hERE/ T N\FEEEEEER

Skins as a Mechanism for Making Languages Syntactically Extensible

Yuen-Chang Sun

Chin-Laung Lei

Department of Electrical Engineering

National Taiwan University

E-Mail: sun@fractal.ee.ntu.edu.tw, lei@cc.ee.ntu.edu.tw

Abstract

This paper introduces the skin mechanism for extending
programming language syntax. A skin associates an
encapsulated collection of syntax rules to semantic
handlers. These syntax rules are declared all at once and
used exclusively so syntax conflicts and ambiguities can be
avoided. The semantic handlers can thus be reused freely.
Metaobject protocol is used as the semantic handling
facility. It has access to meta-level information about the
user program so advanced program transformations can
be done. Extended examples are given, and a summary
shows the methodology for designing and implementing a
skin mechanism.

Keywords: metaobject protocol, open implementation,
programming language, skin, syntactic extensibility

1 Imtroduction

Because the computing environment keeps evolving, and
new application domains keeps emerging, user demands for
programming language features are always changing.
Although any general-purpose language is capable of any
computation, with a language that has high-level features
tailored specifically for an application domain, the user can
write more readable and maintainable programs, and the

compiler can have a better chance to generate efficient code.

Thus it is desirable to make a language extensible in both
syntax and semantics to express new notions and new ways
of computation.

Open implementation [12] is a promising approach to
language extensibility. In an open implementation, part of
the meta-level information about the user program, which
is traditionally hidden from the user, is exposed to the base-
level program in the form of a collection of metaobjects.
This meta-level architecture provides the base-level
program with access to the implementation strategies of the
interpreter or compiler. The user can change the behavior
of the interpreter or compiler, thus altering the behavior of
certain language constructs, by inspecting and manipulating
the metaobjects. The organization of the metaobjects and
the rules by which they are accessed are called the
metaobject protocol (MOP [13]).

Various forms of MOPs have been implemented on
several production or research languages, and have been
applied on fields such as parallel or distributed
environments and real-time systems. These applications
show that MOPs are indeed an effective way to decrease
the complexity and cost in system development. However,
existing MOPs are deficient in syntactic extensibility. They
either stress solely in semantic extensibility, or provide
only a primitive or restricted way for extending syntax.
The user is forced to work at a lower level and to use
unnatural notations, reducing the benefits obtained from
language extensibility.

Programming language syntax is a developed and
well-understood area in computer science research. There
are formal methods for describing the syntax of a
programming language, and there are solid algorithms for
parsing programs. Yet, surprisingly, it is a difficult
problem to equip a language with syntax extension
facilities. Research on this subject can be traced back to
early 1960’s, but today no major languages, whether used
in the industry or in labs, provide satisfactory mechanisms
for introducing new operators, new statement forms, new
declaration constructs, and so on. We argue that this
situation is due to the following two principles upon which
traditional syntax extension mechanisms are based. First,
syntax descriptions are tightly coupled with (their
corresponding semantics descriptions. It is not uncommon
to encounter constructs that have the same functionality but
have distinct appearances in different application domains,
and the coupling of syntax and semantics makes it difficult
to reuse such a functionality. Second, syntax descriptions
are declared incrementally and can spread all over a
program. The overall syntax at a given point in a program
is the accumulation of all the syntax fragments declared
prior to that point. This makes it difficult to avoid syntactic
conflicts between constructs, detect and fix syntactic
ambiguities, and perform efficient parsing. Together these
two factors jeopardize the reusability and modularity of
syntactic extensions, and the reliability and efficiency of
the extension facilities.

In this paper we propose the skin mechanism for
achieving syntactic extensibility. A skin is a language
construct that encapsulate the syntax rules of all the
variants in a syntax class. Our skin mechanism is built
upon a MOP. Only syntax rules are defined in a skin; their
corresponding semantic handlers are specified in the skin
as references to metaobjects in the underlying MOP. Since
metaobjects are implemented as ordinary objects, they can
be organized in a highly modular way. One metaobject can
be assigned to different syntax rules in multiple skins,
enabling reusability and reducing the possibility of syntax
conflicts. A skin must be declared as a whole at one spot,
and must be used atomically and exclusively, so it can be
processed monolithically by the compiler, making it easier
to avoid or detect ambiguities and to construct efficient
parsing facilities. Overall, our skin mechanism makes it
easier and more effective to introduce new notations and
new functionality into a language so that specific needs of
an application domain can be satisfied.

In the rest of this paper, we summarize the previous
efforts in syntactic extensibility in Section 2. In Section 3,
we present the design principles and rationales of skin
mechanisms. Then in Section 4 we exemplify our ideas
with several skin mechanisms for various languages.
Finally we conclude in Section 3. '

2 Syntactic Extensibility Works

A-179

The most popular mechanism for doing syntactic extension
is macros. Simple macro systems such as the C
preprocessor allow the expansion of code fragments with a
trivial pattern such as identifiers or parameterized
identifiers. They operate on characters or tokens.
Advanced macro systems operate on abstract syntax trees
and have detailed knowledge about the syntactic structure
of the expanded code fragment. They can recognize code
patterns and do program transformations that are more
sophisticated than simple macros can. Such systems are
called syntactic macros. Even more advanced macro
systems such as [14] have access to the static semantic
information about the user program and are called semantic
macros. Most early extensible languages are based on
macros. Summaries on them can be found in [5, 15, 16].
More recent work include [6, 17].

The design of macro systems follows the syntax-
semantics coupling and the accumulative definition
principles, and thus suffer from the above-mentioned
problems. It is pointed out [8] that it is impossible to avoid
syntactic conflicts in practical use of such systems,
especially when extensions for infix notations are allowed.
Many syntactic macro systems have to use general context-
free parsing algorithms, which can have time complexity
quadratic to program size. Moreover, macro systems can
only handle local code transformations, making a great deal
of interesting extensions impossible.

Another approach to syntactic extensibility is
compiler generator. Such type of systems can generate a
whole compiler from the language specification given by
the user. The language specification contains the
description for both syntax and semantics of the target
language and is written in formal notations such as attribute
grammars. It is shown [1] that such specifications can be
arranged in a modular fashion and can be composed easily.
A new language feature can be implemented in the form of
a language module and plug into the language specification
to generate a new compiler. One problem with such
systems is their inefficiency. It is not unusual to see a
generated compiler run one or even two orders of
magnitude slower than a hand-crafted one. In addition,
writing or modifying a language specification or language
module, though easier than crafting a compiler from scraich,
are still challenging to language users.

The basic idea of metaobject protocols [13] and open
implementations [12] is to expose part of the
implementation details of a language to the user. These
implementation details are represented in the form of
objects that exist and operate at the metalevel. These
metaobjects each corresponds to a language construct such
as a class, a method, an expression, or a statement, or a
component of the compiler such as the scanner, the parser,
or the code generator. A program being compiled can
obtain the information about itself or alter the behavior of
certain language constructs by inspecting the status of the
metaobjects or by sending messages to them. The
functionality of a construct can be extended or overridden
by constructing .2 new metaobject that inherits the
metaobject corresponding to that construct. Since the
metaobjects represent the logical structure rather than the
syntactic structure of the user program, metaobject
protocols are capable of non-local code transformations.
For example, the user may declare a PersistentClass
metaobject inheriting the Class metaobject that represents
ordinary classes. This new metaobject can be arranged so
that where Class generates the code for accessing ordinary

A-180

data members, PersistentClass generates additional code
that fetches the required data from secondary storage before
accessing them. Such transformations can be performed for
each access to every data member of the objects with
PersistentClass as their metaclass. This is beyond the
capability of macros.
Metaobject protocols can be implemented on both
interpreted languages and compiled languages. This paper
is focused on the latter. The primary goal of most such
systems is to extend semantics, but some of them also
address the problem of syntactic extensibility, among
which are OpenC++ ([2, 3, 4]) and MPC++ ([9, 10]). In
OpenC++, the user can register new keywords that can
appear only in certain places, including the modifiers of
type names, class names, and the “new” operator. For
example, in order to make the instances of a class persistent,
the user may declare that class as
metaclass Node: PersistentClass;
class Node {...};

Instead, the user may write
persistent class Node {...};

which is more natural and descriptive than the former
declaration. To achieve this, the metaobject must register
the “persistent” keyword to the parser when it is initialized.

The syntactic extensibility provided by OpenC++ is
quite limited. MPC++, on the other hand, is much more
ambitious in this respect. In MPC++, the user can
introduce new forms of language constructs, including new
modifiers and specifiers, new structures, new operators,
new statements, and new storage classes. Also the
decoupling of syntax and semantics is supported to some
extent. The MPC++ syntactic extension mechanism,
however, has deficiencies. First, only a few fixed patterns
can be used in syntactic extensions. Operators are limited
to unary, binary, and ternary, and the syntax of new
statements must be chosen from six predefined patterns.
Second, syntax rules are still declared accumulatively,
allowing the possibility of syntax conflicts and ambiguities,
especially when the size of extension libraries and the
number of incorporated libraries get large.

3 Skins

A skin is an encapsulated collection of syntax rules plus the
references to their corresponding semantic handlers, which
are metaobjects in the underlying MOP. One skin defines a
“mini-grammar” for exactly one syntax class. A syntax
class is a sort of language constructs. The variations in a
syntax class are called its variants. For example, all kinds
of C++ statements form a syntax class, and the for
statement, the while statement, the assignment statement,
and so on, each is a variant of the statement syntax class. A
skin is composed of a number of skin elements. Bach of the
skin elements represents a variant in the syntax class
corresponding to that skin. There may be multiple skins
defined for one syntax class. The collection of such skins
is called a skin rype.

When implementing a skin mechanism for a language,
the language designer must first decide which syntax
classes are to be made open to the user. When a syntax
class is made open, a skin type is associated to it, and the
user can then define one or more skins to specify the syntax
of the variants in that syntax class. Not every syntax
element needs to be made open. For example, the langnage
designer may decide to open only the operators and make

the statement forms and declaration forms left closed. A
syntax class may be associated to at most one skin type.
The skin type decides the syntax of the skin declarations
themselves.

Each skin is assigned a skin name. When multiple
skins of the same skin type are defined, the skin name can
be used to identify which skin is to be used. Though more
than one skin of the same type can coexist in a user
program, one and only one of them can be active at any
point of the program. A special skin switching directive is
used to change the active skin. If no skin switching
directive is found prior to a point in the program, a default
skin that specifies the original syntax rules of the language
is used.

A skin element has two parts. The semantics part
specifies which semantic handlers are used to handle the
compilation of the variant. The syntax part specifies the
syntax rule of the corresponding variant.

To make the above notions concrete, we consider a
simple example. Extended examples can be found in the
next section. The following skin mimics the keyword
mechanism of OpenC-++ shown in the previous section:

class_skin test {
persistent: PersistentClass;
counted: CountedClass;
}:
A reserved word “class_skin” is used to mark the beginning
of a skin for class modifiers. This skin is named “test” and
has two skin elements. They each registers a keyword and
specifies the name of the metaclass that is responsible for
handling the class declared with the keyword. The usage is
shown below:
use_class_skin test;
// uses the test skin
persistent class Node {...};
// declares a persistent class
use_class_skin;
// uses the default skin
counted class Point {...};
// THIS WILL CAUSE AN ERROR!
Here the reserved word “use_class_skin” is the skin
switching directive. If it is followed by a skin name, the
currently active skin is deactivated and the specified skin is
activated. Otherwise the default skin is activated. Note
that a skin switching directive is a compile-time directive,
$o the scope of a skin is statically determined.

Skins can be used to add, override, or remove

variants to or from a syntax class. It can completely change

the look and functionality of the constructs in a syntax class.

This change is done locally, that is, restricted to a
distinguished portion of a program. This makes it easier to
implement embedded and domain-specific features in a
language. In contrast, traditional language extension
facilities do not allow the alteration or deletion of built-in
features, increasing the possibility of syntax conflicts
between user-defined features and built-in ones, and also
giving the user a chance to misuse a feature in a wrong
context. Furthermore, with a skin mechanism the user is
allowed to pick all and only the needed extensions from
extension libraries. These extensions are then assigned
syntax rules most customized to the application domain,
increasing program readability and maintainability. For
example, the user may define the test skin as

class_skin testA {
persistent: PersistentClass;
Y

if counted classes are not needed, or

A-181

class_skin testB {
preserved: PersistentClass;
enumerated: CountedClass;
}
if the terms “preserved” and “enumerated” are preferred in
the application domain, or
class_skin testC ({
persistent: PersistentClassEx;
counted : CountedClassEx;
}
if enhanced functionality is needed. Moreover, these skins
can coexist in a program and be used as appropriate. Since
skin activations are exclusive, and since the user has full
control in the design of the overall syntax, syntactic
conflicts and ambiguities can be avoided.

As can be seen in the above, the semantics part of a
skin element is simply the name of the metaobject that acts
as the semantic handler. In some cases more than one
metaobject can be lisied. On the other hand, the exact form
of the syntax part is determined by the language designer
and can vary from one skin type to another and from one
language to another. We deliberately leave this part of skin
design open. It is tempting to use a general scheme such as
BNF to describe the syntax, but we must reject this line of
thought for the following reasons. First, different syntax
classes may have different syntactic structures and thus
may need different ways to describe the syntax. For
example, for a class modifier a single keyword is enough,
while for a statement a sequence of keywords, parameters,
and code blocks must be given. A general scheme cannot
make prominent the syntactic nature of a syntax class.
Second, it is important to maintain the consistency of
appearances between the variants in a syntax class. A
statement should look like a statement, not an expression,
and vice versa. With a general scheme the user will loose
control over this consistency. Third, even with the same
kind of language constructs, different languages may need
grammars of different computation power, making it
necessary to alter the form of syntax description. For
example, while the syntax of Pascal expressions is pure
context-free, type information is needed to parse a C
expression, or ambiguity will be encountered.

A skin mechanism can be implemented on virtually
any language, as long as a metaobject protocol for that
language exists. This MOP must have access to the
backstage implementation details of every constructs of the
base language, and must have full control over the
compilation process. The MOPs of OpenC++ and MPC++
serve this purpose well. The MOP can be implemented in a
language other than the base language, for example a C++
MOP can be implemented in Scheme. A same-language
solution will, of course, be more convenient to the user.

Skins are written as part of a program and must be
processed when the program is compiled. The compiler
must be modified to handle this properly. For recursive
descent parsers, a skin for a certain syntax class can be
compiled into a parser routine. Each time a non-terminal
corresponding to that syntax class is to be processed, an
appropriate parser routine is called. Skin switching is done
by changing the currently active parser routine. For table-
driven parsers, a skin can be compiled into a sub-parse
table that is substituted into the main parse table as
appropriate. Mixed approaches can also be taken.

One problem with the skin mechanism described here
is that whenever a variant is to be introduced, the whole
declaration of the original skin must be repeated. This

problem can be solved by a skin inheritance mechanism. A
skin can be declared as a sub-skin of another skin,
inheriting all the elements of the super-skin. Multiple
inheritance can also be allowed. For example, with the
following declarations:

class_skin skinl {persistent:

PersistentClass;}

class_skin skin2 {counted:

CountedClass;}

class_skin skin3: skinl, skin2 {

guarded: GuardedClass;

}
skin3 has three elements corresponding to PersistentClass,
CountedClass and GuardedClass, respectively. Note that
extending a skin or merging several skins may not be a
trivial task. The language designer may have to deal with
such tasks in a case-by-case basis. For example, operators
have precedence and associativity, thus special care must
be taken when an operator skin is to be inherited. The next
section discusses this in detail.

Another problem with our skin mechanism is that the

user may have to create a metaobject for just a simple

extension such as a new operator for doing matrix inversion.

Our solution is to allow run-time semantic handlers. A
skin element can specify a base-level routine or object to
work as the semantic handler. In contrast to metaobject
semantic handlers, which work at compile time and at the
meta-level, a run-time semantic handler work at run time
and at the base-level. Because of this, a run-time semantic
handler has no access to meta-level information and has no
power beyond that the other base-level facilities have.
Such restrictions are not a problem for extensions like the
matrix inversion operator, of course.

4 Examples

This section gives two extended examples to illustrate the
usage and power of skins. The first example is a statement
skin for C, and the second example is an operator skin for
Pascal. We apply our ideas to different syntax classes and
different languages to show their wide applicability. The
underlying MOPs are presented in C++ notations.

4.1. A Statement Skin for C

When designing a skin mechanism for a syntax class of a
langunage, the first step is to figure out the general syntactic
styles of the variants in that syntax class. These syntactic
styles should reflect the essence of the base-language
syntax so that the extensions will have the same “look and
feel” of the base-language constructs. The grammar of the
C statements [11] is shown in Figure 1.

In Figure 1 the syntax rules are grouped according to
their functionality. Since we are finding syntactic styles,
they are re-grouped into four categories: 1) special
statements, including expression-statement, compound-
statement, and labeled statements with an identifier as the
label; 2) the other labeled statements; 3) trivial statements,
those having zero or one simple parameter, including jump-
statement; 4) non-trivial statements, including selection-
statement and iteration-statement. We decide to leave the
special statements as a special case for the parser because
of their special forms. Observation shows that the non-
trivial statements have a syntactic paitern that is a sequence
of clauses that are of the form

keyword (...) statement
where either (...) or statement may be omitted. Thus the

A-182

desired syntax for the syntax descriptors in the skin
elements of a statement skin can be yielded, as shown in
Figure 2.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
Jjump-statement
labeled-statement:
identifier : statement
case constant-expression : statement
default : statement
expression-statement:
lexpression] ;
compound-statement:
{ declaration” statement™ }
selection-statement:
if (expression) statement [else statement]
switch (expression) statement
iteration-statement:
while (expression) statement
do statement while (expression) ;
for ([expression] ; [expression] ;
[expression] } statement
Jump-statement:
goto identifier ;
continue ;
break ;
return [expression] ;

Figure 1: Statement Syntax of the C Language

syntax-descriptor:

labeled-stmt

trivial-stmt

non-trivial-stmt
labeled-stmt:

keyword [#] : @
trivial-stint:

keyword [$] ;

keyword # ;

keyword [#] ;
non-trivial-stmt:

statement-clause optional-clause” [;]
stmt-clause:

keyword parameter-clause @

keyword parameter-clause

keyword @
optional-stmi-clause:

stint-clause

L stmt-clause™]

1L stmt-clause 1 *

[stmt-clause] +
parameter-clause:

(#;:#; ...; %)

(L#1; [¥1: ...; [#])

Figure 2: The Syntax of the Statement Syntax Descriptor

In order to distinguish the option symbols [] in the
syntax and the ones in the syniax descriptor, we mark the
latter with underlines as [1. This way the skin for the
base-language statemenis can be given in Figure 3. Here []
means optional, # means expression, @ means statement, $
means identifier, and * and + (not used in the built-in case)
means repetition for at least zero or one time, respectively.
Note how the whole family of C statements (except the
special ones) can be described in a concise way.

extended or merged with another skin.

The repetition operators * and + in Figure 2 is used
to implement statements that have a repeating part. For
example, a C++ try statement can be introduced as:

statement_skin exception: c_built_in {
TryStmt: (try @ [catch (#) @1+);
}

statement_skin c_built_in {
CaselabelStmt: (case # : @);
DefaultLabelStmt: (default : @);
GotoStmt: { goto $);
ContinueStmt: (continue ;):
BreakStmt: (break ;):
ReturnStmt: (return {#]):
TfStmt: (if (#) @ [else @]);
SwitchStmt: (switch (#) @);
WhileStmt: (while (#) @ };
DoStmt: (do @ while (#));
ForsStmt: (for ([#);[#);(#]) @);

}

Figure 3: The C Statement Skin Declaration

To make efficient parsing possible, we must put some
constraints on the skin. In this case the rules are simple.
First, no two elements can have identical leading keyword,
nor can any keyword coincide any other C keyword such as
int. Second, if a semicolon ends a syntax descriptor, the
last stmt-clause must be ended by a parameter-clause. The
former rule is used to distinguish statements at the first
place, making the syntax top-down parsable. The latter
rule is used to guarantee that a statement ends with a single
semicolon, as every C statement does. Note that although
the whole syntax is context-free, each single syntax
descriptor itself is regular if we ftreat expressions,
identifiers, and embedded statements as terminals. Thus a
finite state machine can be built for each skin element, and
the parse routine for statements can be generated as in
Figure 4. Note how the metaobject is generated and
invoked to compile a statement. In addition to the
Compile method, a statement metaobject must have
another method CheckSyntaxDescriptor. It is a
class method. When compiling a skin element, its syntax
descriptor is properly encoded and passed to this method to
check if the syntax descriptor provides exactly the
parameters the semantics handler expects. This way the
compiler can make sure, for example, the descriptor (do e}
after @) will not be associated to T£Stmt.

The Compile method of a semantics handler performs
transformation on abstract syntax trees. For the built-in
statemerits, no transformation is needed, and the original
AST is returned. For user-defined statements, new ASTs
may be created and returned. For example, with the
following skin:

statement_skin extended: c_built_in {

ForeverStmt: (forever @ };

}
the ForeverStmt::Compile method works by
constructing an AstWhileStmt metaobject which
represents the AST for a while statement, passing the
constructor with the ASTs for a true value and the given
statement, and returning the constructed metaobject.

Skin inheritance is simple with the statement case.
The compiler only has to make sure that no two syniax
descriptors start with identical keyword after the skin is

A-183

Ast ParseStatement (Environment E)
{
if (matching a leading keyword of statements?) {
find the corresponding finite state machine;
parse accordingly, getting all the arguments;
pack the arguments into an abstract syntax tree A;
generate the corresponding metaobject M;
return M.Compile(a, E};
} else if (matchinga'{'?) {
parse and return a compound statement;
} else if (matching anidentifieranda':'7?) {
parse and return a labeled statement;
} else { .
attempt to parse and return an expression statement;
report error if the attempt failed;

Figure 4: The Parse Routine for Statements

4.2. An Operator Skin for Pascal

The grammar for the Pascal operators [7] is shown in
Figure 5. Unlike C, postfix things like field designator,
index designator and pointer dereference are not treated as
operators. It may be a good idea to make them operators,
but for simplicity it is not done here. This can save as the
trouble of dealing with identifier operands (as in the case of
field designator) and deciding the priority between prefix
operators and postfix ones (what does *p-++ mean in C7).
We do, however, add a new type of operators, enclosing
operators, to the Pascal operator family, making things that
have both opening and closing symbols, like the set
constructor, real operators. Thus we have three groups of
operators, namely enclosing operators, prefix operators,
and binary operators.

Each operator has three attributes, namely the symbol
or symbols it uses, its precedence, and its associativity.
Apparently, enclosing operators should take the highest

-precedence, prefix operators the next highest, and binary

operators below them. Binary operators themselves may
have different precedence levels. Associativity is not an
issue for enclosing operators. Prefix operators always
associate from right to left. Binary operators may have left-
to-right or right-to-left associativity, but operators with the
same precedence must have the same associativity. The
analysis above leads to the grammar shown in Figure 6.
Note that this grammar is for the whole body part of an
operator skin, not for a single skin element only. This is
because we have to group the skin elements according to
their precedence. The declaration of the skin for the
original Pascal operators is given in Figure 7.

There are three forms of enclosing operators. The
syntax descriptor of an enclosing operator may have two
strings. In this case the first string denotes the opening
symbol of the operator, the second string denotes the
closing symbol, and there must be exactly ome operand

_ between them. Ifa third string is given, it is treated as the

delimiter of the operands, and there may be zero or more
operands. The fourth string, if any, is used to separate pairs

of operands. If it is preceded by a + sign, pairing is
enforced, otherwise singletons may appear, as in the set
constructor case. As an example, the skin in Figure 8
declares an operator that constructs association lists.

expression:

simple-expression [relational-operator

simple-expression }

simple-expression:

term [adding-operator term |*
term:

Jactor [multiplying-operator factor 1"
Jactor:

constant

var

(expression)

prefix-operator factor

identifier (expression [, expression]")

"L [set-member [, set-member1"]1
var:

identifier

var . identifier

var [expression [, expression]”]

var ~
member:

expression [. . expression]
relational-operator: one of

= <> < > <= >= 1in
adding-operator: one of

+ - oxr
multiplying-operator: one of

* / div mod and

prefix-operator: one of
+ - not

Figure 5: Operator Syntax for the Pascal Language

is empty in Skin3 so no new operator is introduced. On
the other hand, Groupa in Skin3 is placed the last so it
will take the lowest precedence. It introduces a new
operator so now GroupA has two operators. Between
GroupB and Groupa a new group containing an operator
is introduced. In summary, the precedence relationship
between the four operators is Op2 > Op3 > Opl = Op4.
Generally speaking, when operator skins are inherited,
groups with the same identifier are merged, and the
precedence relationship must be clear. If there is any
ambiguity, an error will be issued.

opskin PascalOriginal;
begin
enclosing
SetConstructOp: ‘[', ']*, *,', '..';
prefix
PositiveOp: '+';
NegativeOp: '-';
NotOp: 'mnot‘;
ltor (MultiplyiHgpt constructor
RealMulOp, IntMulOp: -'*';

RealDivOp: '/'; IntDivOp: ‘div';
ModOp: 'mod’; : land';
ltor (Adding) / ﬁéﬁdcpe%gna?or

RealAddop, I#timdangesignator
RealSubOp, InGRihes defeferenc@rOp: 'or';

ltor (Relational)
EQOp: '='; NegOp: '<>';
LTOp: '<'; GTOp: ‘'>';
LEQOp: '<='; GEgOp: '>='; 1InOp: 'in’;
end;

Figure 7. The Pascal Operator Skin Declaration

skin-body:
{enclosing-section] [prefix-section)
[binary-section]”
enclosing-section:
enclosing [enclosing-element]*
prefix-section:
prefix [ordinary-element]
binary-section:
ltox (identifier) [ordinary-element]”
rtol (identifier) [ordinary-element]”
enclosing-element:
handler-list : string , string [, string
[, [+]string ¥1 ;
ordinary-element:
handler-list : string ;
handler-list:
identifier [, identifier]*

Figure 6: The Syntax of the Body Part of Operator Skins

opskin AssocList;
begin
enclosing
AssocListOp: '[*', ‘*]', *',», +¢:;
end;

Figure 8: A Skin Declaring an Association List
Constructor

The position designator in a binary section is used (o
determine the precedence levels of the operator groups
when skin inheritance takes place. This can be best
explained by an example. In Figure 9, Skin3 inherits
Skinl and Skin2 and contains three operator groups.
The first group has the same identifier as the one in Skin2,
50 GroupB will take the highest precedence in Skin3. It

opskin Skinl;
begin
ltor (GroupAa)
Oopl: ...;
end;

opskin Skin2;
begin
rtol (GroupB)
op2: ...;
end;

opskin Skin3(Skinl, Skin2);
begin
rtol (GroupB)
1toxr (GroupC)
Oop3: ...;
ltor (GroupAa)
opd: ...;
end;

Figure 9: Uses of the Position Designator

Like a C statement skin, a Pascal operator skin can be
compiled into a parsing routine provided an appropriate
MOP has been established. Alternatively, a LL(1)
grammar can be generated out of a skin declaration.
Furthermore, rules must be given so that syntactic conflicts
will not occur between operators. These details are not

A-184

discussed here. Another issue is run-time semantic
handling. It is more convenient to define an operator at the
base level instead of the meta level. This can be done by
allowing ordinary functions to act as semantic handlers.
Since Pascal operators are free of side-effects, such
functions may not have variable parameters. When the
number of operands is indefinite, as in the association list
case, the operands are passed in data structures, which are
provided by the MOP and must be properly memory-
managed.

Note that an operator skin element may have multiple
semantic handlers. In this case, which handler to use is
determined by type resolution. If the resolution is
successful for exactly one handler, it is taken, otherwise an
error is issued. This way the ability of operator
overloading can be introduced to Pascal.

4.3. Summary

The examples given in this section show how a skin
mechanism can be added to a language. The methodology
is summarized as the following:

e If there is not an appropriate MOP, implement-

one. Guidelines and examples can be found in [2,
3,4,9,10,12, 13] and so on.

e Decide which syntax class is to be extended.

¢ QObserve the original syntax rules of the target
syntax class. Figure out a general patern.
Advanced features may be added to this general
pattern, but care must be taken not to go too far.

¢ Write down the grammar for the skin and the skin
switching directive. Skin inheritance must be
taken into consideration.

s Write down the declaration of the skin for the
original language. It is the default skin. Also it
can make sure the skin grammar is correct.

e If feasible, design a mechanism for run-time
semantic handling.

¢ Build a compiler for the skin or extend an
existing one. A third choice is a preprocessor.

5§ Conclusion

The skin mechanism proposed in this paper can bring
syntactic extensibility into a language without suffering
from the possibility of syntax conflicts and ambiguities.
Large collections of language extensions can be created in
the form of MOP libraries, from which the user can pick all
and only the desired extensions and compose them into
solid language features that can be used exactly the same
way as the original features, without any discrimination in
semantics or syntax. Since syntax conflicts are avoided,
those extension libraries can be reused freely. Designing
and implementing a skin mechanism may be not easy, but
such a facility allows the use of notations close to the target
problem domain, improving the readability and
maintainability of programs, and enabling the compiler to
generate more efficient code.

References

(11 S. R. Adams, Modular Grammars for Programming
Language Prototyping, Ph.D. thesis, University of
Southampton, March 1991,

[2]1 S. Chiba, “A Metaobject Protocol for C++,”
Proceedings of the Tenth Annual Conference on
Object-Oriented Programming Systems, Languages,

A-185

(3]

4

i3]

(6]

(7

(8]

91

(10

(i

(12]

(13]

[14]

(15]

(16}

(173

and Applications, pp. 285-299, Austin, Texas,
QOctober 15-19, 1995.
S. Chiba, “Macro Processing in Object-Oriented

Languages,” Proceedings of Technology of Object-

Oriented Languages and Systems, Melbourne,
Australia, November 1998.

S. Chiba, OpenC++ 2.5 Reference Manual, Instlrute
of Information Science and Electronics, University of
Tsukuba, 1999.

C. Christensen and C. J. Shaw, ed., Proceedings of
the Extensible Languages Symposium, Boston,
Massachusetts, May 13, 1969.

R. Hieb, R. K. Dybvig, and C. Bruggerman,
“Syntactic Abstraction in Scheme,” University of
Indiana Computer Science Technical Report 355,
1982.

An American National Standard: IEEE Standard
Pascal Computer Programming Language, 1EEE,
1983.

E. T. Irons, “Experience with an Extensible
Language,” Communications of the ACM, vol. 13, no.
1, pp. 31-40, 1970.

Y. Ishikawa, Meta-level Architecture for Extendable
C++, TR-94024, Real World Computing Partnership,
199s.

Y. Ishikawa et al., “Design and Implementation of
Metalevel Architecture in C++ — MPCH++
Approach,” Proceedings of Reflection’96, San
Francisco, California, April 1996.

B. W. Kemighan and D. M. Ritchie, The C
Programming Language, Prent1ce~Hall Intematlonal
Inc., 1988.

G. Kiczales, J. Lamping, and G. Murphy, “Open
Implementation Design Guidelines,” Proceedings of
the I9th International Conference ore Software
Engineering, 1997.

G. Kiczales, J. des Rivieres, and D. G. Bobrow, The
Art of the Metaobject Protocol, MIT Press, 1995.

W. Maddox, “Semantically-Sensitive Macropro-
cessing,” Report No. UCB/CSD 89-545, University
of California, Berkeley, 1989.

S. A. Schuman, ed., Proceedings of the International

Symposium on Extensible Languages, Grenoble,
France, September 6-8, 1971.
N. Solntseff and A. Yezerski, “A Survey of

Extensible Programming Languages,” Anriual Review
in Automatic Programming, vol. 7, pp. 267-307,
Pergammon Press, 1974.

D. Weise and R. Crew, “Programmable Syntactic
Macros,” Proceedings of the 1993 SIGPLAN
Conference on Programming Language Design and
Implementation, pp. 156-165, June 1993.

