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Abstract

The fractal concept has been widely applied to analyze
the image with different textural pattern. This is based on
that the value of fiactal dimension of an image with
homogenous lextural pattern should keep consistent.
However several studies show identical values of fractal
dimension of the images which are conceived as different
textural pattern by human vision. It was found that the
Jractal dimension could not distinguish the texture with or
without directional preference. With the question of the
necessity of assuming isotropy of fractal, we examine the
directional property.of fractal dimension as a function of
angle, F(@v), of the image with 3 different textures. The
results show a different pattern of F(@) with each image.
In addition, this pattern is independent to the image
orientation. This may suggest a new feature to represent
a textural pattern.

1. Imtroduction

The fractal concept' is a mathematical model to
characterize the geometry of nature, whose irregularity
and complexity are far beyond simulation by iraditional
geometry [7]. Basically the generation of a fractal set can
be considered as the path (P) of a particle exhibiting
fractional Brownian motion and which obeys a power law
function in terms of

P(A)eAF

where F is defined as a fractal dimension and A is a
scaling factor. The fractal dimension of an object can be
interpreted physically as the dimension with which the
object effectively fills the Euclidean space of dimension F,
therefore F is fractional and smaller than E.
Theoretically F is constant and independent of scale.

The Fractal conmcept has been applied in many
investigations involving image analysis and image
segmentation based om the consistency in a single
parameter, the fractal dimension of an image[l, 3, 9].

Several studies [4, 6, 8] have shown that the fractal
dimension of a natural object is a statistical constant
rather than a fixed value, that is, the variation of the
fractal dimension at different locations is confined to an
acceptable level. In addition, Keller (1989) derived the
fractal dimensions of 8 different texture types and found
that these fractal dimensions were similar even though
some of these textures showed a directional preference.
However, few studies discussed the directional property of
a fractal. This is due to the assumption that the
development of fractal is a random procedure, and a
random procedure is isotropic, therefore it is natural to
assume that fractal is an isotropic object, that is, the
fractal dimension is constant in any direction. Pentland
(1984) has pointed out that the assumption of isotropy is a
serious shoricoming of this technique of estimation of
fractal dimensions, and, when the assumption is not valid,
the estimates may not be truly representative of the
textural pattern. This prediction has been verified in the
study of Peleg et al (1984) where they found a different
fractal signature at different directions in an image with
directional preference.  These findings highlight the
limitation of the application of this single parameter to
classify the natural textural pattern, since its distribution
may be nonhomogenous and exhibits orientation
preference,

In this pilot study, we firsily aim to examine the
directional property of fracial behavior of the texture with
directional preference.  If the fractal behavior is
anisotropic, then a metric should be developed to takes
into account the directional properiies of the image
features.

2. Algorithm

Imaging techniques with fractal models have been applied
to characterize 3-dimensional natural surfaces. This is
based on the assumption that if a 3-D surface is of a
spatially isotropic fractional Brownian shape, then its
fractal dimension can be derived from the intensity
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surface of the image [10]. Because we atiempt to inspect
the isotropy of the fracial property beyond the single
global fractal dimension, fractal dimension is derived in
frequency domain. 11is is based on two properties of the
2-dimensional Fourier transform, which are linearity and
rotation [2]. Linearity suggests that the Fourier spectrum
(FS) of an image is the sum of the FS’s of the individual
image components. Rotation implies that the components
on the FS at a particular angle o is contributed by the
intensity changes in the orthogonal direction (—a +90°)
on the image.

The power-law relation mentioned in previous section can
be defined in terms of the rate at which the Fourier power
spectrum of an image falls off with increasing spatial
frequency [9]

|4 ~ 2 M
therefore
2logld|~ - (2H +1)log f @

where |4| is the amplitude of the Fourier spectrum (FS),
f'is spatial frequency and H is Hurst coefficient related to

the slope of the logarithm relation between |4|and f[7]. .

The fractal dimension) of a fractional Brownian surface is
a function of H as follows:

F=3-H (3)

Based on the definition above, the fractal dimension of
the image can be obtained from the slope determined by
linear regression analysis on the log-log plot of the
amplitudes |4 | as a function of frequency, /.

Therefore the two properties of the Fourier spectrum
enable inspection of the fractal behavior along different
directions on the image by determining the fractal
dimensions of the radial components at various angle (@)
in the FS as follows:

A 128x 128 mask was placed randomly on the 512x 512
image to select 9 locations for Fast Fourier transformation.
The corresponding Fourier spectrum (FS) of each mask
was obtained by equation (4):

|4 =[P (7 0] RS o )]

where R(ff¢) and I(f,¢) are the real and imaginary
components of F(f, ¢, respectively.

A single regression line was fitted to the spectrum data at
a specific angle « and the fractal dimension was derived
from the slope of the line (using equation (2) to (3) and
denoted as Fy « ), i indicating the sequence of the
selected mask and equal to 1,2....,9. Because of the
symmetry of the power spectrum, Fi( ¢ ) was only
calculated from 0° to 180" every 2 degrees. The mean
value of 9 F{ « ). denoted as F(Ql) was calculated
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according to equation (5) and used to plot fracial
dimension as a function of o.

9
F(a)=%ZFj(a) )
i=1

3. Results of Test Images

The procedure to obtain the F(¢) described in section 2
was initially applied to three images with different
textural patterns: (1) grass pattern in Fig. 1 shows no
special directional preference, (2) the texture of brick wall
in Fig. 2 is well organized in orthogonal directions, and
(3) elastin network in Fig. 3 shows a mesh-like texture.

The fractal function, F(@), of these images have very
different pattern. The F(¢) of grass, a random fractal,
tends to be a horizontal line with minimal discrete
fluctuation (Fig. 4), For brick image it shows a periodic
pattern with two main peaks, while for elastin network
only one peak presents. This result indicates that the
fractal dimension of a texiure with directional preference
is anisotropic.

i

Figl Grass image with a random texture pattern.




Fig2 A brick structure with a preferentially
orthogonal organization,

Fig3  The pattern of elastin network shows a high
directional preference. :

The patiern of F(q) was also examined in different
locations in the images. The resulis (Fig 7) show. a
consistent pattern of F(q) at different locations, even

though the fractal dimension scatters at different locations.

The periodic patterns of F(q) of textures is generally
independent to the orientation of the image. The F(a) of
brick corresponding to the image rotating 40° and 120°
still consists of 2 dominant peaks with phase shift about
40° and 120° ( Fig. 5). However a small degree of
smearing of the curve of F(¢) occurs in Fig 5 (middle)
and Fig 5 (bottom). This may be induced by the
quantization error of rotation of the vertical and
horizontal line segments in brick image. The phase-shifi
of F{e) associated with the rotation of the image is more
obvious in elastin texture (Fig. 6). The curve patiern of
F(a) is more consistent in these images in comparison
with Fig 5.
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Fig4  The fractal function F(q) of grass image shows
minimal directional preference with no major
fluctuations. The abscissa denotes an angle with
an arc of 180 degrees. Each point represents
the mean of Fi( ¢ ) form 9 masks(=F( & )) with
the bar showing stardard deviation, . This
applies to Fig 5 and Fig 6.
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Fig5 Top, the fractal function F{e) of the brick
image shown in Fig 2. A first order
represeniation by a sinusoidal wave show two



Proceedings of International Conference on Image
Processing and Character Recognition

major peaks corresponding to the major
orthogonal directions in the brick pattern.
Middle, the fractal function F(@) corresponds
to the image rotates 40° and bottom, 120°
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Fig6 Top, the fractal function F(Q) of the patiern of
the elastin network shown in Fig 3. This shows
a single peak corresponding to the major
preferential direction of the elastin lamellae.
Middle, the fractal function F(Q) corresponds
{0 the image roiates 40° and bottom, 90°
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4. Discussion and Conclusion

The application of fractal feature to analyze the textural
pattern is commonly based on the consistency of fractal
dimension. Several investigations have proposed the
limitation of using a single fractal dimension as an
indicator of different textural pattern [Pentland 1984;
Peleg et al 1984; Keller 1989, CHAN ef al, 1995].
However little attention has been paid to the directional
property of fractal behavior.

The fractal function, F(¢y) composed of a series of fractal
dimensions, is developed in this present investigation to
examine the fractal behavior of a natural texture m’i}iin
an arc of 180 degrees, It tends to be essentially invariant
for a highly disorganized texture such as an image of
grass, but a curve with sinusoidal fluctuations for texture
organized in some directions such as images of brick and
elastin network. The oscillatory pattern suggests that
significant differences in fracial dimensions exist along
different directions. The F(q) of brick shows a biphasic
pattern over 180 degrees where the peaks are separated by
intervals of approximately 90 degrees, corresponding to
the repetition of thé orthogonal directions of the brick
structure. It would be expected that the major peaks
should occur at intervals of exacily 90 degrees. For the
images of elastin network, the F(¢) shows essentially a
monophasic patern with marked differences in
magnitude of fractal dimension over an arc of 180 degrees.
The rtesults indicate that the fractal behavior of natural.
texture is not necessary to be isotropic. In addition, the
consistency of the F(¢) patiern after the rotation of the
image may suggest another feature to recognize the
texture patiern.

It may be noticeable that the phase-shifi of F() due o
the rotation of image with angle ¢ is identical to the
phase-shift of the Fourier spectrum. One may infer this to
the derivation of F(¢y) from Fourier spectrum. However,
the physical information of /(@) is not the same as that of
Fourier specirum since the F(Q) is the result of
logarithmic transformation of Fourier spectrum. The
relation between them in the aspect of mathematics is out
of the scope in this paper but it may be worth further
analysis. ‘

This new fractal feature is successfully applied to
characterize the aging process of the elastin texture in the
aortic wall. {11]
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The fractal function F(¢y) of the brick image from 4 different locations.

The consistent pattern of the curves shows that the F{q) is independent of

location on the image.
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