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. Abstract

In this paper we present an approach for automat-
ically recognising tubules and epithelial cell nuclei in
renal biopsy sections. This approach employs image
processing methods, histological knowledge and ma-
chine learning techniques. Potential applications of
this work include the diagnosis of tubulitis, renal al-
lograft rejection and other renal lesions.

1 Introduction

The analysis of histopathologic sections is an ex-
tremely important’ component in the diagnosis of
many diseases. Manual examination of sections is
routine practice in pathology laboratories, but has a
number of significant drawbacks. It requires expen-
sive training and extensive experience and expertise
to analyse sections effectively [1]. Also, the patholo-
gists who perform such analyses are subject to all of
normal stresses encountered by human beings, leading
to potential inconsistency or inaccuracy in diagnoses.
In short, the process of manual pathological diagnosis
is sometimes more subjective than one might like.

Computer-assisted diagnosis has the potential to
provide cheap, reproducible and objective diagnoses.
Tt also has the potential to provide better quanti-
tative measures of the extent of a disease. How-
ever, computer-assisted diagnosis has proved difficult
to achieve. The main reason appears to be that im-
ages from histopathologic sections are too poor qual-
ity to be segmented using simple image processing
techniques [2]. Some systems have overcome this by
requiring manual identification of the areas on the im-
ages where pathological problems occur (3, 4, 5]. Suc-
cess with an expert systems approach for the detection
of lesions in colonic, breast and prostate lesions has
been reported at the Optical Sciences Centre of the
University of Arizona (2, 6, 7, 8, 9, 10]. Also [11] de-
scribes a system to check for cancerous cells automat-
ically in PAP smears, presumably a simpler problem
than histopathologic sections.
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The local segmentation of renal biopsy sections
appears to pose a set of problems. Unfortunately
these problems are sufficiently diverse that a single
approach is unlikely to be successful. In this paper, we
describe an approach that uses a combination of man-
ually encapsulated histological knowledge and a deci-
sion tree automatically induced by a machine-learning
system to successfully recognise tubules and epithelial
cell nuclei in renal biopsy sections.

2 Data
2.1 Renal biopsy sections

The clinical material for this study comprises sec-
tions of needle renal biopsies, stained with periodic
acid schiff (PAS). The sections were obtained from the
Department of Anatomical Pathology, Prince Henry
Hospital, Sydney. The sections were scanned through
a laser scanning microscope (Olympic LSM-GB200)
and each image was recorded in an array of 768x1024
with 256 grey levels. -

2.2 Renal tubules

The human kidney contains a great number of func-
tional units called nephrons. Each nephron consists
of a glomerulus and renal tubules. Together with the
glomerulus, renal tubules play an important role in
maintaining the waste disposal system of the body
(12, 13].

Each renal tubule has 4 segments, the proximal
tubule, Henle’s loop, the distal tubule and the collect-
ing duct. All 4 segments are tubes of various lengths
and diameters. The cavity at the centre of a tubule is
usually referred to as its lumen. It is the proximal and
distal tubule segments which are mostly seen in renal
biopsy sections. An image of a renal biopsy section
can be seen in Figure 1.

Tubules are lined by epithelial cells. The nuclei of
these epithelial cells are obvious as small dark discs
within tubules in Figure 1. Proximal tubules have mi-
crovilli lying around the inner part of the epithelium,



resulting in a dark layer in sections usually referred
to as a brush border. The spaces between tubules is
usually referred to as interstitium. Blood vessels also
occasionally appear in renal biopsy sections.

Figure 1: A renal biopsy section showing proximal
tubules(P) and distal tubules(D). Also labelled are the
lumen(L) of a tubule, either Henle’s loop or a collecting
duct(T) and packed microvilli (arrow).

2.3 Tubules in renal biopsy sections

Renal tubules are like a soft tube which may be
squashed or twisted. Their morphology in a section
varies considerably. As can be seen in Figure 1, the
grey level of tubule boundaries in sections also varies
considerably. The thickness of these boundaries in
sections varies too, primarily due to cut angle. Typi-
cally a distinct bright lumen can be seen at the centre
of each tubule but in some cases this is reduced or
absent because of the cut angle or because the tubule
is squashed or twisted. The epithelium lies between
the tubule boundary and the lumen. The nuclei of ep-
ithelial cells are a distinctive feature in renal biopsy
sections. As can be seen in Figure 1, their grey level
varies considerably and they may touch the tubule
boundary and have a similar grey level to this bound-
ary. There is also some variation in nuclei size and
shape.

3 Method

Our prototype system consists of two largely in-
dependent components: one to identify tubules, the
other to identify epithelial cell nuclei. We describe
each component separately.

3.1 Identifying tubules

We begin our processing of the image by using k-
means clustering [14] to convert the 256 grey level
image I into a 3-tone image I3. This use of k-means
clustering makes the subsequeént processing somewhat
independent of the overall brightness of individual
slides. In other words it provides a degree of scale-
invariance. The black areas of this 3-tone image will
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include tubule boundaries and brush borders and oc-
casionally blood cells. The grey areas of this 3-tone
image will include interstitium and epithelium. The
nuclei of epithelial cells may be entirely black in the
3-tone image but many will contain grey areas as well.
Occasionally they are mostly grey. The white areas
of this 3-tone image are mostly the lumina of tubule
and occasionally blood vessels. An example of a 3-
tone image can be seen in Figure 7(b).

The first step is the identification of potential lu-
mina. This is done by searching for large contiguous
white regions. Initially we assume all such regions
are tubule lumina. This white region is then enlarged
to incorporate the entire tubule body. This is done
in two steps. First any black pixels immediately ad-
jacent to the white region are included. These are
assumed to be part of a brush border. Region grow-
ing [15] is then used to incorporate any surrounding
grey pixels. This should result in the region including
most of the surrounding epithelium. However many
of the nuclei of epithelial cells will not be incorpo-
rated by this region growing. They will remain as
black regions, either isolated or touching the tubule
boundary.

The black pixels surrounding an extracted tubule
region form the initial estimate of the boundary of the
tubule. Further processing is necessary as cell nuclei
touching the tubule boundary or indistinct boundaries
may make this initial boundary inaccurate.

Epithelial cell nuclei are typically roughly circular
and 6-15 pixels in diameter in our images. Tubule
boundaries are relatively smooth at this scale. The
distortion of the boundaries caused by the epithe-
lial cell nuclei is that the boundary is excavated and
concavities are formed along the boundary. We can
hence detect where epithelial cell nuclei touching the
tubule boundaries have affected our initial estimate of
the boundary by searching for the concavities of this
shape and size. Such a concavity can be seen at the
bottom of Figure 2(a).

We find these concavities by searching for three
points on initial tubule boundaries which form a tri-
angle of appropriate dimension. We also check that
the triangle points towards the centre of the tubule.
This check is necessary because otherwise the part of
the boundary between two epithelial cells touching the
tubule boundary could be incorrectly removed. When
such a triangle is detected, we change the boundary
to follow the base of the triangle.

Sometimes part of the boundary of a tubule will
be indistinct. This means it will not appear as black
pixels in our 3-tone image. As a result, the region-
growing described above will then incorporated an
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(b) Indistinct bound-
ary

cell
producing incorrect
boundary

(a) Epithelial

Figure 2: Problematic boundaries

area larger than the tubule body. The tubule may be .

merged with a neighbouring tubule or a non-tubule
region. An example of this can be seen just to the
right of the centre of Figure 2(b).

‘Experimentally we found that such gaps in tubule
boundaries will be short relative to the size of tubules.
This allows us to detect them and correct the bound-
ary. We search for pairs of points lying on our ini-
tial tubule boundary which areonly a short distance
apart but lie a long distance apart measured along
the boundary in either direction. When such a case is
detected, we divide the region into two at this point.

Large continuous white regions in the images can
be produced by features other than tubule lumina
such as the interstitium. Examination of our data
suggested that shape could be used to eliminate these
non-tubule regions. We found experimentally that a
compactness metric (compactness = %—’;%}“Ji) was
useful [16]. The value of this metric for tubules is typ-
ically below 50 whereas for non-tubules it is almost
always higher than 100. This metric is applied in the
last step of tubule recognition to eliminate non-tubule
regions.

The entire procedure of tubule identification can
be summarised in Figure 3.

3.2 Identifying epithelial cell nuclei

Epithelial cell nuclei are dark, almost circular re-
gions in the epithelium. They may appear disjoint
from other objects, but often appear touching tubule
boundaries or touching to each other. Some of them
have a centre region that is somewhat lighter than the
rest of the nucleus because of nuclei components.

We found identifying epithelial cell nuclei a diffi-
cult problem. We tried a variety of standard image
processing techniques without success. The variation
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/* input: a 3-tone image I3 */
foreach potential lumen {
if enclosed by a brush border
dilate (lumen);
tubulebody = grow_region(Lumen); |
boundary = irace(tubule body);

}

foreach boundary repeat {
if boundary contains multiple regions |
break (boundary); |
} until no more corrections;

foreach boundary repeat {
if a cell touches boundary
correct (boundary);
} until no more corrections;

foreach boundary {
if shape factor check ok
keep boundary;
else ignore boundary;

Figure 3: Tubule boundary identification

in shape and brightness of the nuclei defeated all the
methods we tried. We also explored writing special
purpose code to recognise epithelial cell nuclei but
found there were a bewildering array of features that
might be used to detect such nuclei and it was difficult
to estimate the likely efficacy of each feature. This led
us to the more principled approach of making an au-
tomatic search to find a subset of effective attributes
which could be efficiently employed.

Figure 4: Regions used in nuclei attribute extraction

The set of attributes we began with are all con-
structed with respect to a single pixel which might be
the centre of an epithelial cell nuclei. We constructed
attributes from the region surrounding this pixel by
calculating a number of measures such as means, stan-
dard deviations and gravities of disks, rings and fans
centered at the pixel as illustrated in Figure 4. This
produced about 70 attributes. Note both the original



image and the 3-tone image were used in construct-
ing attributes. We also automatically constructed
attributes from pairwise arithmetic relations of the
above 70 attributes producing another about 20,000
attributes.

We then used a greedy search similar to what [17)
term forward selection to choose a subset of the
attributes which gives the smallest error rate of clas-
sification on the training data. 14 of these attributes
were selected for our system to employ. These 14 at-
tributes are listed in Figure 5.

No. Attribute Description
standard deviation of pixel value of rings R 3 ,,
standard deviation of pixel value of rings Ri,23 [
standard deviation of the ring Ry only :
number of dark pixels in the rings Rz 3
number of light pixels in the rings R 3

“mean of pixel intensity of the ring Ry
mean of pixel intensity of the ring R,
mean of pixel intensity of the ring R;
difference between 7 and 6

10 displacement of the centre of gravity of ring R3

11 diff. between means of rings R;2 and R3

12 diff. between fraction of dark_pixels in R; & R

13 diff. between fraction of light_pixels in Ry & R

14 deviation of numbers of dark_pixel in fans

WO 00 3O U b=

Figure 5: A set of attributes used for classifying epithelial
cells

The search is done using a simple wrapper around
Quinlan’s machine learning system, C4.5 [18]. C4.5
is a supervised learning system which, given a set of
classified cases and a number of attributes for each
case as training data, produces a classifier in the form
of a decision tree to classify further cases. Figure 6
shows a part of the decision tree that we used to iden-
tify epithelial cell nuclei.

A decision tree is constructed by the divide-and-
conquer algorithm [18] from the set of training cases.
The algorithm splits the training cases recursively into
subset, based on a single attribute, until all the cases
in a subset belong to a single class. A decision tree
classifies a case by starting at its root and moving
through it until a leaf node is encountered. At non-
lead node, the test on the a single attribute value is
carried out and determines to move on to the sub-
tree corresponding the test outcome. In our case, the
decision tree can be interpreted as
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C4.5 [release 8] decision tree generator

Options:
File stem < tub >
Read 2196 cases (14 attributes) from tub.data

Decision Tree:
14_diff_g2Dark_g3Dark <= 35.37 :
10_distance_ct_cg3 <= 19.53 :
11 R2.SD <= 1.08 :
3.disk_Rg2.mean > 2.18 : non_epi
3_disk_Rg2.mean <= 2.18 :
4 _disk_Rg3_mean <= 1.86 : non_epi
4_disk_ Rg3_mean > 1.86 :
5_disk Rg2.SD <= 20 : non_epi
5_disk Rg2_SD > 20 : epi
11 R2.5D > 1.08 :
3.disk Rg2_mean > 2.91 : non_epi
3_disk Rg2. mean <= 291 :
8 R2.meari <= 87.63 : non_epi
8 R2.mean > 87.63 : epi
10_distance_ct_cg3 > 19.53 :
3_disk_ Rg2.mean > 2.67 : non_epi
3_disk_ Rg2_mean <= 2.67 :
9.R3_mean <= 114.05 : non_epi
9 R3.mean > 114.05 :
10.distance_ct-cg3 > 29.47 : epi
10_distance_ct_cg3 <= 29.47 : non_epi
14_diff_g2Dark _g3Dark > 35.37 :
5.disk Rg2.SD <= 25 : non_epi
5_disk Rg2 SD > 25 :
14 diff_g2Dark g3Dark <= 45.37 :
8 R2_mean <= 77.55 : non_epi
8 R2_mean > 77.55 :
4 _disk Rg3_-mean <= 1.8 : non_epi
4 disk Rg3_mean > 1.8 : epi
14 diff_g2Dark g3Dark > 45.37 :
5_disk Rg2 SD <= 59 : epi
5.disk Rg2.SD > 59 :
12.diff 8.9 <= 31.83 : epi
12_diff 8.9 > 31.83 : non_epi

Figure 6: Part of the decision tree for recognition of ep-
ithelial cell nuclei

if attr 14 <= 35.37 then
if attr_10 <=19.53 then
if attr 1l <=1.08 then
if attr_3 > 2.18 then
class non epithelial nucleus
else if attr.3 <= 2.18 then
if attr4 <= 1.86 then
class non epithelial nucleus
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else if attr 4 > 1.86 then
if attr5 <=20 then
class non epithelial nucleus
else if attr5 > 20 then
class epithelial nucleus

......

The training data for C4.5 was constructed by
manually labelling the roughly 200 epithelial cell nu-
clei in an image. These were used to produce 200
positive cases. A further 2000 negative training cases
were constructed by randomly choosing points in the
image which were separated from any of the 200 la-
belled nuclei by at least a minimum distance.

A much larger number of negative cases is neces-
sary because there is, naturally, much more variation
in things that are not epithelial cell nuclei and the
training data must reflect this variation. (a) original image : (b) 3-tone image

Given only a set of 14 attributes, C4.5 produces
a more accurate and smaller classifier. This is not
vnique to C4.5 or decision tree induction systems; the I:’:? @ U U’
performance of many other classification systems de- O O
clines as poor attributes are added. The computa-
tional time for constructing attributes is also much
reduced by eliminating poor attributes.

4 Results
Figure 7(a) shows a typical tubule image. The ini- Qd Q

tial estimate of tubule boundaries are affected by some

epithelial cell nuclei because the cells are very close to

or even touch the boundaries. Figure 7 also shows the (c) initial boundaries (d) corrected bound-
corrected tubule boundaries and the result superim- aries

posed on the original image. Figure 8 shows an exam-
ple where the image has a tubule with an indistinct
part of the boundary. It was broken down first and
then all the boundaries underwent concavity checking
and compactness metric examination.

Figure 9 present some results of identification of
epithelial cell nuclei. The centres of the nuclei are
marked by white cross.

We have used renal biopsy sections from 4 patients
as test data. This data was not used previously in the
development of our software. We manually identified
293 renal tubules cross sections in these 4 slides. We (e) boundaries super-
then used the software described above to automati- imposed
cally label renal tubules and epithelial cell nuclei.

Our software correctly recognised 263 of the 293
tubule cross sections. It incorrectly labelled 5 regions
as tubule cross sections. We then checked the accu-
racy of boundaries marked for each tubule cross sec-
tion.

Tt was also noticed that among these 263 recognised
tubule cross sections, there are 22 cross sections with
a small part of the boundary not well located.

Figure 7: A common example
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(a) original image (b) 3-tone image

(c) initial boundaries (d) corrected indis-
tinct boundary

(e) corrected bound- (f) boundaries super-
aries imposed

Figure 8: Indistinct boundary correction

Figure 9: Examples of labelled nuclei
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Evaluating the accuracy of epithelial cell recogni-
tion is more time consuming. We were able to evalu-
ate the accuracy for the epithelial cell nuclei contained
within 180 of the 263 tubule cross sections. Each of
these tubules contained 10-12 epithelial cells. In 97
of the 183 tubule cross sections all the epithelial cell
nuclei were accurately labelled. In 73 of the 183 cross
sections 1 or 2 nuclei were not labelled. In 10 cross
sections 3-5 nuclei were not labelled. In addition, in
each cross section on average 2 nuclei were incorrectly
labelled as epithelial cell nuclei.

5 Conclusion

These preliminary results are very promising. We
feel they establish that these methods could be used
in computer-assisted diagnosis. Our software already
recognises tubules well and marks their boundaries ac-
curately. Currently the complexity of the algorithm
for boundary correction is O(N?), where N is the
length of the boundary. We also feel we can modify
the software to significantly improve on the perfor-
mance above.

The recognition of epithelial cell nuclei is a more
challenging problem but the employment of machine
learning techniques and attribute selection has pro-
vided useful results which we had been unable to ob-
tain otherwise. We would prefer to reduce the false
positive rate and are sure we can do so to some de-
gree. We intend to examine other possible attributes

and also to enlarge the size of training data we pro-
vided.
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