Cartesian separable tessellation.

In the paper, the O-regions Cartesian separable
tessellation is used. Let the 9 regions of the tessellation
be denoted as  €24,0,,---,£25 . Given a quantized image I

and the set of eigenveciors eg(£2;) of FPSS’s, 0<i<8,
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we define the texture feature vector F(x,y) for each

point (X, y) in the image as follows:

- Fx y)=(folx y), A0 Y), -, falx, y))
with
fiGey) =[lx, y)*fpss;|, 0<i<8
and

(fpssi )ke = (eO (€ ))kxn-HZ (12)

where * is the convolution operator. These feature
vectors will be used in segmentation in the next section.

2.2 Color texture segmentation

The texture feature vectors F(x, y) are used as features
here for texture segmentation. The segmentation method
is a multi-dimensional hierarchical coarse-to-fine
approach. In the method, we first build a hierarchical
structure based on the feature vectors in a bottom-up
manner. Next, we segment the top level (the coarsest
resolution level) of the structure by a local centroid
clustering algorithm -[7]. Finally, using the coarse
segmentation results, we proceed downwards the
hierarchical structure to refine the boundaries-of texture
regions level by level until the bottom level (the finest
resolution level) is reached.

A. Building a hierarchical structure

The hierarchical structure that we build for segmentation
is the so-called quadtree [7]. Each feature vector F(x, y)
extracted from the FPSS is considered as a point in the
bottom level of the quadtree. Each level, except the
bottom level, of the quadtree is constructed from its
lower level. The value of each point in the {-th level is
computed from the values of four points in the (¢-1)-th
level in an averaging manner. Assume that the bottom

level is of 2" x 2" points. Let the value ofa point located
at (x, y) in the £-th level of the quairee be denoted as
q(x,y,2) . Then

1 1
a5y, 0=~ Y a@x+u 2y+v, £-1)
u=0v=0

(13)
0<x,y<2™*

Note that q(x, y,0)=F(x,y). The size of each level (i.e.,

the number of points in each level) is one-fourth of that
of its lower level. When a level of size 16x16 points is
obtained, we terminate the quadtree construction process.
That is, the top level is of size 16x16 points. The size of
the top level is obtained by experience. The noise is
reduced in the higher level after the averaging operation
is performed, but the boundaries of texiure regions are
blurred at the same time. Therefore, segmenting the top
level of the quadtree, we obtain a coarse segmentation
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result. Proceeding downwards the quadtree, we can refine
the segmentation results to locate the correct texture
boundaries.

B. Segmenting the top level of the sitruciure

The segmentation work starts from the top level of the
quadiree. The segmentation result of the top level will
have great influence on the entire segmentation process.
A misclassified point g(x, ¥) in the top level will result in
the misclassification of four points (which are used to
generate q(x, y) in quadtree construction) in its lower
level. Furthermore, when segmenting downwards, the
number of misclassified points grows four times when its
lower level is processed. Consequently, segmentation of
the top level is of importance. At the top level there are
two steps to be performed:

1. Local centroid clustering: segmenting the texture
image.

2. Insignificant regions removal: removing regions
whose number of points is small.

The local centroid clustering is an iterative process [7].
The feature set used here is the set of features q(x, y, L)
(L denotes the top level of the quadtree). For each point g
in the feature set, we compute the local center LC, from

its neighboring points p in a window W, of a specified
radius R as follows:

Sp
LC, =22

A

peWp

(14)

Bach point will be moved to a new local center or stay
unchanged if its location is the same as that of the local
center. Then a new iteration is performed again using the
new locations of all points. The process terminates when
all points stay unmoved. The points which occupy the
same location form a class. In the paper, weights are
added to Equation (14) for computing the local center as
follows:

D WepP

__ allp

2 Wep

allp

LC,

with

(15)

w, = !
AN
exp(d"%)

where d,, is the Euclidean distance from g to p. By

using Equation (15), we need not to specify the window
of g but use all the points in the feature space to compute
its local center. Its advantage is that no a priori
information on the number of classes or the class centers
is required. ' ‘

The purpose of this paper is to separate the clothing of
interest from backgrounds. We assume that the clothing
to be segmented occupies a significant percentage in the
image. There may be buttons, pockets or folds on the
clothing whose textures are different from the clothing
texture. They are usually classified into classes with small
areas in the top level. Consequently, we remove these
insignificant classes or regions and reassign them such
that the whole clothing region can be obtained.

The insignificant regions are removed. using the
following steps [23]. We first find all regions whose
number of points are small. Second, for each point
q(x,y,L) in these regions, determine its neighboring

classes C, (0<k<7) in its eight directions (see Fig. 5).
If the class of q(x+u,y+v,L), —1<u,v <1, is different
from that of q(x,y,L), then the
q(x+u,y+v,L) is stored as a neighboring class of q(x,

y, L). Otherwise, we consider the mnext point
q(x+2u,y+2v,L) in the same direction and compare

the classes of q(x,y,L) and q(x+2u,y+2v,L).If they
are different, the class of q(x+2u,y+2v,L) is stored as
a neighboring class of q(x,y,L). If they are the same,
we consider the next point g(x+3u,y+3v,L) in the

same direction. The process is repeated until a
neighboring class of q(x,y,L) is found. After we obtain

class of

eight neighboring classes for the point q(x,y,L), we
reassign q(x,y,L) to one of the neighboring classes
whose center has minimum Euclidean distance [24] to
q(x,y,L) . For example, in Fig. 5, the eight neighboring
classes of q are (Cy,C,e++,C)=(1,33,33,2,2,2). Then
we reassign q to class 1, assuming the distanice from the

center of class 1 to q is.less than those from class 2 and
class 3.

Class1 — Class 3

Insignificant

class

Class2 _ |

Fig. 5. Eight directions of the point q.

After removing insignificant regions, segmentation of
the top level is completed.
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C. Segmenting downwards from the top level of the
structure

The class boundaries obtained in the top level are blurred
or rough. Proceeding downwards the quadiree level by
level from the top, we can refine the boundaries. The
following steps are used to compute the texture
boundaries at the {-th level of the quadiree:

1. Initialize the set of boundary points, B({), in the /-
th level to empty set.
2. Apply the following rule to each point q(x, y,£) in

the (-th level for finer classification:

if the classes of q(% + u,% +v,£+1) are the same

for all intergers uand v, —1<u,v <1,
then assign q(x,y,f/) to the class of
q(x/2,y/12,4+1)
else B()=B(Hu(x,y).
3. For each point qe B(¢), assign it to one of the

classes of its corresponding 9 points in the (/+1)-th
level (see Fig. 6) whose center has minimum
distance to q.

The above steps dre repeated for each level until the
bottom level is reached.

By performing the refinement process level by level
from top to bottom, the boundaries will be located more
precisely. Finally, we obtain the class of each point on
the image. We then apply a simple region growing
algorithm [24] starting from the given seed point to
locate the whole clothing boundary. Fig. 7 shows the
segmentation results of the model images in Fig. 3.

aWw2y02) .. ¢ q2y12-1)

g(x/2-1,y/2-1) 3 i gOd2+1y/2-1)

q2-112) - ¢ - q(0/2+1,y/2)
7k ) (@+1)th level
(f2-Lyf2+1) ... 3
o/2-1y) i VAV ' gLy
GOR2Y2H) ,
Gy Ll /ﬁ ....................... o+l )
¢,’ ...... ) tthlevel
i) [Tl 2L
Z

Fig. 6. The corresponding 9 points in the (/+1)-th level
for the point g(x,y) in the /-th level.

2.3 Post-processing

The extracted clothing boundary obtained in the previous
stage is frequently jagged. Hence, posi-processing is
necessary to obtain a smooth clothing boundary. There
are two steps in post-processing, including the
morphological filtering [24] and the Gaussian smoothing
[26].
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(@) B
Fig. 7. Segmentation of images in Fig. 3 without post-
processing.

The morphological filtering process consists of the
opening and closing operations. The opening operation
can eliminate the protrusions, while the closing operation
can fill the gaps. We use the filter on the clothing region
to remove small protrusions and gaps on the clothing
boundary. The filtering results of images in Fig. 7 are
shown in Fig. 8.

(@ (b)
Fig. 8. Morphological filtering of images in Fig. 7.

After morphological filtering, the clothing boundary is
still a little jagged though the protrusions and gaps are
removed. We use the Gaussian smoothing algorithm on
the clothing boundary to smooth the boundary. The
Gaussian smoothing algorithm uses the Gaussian function
to convolute an input 1-D signal for smoothing the signal.
In the algorithm, the spread parameter (or the standard
deviation) of the Gaussian function is automatically
determined by an iterative process [26]. To apply the
algorithm, we represent the boundary as a sequence of
points with their (x, ¥) coordinates:;
(%0-¥0)s (X1, 31)s 5 (X1, ¥p—1), where n is the
number of boundary points. The x and y coordinates of
the points form two 1-D signals (x,, x;, -+, x,_;) and
(Y0 ¥1» ***» Y1 )» Tespectively. Then we apply the
automatic Gaussian smoothing algorithm on these two 1-
D signals to smooth the signals. Finally, The clothing
boundary can be polygonally approximated based on the

two smoothed 1-D signals [26]. The smoothing results of
images in Fig. 8 are shown in Fig. 9.

3 Experimental resulis

In the experiments, the truncated region in the spatial
domain is of size 11x11 points. Each of the 9 truncated
regions in the frequency domain is of size 23x23 points
and the whole frequency domain is of size 69x69 points.
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Fig. 9. Gussian smoothing of images in Fig. 8.

Some experimental results are shown in Fig. 10-13. Fig.
10 shows the segmentation results of two non-textured
clothing. The shadows and highlights on the clothing are
evident. Fig. 11 shows the segmentation results of two
textured clothing. In these images, shadows, highlights,
and folds are apparent on the clothing. Fig. 12 shows the
segmentation results of two textured clothing with larger
pattern prints. Fig. 13 shows the segmentation results of
two textured clothing with serious folds. It takes about
two minutes in total for each 256x256 image to separate
the clothing of interest from backgrounds.

To evaluate the experimental results quantitatively, an
error function is defined. Let P be the clothing region
whose boundary is found by the proposed method, and H
be that whose boundary is specified by hand. The error
function e(P, H) is defined as

A(POH)-A(PNH)
A(PUH)

e(P, H)=

where A(-) denotes the area. The value of the error
function for each segmentation result is given in Figs. 10-
13. The average value of the error function in Figs. 10-13
is about 3.41%.

From these figures, some defects can be found in the
segmentation results which still remain to be solved. First,
when the clothing to be segmented and the background
have similar hue atiributes, some points on the
background or on the clothing will be misclassified.
Second, when there are serious shadows or highlights on
the clothing, the points on which may also be
misclassified. Finally, if there is a hole which is
surrounded by the clothing region, it may be considered
as an insignificant region and be reassigned to the class
of the clothing. Figure 11(b) shows an example.

“(@)e(P, H)=1.33%  (b) e(P, H) = 3.18%
Fig. 10. Segmentation results of non-textured clothing.

(2) e(P, H)=2.26%  (b) e(P, H) = 3.83%
Fig. 11. Segmentation results of textured clothing.

(@) e(P, H)=3.06%  (b) e(P, H) = 1.43%
Fig. 12. Segmentation results of clothing with larger
pattern prints.

(a) e(P, Hy=11.28% (b) e(P, H)=0.92%
Fig. 13. Segmentation results of clothing with serious
folds.

4 Conclusion

In this paper, we have proposed a color texture
segmentation method for segmenting the clothing of
interest from backgrounds. The texture features extracted
based on FPSS is promising for segmentation. Texture
characteristics in both the spatial and frequency domains
can be captured adequately by FPSS. The hierarchical
coarse-to-fine segmentation process shows its ability on
noise reduction and boundary information preserving.
The proposed approach is tolerant to shadows, highlights,
folds and orientation variations on the textures and
satisfactory experimental results are achieved. ‘

Further research may be directed to the following
topics. First, use more color information rather than only
the hue attribute to improve the gquantization effect.
Second, find efficient algorithms for convolution
operation and for solving eigensystem problem (compute
the eigenvectors and eigenvalues of a matrix) to improve
the computing speed. Third, achieve better performance
by resolving the serious shadow/highlight problem.
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