Joint Conference of 1996 International Computer Symposium
December 13~21, Kaohsiung, Taiwan, R.0.C.

Design and Analysis of an Efficient Buffer Scheduling Scheme for VOD System’

Y. C. Chen and S. C. Rong
Department of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan, ROC

ABSTRACT

Due to the fast advance in communication and computer
system technologies in 1990s, multimedia communicalion
applications emerge rapidly. A popular example is the
video-on-demand (VOD), which is perceived as a highly
marketable service for entertainment. In this paper we
discuss the design and analysis of an efficient buffer
scheduling scheme for VOD system. Our scheme uses a
round-robin like buffer scheduling approach combining
with a disk scheduling method—Scan, which greatly reduces
the buffer requirement up to a half comparing with solely
Scan if the number of video streams is large. Using our
proposed scheme, it is able to serve more subscribers
compared with either Scan or round-robin method under the
same system configuration. We also prototype a VOD
system based on our scheme for performance evaluation.

1. Imntroduction
Due to the fast advance in communication and
computer technologies in 1990s, multimedia

communication applications emerge rapidly. A popular
example is the video-on-demand (VOD), which is perceived
as a highly marketable service for entertainment. In this
paper we discuss the design and analysis of an efficient
buffer scheduling scheme for VOD system. Our scheme uses
a RR (round-robin)[2] like buffer scheduling approach
combining with a disk scheduling method—Scan, which
greatly reduces the buffer requirement up to a half if the
number of subscribed streams is large.

A video server has to perform a number of
functions[10,13] such as admission control, real-time data
retrieval, disk scheduling, and stream-oriented data

“transmission, as well as support these functions found in a

VCR(video cassette recorder). Since the video data needs to
be delivered to the viewers with minimized jitters, the bursty
nature of disk accesses mandates that intermediate buffer
memory is required to transform the bursty data into a
continuous stream, which must be guaranteed to have well
controlled jitters.

We have prototyped a VOD system based on a real-
time kernel[4,5,6,14] and the UDP protocol[15,16] using
our proposed scheme. The system is showmn to support 3
clients simultaneously, which already reaches the hardware
limitation (PC486 DX2-66, IDE adapter, ISA Bus,
Ethernet)[12]. Our design should be able to support more
streams if both disk data-transfer raie and network
transmission rate are higher.

In Section 2, we present our disk scheduling scheme.
In Section 3, the mathematical analysis of our scheme is
discussed. Section 4 addresses the performance
measurement of the system prototype, and Section 5
concludes this work.

2. Design Approach

Our video server consists of three main modules
(tasks): Admission, Producer, and Consumer. Assuming k
streams are to be supported, we have o prepare a k+1™
buffer, called exira buffer in addition to k buffers to perform
our buffer scheduling algorithin. Before we proceed, some
terminologies are defined:

(1) Data-block: Amount of data that the video server
reirieves for each stream during a round, here we let
the buffer size be identical to the data-block size.
Disk service time: This is the data transfer time plus
the disk-access overhead such as seek-time and
rotation latency.

Round and round-length: The process that a video
server retrieves a set of data-blocks for all subscribed

@

&)

" This work is supported in part by Computer and Communications Lab., ITRI under contract no. K4-84021

95

Proceedings of International Conference
on Networking and Multimedia

streams is called “a round”. The time duration of a
round, including the operating system overhead and
disk service time, is called the round-length.

Stream retrieve latemcy(SRL): This is the time
interval between two consecutive requests to read data.
Stream send latency(SSL): It is the time interval
between two consecutive requests to send data-blocks.
A disk scheduling algorithm decides how to retrieve
video data for each stream. Data-placement algorithms[3,8]
that inherently reduce latencies are used in conjunction with
“disk scheduling algorithm. To ease the implementation,
continuous data-placement is used for each stream.
Although Scan is considered more efficient than RR,
however, if we also consider buffer scheduling, there exists a
trade-off between the disk overhead (and the round length)
and the required buffer size. In the following, we will
examine this trade-off issue.

@
&)

2.1 Disk Scheduling Algorithms — RR and Scan

e e -
Maximum SSL(with buffer scheduling)

Figure 1. SRL and SSL in RR and Scan.

Both RR and Scan can reduce seek time[7]. The Scan is
considered more efficient than RR because Scan has less
frequent disk head movement. On the other hand, the order
to service video streams is fixed during each RR round, thus
its SRL is upper-bounded by one round-length. While with
Scan method, the order is changing alternatively for each
round, thus SRL is upper-bounded by two round-lengths.
Generally SSL has the same value as SRL with the same disk
scheduling algorithm(see Figure 1). So SSL is upper-
bounded by two round-lengths using Scan, which means that
Scan needs a double-sized buffer for each subscribed stream
to satisfy the consuming need of nearly two rounds; while
RR only needs a single-sized buffer in the same situation. To
resolve this trade-off issue, several algorithms have been
proposed. Among them, the grouped sweeping scheme
(GSS) is the most popular one. In GSS, each round is
partitioned into groups which may contain more than one
sircam. These groups use RR internally, while the Scan
method is used external to groups. By optimally deriving the

96

number of groups, the server can balance the cutback of
round length against data-block size.

2.2 Scan with Proposed Buffer Scheduling Algorithm

Round Robin Scan Scan with our buffer
scheduling algorithm
=)\ [4—EC4)s ~ B~
@~ ||| - E-
O —~@O-v|v - 8-

@ @)

Figure 2.Concepts of RR, Scan and Scan and our algorithm.

Let the number of streams be k. In RR, the video server
just needs & buffers, while in Scan, the video server needs 2k
buffers. Since the SRL and SSL of Scan are bounded by two
rounds, video data transmission must start at the end of each
round, otherwise the client buffer will be starving. Since the
order of buffer filling is always same as that for buffer
sending, SSL is bounded by SRL (see ®,® of Figure 2).
What we try to improve is reducing SSL to only one round
while still keeping SRL unchanged in Scan. Our algorithm
reduces the required number of buffers from 2k to k+1.(see
® of Figure 2). The key idea is that data sending speed can
be controlled according to data reading speed so that we
need only to provide an extra buffer in addition to & buffers.
During each round, we know for each stream

Server throughput = Data-block size/Round-length
and from the previous section, we have
Round-length = Disk service time + OS overhead.
Here OS overhead includes interrupt latency and scheduling
latency.
O

bufferl X

Figure. 3. The operation of the proxy.

@)

In our design, each buffer is associated with a unique
proxy. By triggering the proxy attached to an empty buffer,
the Consumer can tell the Producer which buffer is empty
and can be filled again. Figure 3 shows that Consumer freed
three buffers (in the sequence of @, @, ®) and triggered their
corresponding proxies, Producer can pick up an empty
buffer through the proxy ID it received.

2.3 Task Priority and Synchronization

We assign the highest, the lower and the lowest priority
to tasks Admission, Producer, and Consumer tespectively.
When Producer issues a fread() system call, it enters an
event-wait state, then the kernel selects Consumer to run if it

is in ready state. Consumer issues a non-blocking sendto()
system call to transmit data. Once a buffer has been emptied
during a round, Consumer issues a non-blocking frigger() to
send a proxy to Producer, which may be unblocked either
before Consumer empties a buffer and sends a proxy, or
after. If the former happens, the kernel preempts Consumer
and run Producer, and Consumer will be put into ready
queue. If no free buffer is available, Producer will enter the
message-wait state waiting for Consumer, otherwise
Producer can setrvice the next stream. If the latter happens,
Producer reads data into the buffer that Consumer has freed.
Admission is responsible for receiving commands from
clients. The disk seeking order will be re-computed once a
new request is admitted or an existing stream is terminated.

There are three entities in our video server: File ID,
Stream ID, and Buffer ID which define four mapping
relations (see Figure 4). Among them, admission process
will setup mapping relation between the video file ID and
the stream ID (FileToStream) immediately after it receives
an initialization command from a client. In addition to be a
mapping relation, FileToStream also acts as a flag. With the
mapping relation, Producer can tell whether a video file is
subscribed. Initially, the relation (table) entries of
FileToStream are set to NOC (a flag, which means “No
Clients™), while Producer does nothing but checks the table
entries. As soon as a play command is received, Admission
will signal Producer to start reading the video file by setting
its associated FileToStream entry to the siream ID. Producer
will retrieve data from disk as soon as the FileToStream flag
of a video file is set. Meanwhile, Admission also handle
further requests from other clients.

Butfer ID Stream ID File ID

J=0=0

Figure 4. Mapping relations between different entities

BufferToStream StreamToFile

StreamToBuffer FileToStream

2.4 Proposed Buffer Scheduling Algorithm

Figure 5 shows our proposed buffer scheduling
algorithm, and its related block diagram is shown in Figure
6. If k clients connect to the server simultaneously, in the
first round, there are k+1 empty buffers, and Producer fills
up & buffers. In the next round, Producer can always find an
empty buffer (extra buffer) to fill. Since consuming rate =
Sap/(Tps+T), where Sy is the data-block size, Ty is the time
to segment a data-block into packets (packetization) and
move them to the network adapter, and T, is the
transmission time of a data-block in the network interface.

97

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Initially. trigger all the proxicies associated with their buffers respectively.
Producer :
Jor each round
{ for each file i subscribed /*Producer loops file IDs using Scan*/
Jind stream ID j associated with file i /%j=FileToStream{i]*/
wait for the proxy ID k associated with an empty buffer k
mark StreamToBuffer[j]=k
mark BufferToStream{k]=j
read file i into buffer k }
send the message to Consumer /* at the end of one round */
Consumer ;
wait message from Producer and reply it
Jor each stream i that has data in buffer /*Consumer loops stream
IDs using RR */
{ find Buﬁ%r ID j associated with buffer i /* j=StreamToBuffer(i]*/
send content of buffer j to the client of stream i
mark BufferToStream{j]=Empty
mark StreamToBuffer [I]=Empty
trigger proxy ID j associated with buffer i to Producer }

Figure. 5 Proposed buffer scheduling algorithm

Figure 6. Block diagram of proposed buffer scheduhng
algorithm,

We can select a proper data-block size and compute its
Tps and T, 50 that T+ 7, is smaller than the reading time of
a data-block, then the consuming rate will be faster than the
producing rate. Consumer will have already released a
buffer of the first stream in the previous round before
Producer fills out the exira buffer, and Producer can select
this released buffer as the next empty buffer to fill the data.
In normal sitwation, it is very unlikely that there is no empty
buffer available for Producer. Even though, it still can wait

Proceedings of International Conference
on Networking and Multimedia

until a proxy from Consumer is received. This may occur
only when the network traffic load is very high which in turn
causes a relatively small consuming rate.

3. Mathematical Analysis

Symbol Explanation Unit
R,, Video playback raie frames/sec
Ra Disk data transfer rate Kbyte/sec
Sab Size of a data-block Kbyte
Sy Average size of a video frame | Kbyte/frame
Sy Size of a track Kbyte/track
T Service time per round second
T Number of tracks tracks
Lin-seek Track-to-track seek time second
lrot Rotation latency second
Las-seck: Maximum seek time second

Table 1 Symbol table.

In this section, we perform the mathematical
analysis of disk scheduling, also we derive equations to
‘compute the maximum number of the video sireams that a
video server can support based on our buffer scheduling
scheme. Table 1 is the symbol table used in our discussion.

3.1 Disk Characteristic Curve

The effective transfer rate of a hard disk is about 1-3
MByte/s (IDE) or 4-6 MByte/s (SCSI), this is much higher
than the average playback rate of a single compressed video
stream, e.g., 0.2 MByte/s for MPEG-1[9], and 0.42MByte/s
for MPEG-2[18). Suppose that the video server retrieve data
blocks for n stream. Let R,p1, Rypo, .., Rupn be their playback
rates, and S;, S,..., and S, be data-blocks for these sireams
respectively. Also assume that the disk storage space is
divided into 7 tracks, with each track being able to hold at
most B data-blocks. To simply the analysis, we approximate
the seek time by :

Lea{)ma +bxt ¢
where f is the distance in terms of iracks, a and b are
constants, and /....(#) denotes the seek-latency for the disk
head to move across ! tracks. Since the real curve should be
nonlinear[17], we call Equation (1) disk characteristic
curve. Let Lyaeseer denotes the seek time that the disk head
moves from the innermost track to the outermost track or
vice versa, and /., denotes the rotation latency. From
Equation (1), we know: -

lmax-seek = lseek(D ~a+t b X T

Dyiveseek = bseed) = @ + b

@
3

3.2 Simgle Stream Analysis

98

If the size 5}, of the data-block S; is retrieved during

each round, then its retrieval time will depend on the
number of iracks spanned by this data-block, because the
video server stores successive data-blocks of a stream into
adjacent tracks. Since the size of each track on the disk is Sy,

the data-block of S; can span at most (|—Sc’,'b /Sy) +1) tracks.

Once the disk head is positioned on the first track of the
data-block to be read, it may have to move to an adjacent

track at most| § A /Sy | times for reading the data, each move
costs a seek latency of /. ...
locating a data-block from a track is bounded by /_, , and the
total transfer time of a data-block is §, /Rs-. Hence, using
Scan algorithm, the data-block of stream §; can be retrieved

with the upper bound:
S S,
[Sil(] X]min-scek + ([@ Silc] +1)X Jrot +

3.3 Multiple Streams Analysis

The latency required for

S
Rd

r

“)

3.3.1 Seek Time

Assume that the video server is serving » streams, then
for each round, the video server will retrieve n data-blocks
for the n streams in one sweep. During a sweep, the disk
head has to be repositioned at least n times, once for
switching to a different data-block. Assume that each
reposition causes the disk head to move #; tracks. From
Equation (4), these n moves cost seek time]ﬁmk :

n

1 —

scck_a'n+b’z[i
i=1

Furthermore, once the disk head is positioned on the first
track of the data-block for a stream S;, it may have to move at

most [§ A /S] adjacent tracks in order to read all the data of

this data-block. From Equation (1), this costs time lnin-seer %
rSjbetkl thus retrieving all »n data-blocks for » streams

n S i . .
costs 7 . X ;{ % J. Applying Equation (3), we
know that the retrieval of all n data-blocks needs maximuimn
seek time 1s2dck :
13“[(g(3+b)xzn[£d11 .
i=1 S th
The total seek latency incurred for each round is bounded by
the value of /! + jigk , which is equal to 1;;11(:
S

()

()

all
) seek £

2

a-n+b-y t;+(a+b)
i=1 i=1

I

= 12/]

mk_a.(mzﬂ[sgbs])+b~<znt,-+z"[5“
i=1 & i=1 o=l

Sax(aon+n)+bx(T+n), -
=(2a+b)a+bT . Q)
Here we assume that the value of rS;b/S,J is no greater

than one because a reasonable data-block size will not be
greater than the track size, as we can see in Section 4, thus
the number of single-track moves for reading a data-block
should be no more than one.

3.3.2 Rotation latency and data transfer time

Since S;b of data-block S; may span at most (F S‘;'b /Sy]

+1) tracks, the total latency incurred while accessing data-
blocks of all the streamsin a round is thus bounded by

n i
Roty =12, (=2 |+1). ®)
i=1 S t
The total data transfer time of these n data-block is
n Si
Ty, = =2 ©)
i=1 Rcﬁ'

3.3.3 Disk service time

Finally, using Scan, the disk head will stay in the final
position of current round until the next round starts. At the
beginning of the next round, data-block S, which is
positioned at either the outermost or the innermost track
among all subscribed video files, will become the first data-
block to be read immediately. So during each round, the total
service time t is bounded by the maximum value of
13" +Tx,,

seek

Rot,,,

T<(2a+b)xn+bxT +2nx]m[+zﬂfb_. (10)
i=l dr
3.3.4 Maximum number of allowed streams

During a round, the video server may retrieve » data-
blocks for all n streams, and one round length can not exceed
the minimum playback duration among ¢ 2 S5 -, and g2

With Scan disk scheduling method, we get

1
2a+b)n+bT +2nx 1, + —
() Z R’ 1E[1 HI(R "y
an
If we can determine the value of 5},} R Sjb .., and 57 , then we

can calculate the maximum value of # by solving the
Equation (11). The simplest way 1is o set

S;b=5db=...=5’ab=5db, then we get:

S,J)

2

99

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

8 S
2a+b)a+0bT +2al,, + "”s(_db]
(2a+b)m Wt T80, R, S,

_Se Se . (12)
n<(b-THQ2a+b+21, +=2£)
R, Sy &

4, Performaﬁce Measurement

The hard disk used in our video server is Fujitsu
M2622T. Its characteristics are listed in Table 2. Here we
use the Norton Utility SYSINFO to get the information of the
seek time and transfer rate. From Equation (3) and (6), we
know that /(1) is the track to track seek time for adjacent
tracks and /.(7) is the maximum seek time, thus we get:

{ a+b=2384

a+849b =11.66
After solving above joint equation, we get a = 3.831 and b =
0.009. Since disk drives cannot be accurately modeled
analytically[17], we can only calculate the seek time through
approximation.

Capacity (MByte) 267
Tracks 849
Heads 10
Sectors 63
Track Size (KB) 314.4
Sector Size (KB) 0.5
Peak Transfer Rate (KB/s) 1214.8
Avg. Transfer Rate (KB/s) 772.41
Spin Rate (rpm) 4500
Maximum Seek Time (ms) 11.66
Track to Track Seek Time (ms) 3.84
Maximum Rotation Latency (ms) 13

Table 2. Hard disk characteristics of our video server.

Data size Transfer Time(sec) | Transfer rate(Kbyte/sec)
100 0.136156 734.449447
200 0.278144 719.052821
300 0.382134 785.065831
400 0.506122 720.323180
500 0.600113 833.176938
Avg, transfer rate (Kbyte/s) 772.413643

Table 3. The test result of average disk transfer rate

We know that the actual average disk transfer raie
(tested in application level) is lower than the peak transfer
rate (tested with the BIOS inti3h) due to OS overhead and
the data locality. We measure our average disk transfer rate
on the QNX operating system by reading data of different
sizes as shown in Table 3.

4.1 Estimation of the Maximum Number of Streams

Proceedings of International Conference
on Networking and Multimedia

—_
=
(=3

—-
1)
S

2
>

o
0
I=1

Round length(sec)
o
3

=]
P
>

o
1
I3

10 20 30 40 50 60 70 80 90 100

Data-block size(KByte)
Figure 7. Round length v.s. different data-block sizes
and number of sireams.

> 80000 r-r-r-T-aACaATATTOT T

] [B

5 600.00 1

5 400.00 *:

=

%ﬂ 20000 [} I : 1 [} 1]] | I

E [| I | b [|

0.00 1 L) i 1 1 1 1 1)
= R 2 4 & §

Data-block size(KByte)

Figure 8. The video server throughput with different
data-block size.

First, we substitute the parameters measured in the
above section into Equation (10), and find out the relation
between the round length and data-block size, as illustrated
in Figure 7. The round-length grows with the data-block
size. This is because the larger the data-block, the more time
it will spend to retrieve data. Second, we divide the data-
block size by round-length and draw the relation between the
throughput and data-block size in Figure 8. We can see
when the data-block size is smaller than 100KByte, the
throughput grows quickly with increasing data-block size,
while it grows slowly when the data-block size is larger than
100KByte. We say that 100KByte is the saturation point
here and it is used as our data-block size.

Data-Block
size(KB)|10 {30 | 50| 60| 70| 80 |90 |100{200} 300,
Frame-Rate
(frame/s)
12 4161718/ 8] 8[8|8|9][59
15 3i1516|/l6{ 6] 6|l6[7| 71(7
18 213 14[5] 5| 5| 5151 6|6
20 21414 4] 5|1 515151 5|5
22 2(3 | 4[4} 4] 4/ 4] 41 5] 5
30 1(2 13133} 3[3]3] 3|3

Table 5. The maximum number of streams with
different frame rate requircments.

We can calculate the minimum playback time periods
with different frame rate requirements and data-block sizes
by Equation (11). From Equation (12), we can figure out the
maximum number of streams in our server with different
data-block sizes, which are lisied in Table 5. The

100

relationship between these parameters are shown in the
Figure 9, from which we can find that our buffer scheduling
algorithm is able to support more than 12 streams if effective
disk transfer rate is higher than 3 MByie/s.

T72.41
@ 1000
22000
£3000

disk transfer
rate(KB/s)

Number of streams

Bl

7 g o 5 241
data block size(KByte)

(=)

feod
<
o~

Figure 9. The maximum number of streams with different
parameters,

4,2 Measurement of SSL and SRL

We will compare our buffer scheduling algorithm with
general Scan disk scheduling algorithm, all tests performed
in this section proceed with three streams.

15
g 1
E 05
0
2 8 8 8 8 B 8 8 8
Data-block size(KByte)
[=#=—ssL: =E—SRL —&—Round Length

Figure 10. Comparison of round length with SSL and SRL
using proposed buffer scheduling and Scan.

| === Producer Thourghput

=== Consumer Throughput: |

ES

10
0
0
0
0

00

00

L T S = Y
g8 8

Data-block size(KByte)

Throughput (KByte/s)
- 8 8

800
1000

Figure 11. The producer and consumer throughput.

Regarding the SRL and SSL in our sysiem, Figure 10
shows that the SRL is about two round-lengths and SSL is
almost equal to the round-length with three streams. This
indicates that our buffer scheduling algorithin successfully
reduces SSL from iwo round-lengths to one when it is
combined with the Scam. Next, we will examine the
throughput of our system.

The throughput can be measured in two aspects. The
producer throughput is measured by dividing the total data
read in each round by a half of SRL, and the consumer

throughput is measured by dividing the total data sent in
each round by SSL(one round length). Figure 11 shows that
these two throughputs are almost equal, except few
differences caused by the slack time[1] of IPC. Here we use
the producer throughput as our video server throughput.

In Figure 12, we compare the calculated throughput
with the measured throughput. We find that these two curves
increase rapidly with increasing data-block size. Our video
server throughput is smaller than the theoretical value due to
the overhead in the real system, for example, access to the
client information data base, performing buffer scheduling
algorithm, and checking out the status of the video files and
streams. Besides, the disk caching, the context switching of
operating system, slack time caused by inter-process
communication, and the time Producer waiting for an empty
buffer are also affecting factors.

b ==g==)leasured value === Theoretical value J
= 800
&2 600
'g: 400
& 200
g o
£ ess9R8e223888
Data block size(KByte)

Figurel2. Comparison of measured and theoretical server

throughput.

g 08

T 06

i

8 == x

¥ 2138 28 8 R 8 R 8
Data-block size(KByte)

[e=@==Producer == SSL: === Consumer I

Figure 13. Comparison between the slack time of Producer
and Consumer with SSL

Figure 13 shows the comparison of round length
with slack time[1]. We can see that the Producer slack time
is very high when data-block size is small, but once the
data-block is beyond 40KByte, the slack time, comparing
with round-length, will become small enough and can be
ignored. We can explain this situation by examining Figure
14, in which the disk transfer rate is much higher than the
thronghput when the data-block size is smaller than
40K Byte, that causes Producer to wait longer for Consumer.
However, it does not degrade our-system performance too
much, because the system throughput should not be induced
from the best case but rather the average cases. In other
words, we can not count on the peak disk transfer rate io do
the admission conirol.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

2 2500
>
i‘..é @ 2000
EE 1500
% £ 1000
= 32 500
g 0
2SRRI R E § § 8- §
==@==Producer Thourghput . =
=== Transfer rate Data-block size(KByte)

Figure 14. Comparison of producer throughput and transfer
rate with different data-block sizes.

0.05
0.04
0.03
0.02
0.01

Waiting time(sec)

0 -
o (] [(] [l o [[[o]
— o v [(=2 [(=] QO o ()
] F O o D
Data-block size(KByte) -

Figure 15. The producer waiting time for an empty buffer.

R

& = . : po A

Figure 16. A scenario of prototyped system with 3 video

streams. :

Figure 15 shows the statistics of Producer waiting for

an empty buffer. We can see that the waiting time is always

less than 5ms, and it affects the performance of our sysiem

slightly. This demonstrates that our buffer scheduling
algorithm is feasible and robust.

From the remarks above, we can conclude that in order
to maximize the video server throughput and the number of
streams o be supporied, the data-block size should be
properly set to the saturation point so that the buffer
allocated is not foo large to waste memory resource or (6o
small to under-utilize the server performance[ll]. In our
system, the saturation point is about 100KBytes, which

means 2MBytes buffer should be allocated if the system will

101

Proceedings of International Conference
on Networking and Multimedia

support 10 streams with traditional Scan disk scheduling
algorithm. Our buffer scheduling algorithm can reduce the
buffer requirement from 2MBytes to 1.1MBytes, and if the
system can support more streams, the advantage of our
buffer scheduling algorithm will be more obvious.

Figure 16 demonstrates a scenario with three streams
connecting to our video server simultaneously. We use X-
windows system to show all three scenes on the same host
through X-protocol. The three sircams are decoded on
different machines using software MPEG-1 decoder.

S. Conclusion and Future Work

An efficient buffer scheduling scheme combined with
Scan for video server design is discussed. We analyze this
algorithm mathematically and implement it in our video
server based on a real-time micro-kernel. From the
experiment, we show that our algorithm effectively reduces
the buffer requirement. We also investigate how the size of
data-block affects the server throughput. Since the system
buffer is limited, with the proposed buffer scheduling
algorithm, we can reduce the buffer requirement and hence
Support more streams. _ '

‘Since only one disk drive equipped in our video server,
the producer throughput seems to be the bottleneck. It is
possible to adopt a faster disk controller to resolve this
problem. For example, an advanced fast SCSI can have 20
MByte/s raw data transfer rate, which means it is possible to
support up to 50 MPEG-1 video streams using our buffer
scheduling scheme. This issue is left for further study.

References;

[1] D. Anderson, Y.Osawa, and R.Govindan, “A File
System for Continuous Media,” ACM Trans. on
Computer Systems, Vol.10, No.4, Nov.1992, pp. 311-
337.

[2] H. M.Vin and P.V. Rangan, “Admission Control
Algorithms for Multimedia On-Demand Servers,”
Network and Operating System Support for Digital
Audio and Video, Proceedings of Third International
Workshop, Nov. 1992, pp.56-68.

[3] P. V. Rangan and H. M. Vin, “Efficient Storage

‘ Techniques for Digital Continuous Multimedia,” IEEE
Trans. on Knowledge and Data Engineering, Vol.5,
No.4, Aug.1993, pp. 564-573.

[4] K. K. Ramokrishnan et. al, “Operating System
Support for a Video-On-Demand File Service,”
Network and Operating System Support for digital
Audio and Video, Proceedings of 4™ International
Workshop, Nov. 1993, pp. 216-227.

102

[5] D. Hildebrand, QNX Software Systems Ltd., “A
Scalable Microkernel POSIX OS for Realtime
Systems”, Embedded Computer Conference, April
1993.

[6] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall,
“SVR4UNIX Scheduler Unacceptable for Multimedia
Applications,” Network and Operating System Support
for Digital Audio and Video, Proceedings of 4%
International Workshop, Nov. 1993, pp. 41-53.

[7] A.L.Narasimha Rddy and J. C. Wyllie, “I/O Issues in
a Multimedia System,” Computer, Vol. 27, No. 3,
Mar.1994, pp. 69-74,

[8] J. Gemmell and S. Christodoulakis, “Principles of

- Delay Sensitive Multimedia Data Storage and
Retrieval,” ACM Trans. Information Systems, Vol. 10,
No.1, Jan.1992, pp. 51-90.

[9] Draft International Standard, “Coded Representation
of Picture, Audio and Multimedia/Hypermedia
Information”, ISO/IEC 11172, Dec. 1994,

[10]D. J. Gemmell, H. M.Vin, D. D. Kandlur, P.V.
Rangan, and L. A. Rowe, “Multimedia Storage
Servers: A Tutorial,” IEEE Computer Magazine, May
1995, pp. 40-49.

[11]K. M. Nichols,“Performance Studies of Digital Video
in a Client/Server Environment”, Network and
Operating System Support for Digital Audio and
Video, Proceedings of Third International Workshop,
Nov. 1992, pp. 81-91.

[12]R. Keller, ~W. Effelsberg and B.
Lamparter,”Performance Bottlenecks in Digital Movie
Systems”, Network and Operating System Support for
Digital Andio and Video, Proceedings of 4%
International Workshop, Nov. 1993, pp. 161-171.

[13]P. Lougher and D. Shepherd, “The Design and
Implementation of a Continuous Media Storage
Server,” Network and Operating System Support for
Digital Audio and Video, Proceedings of Third
International Workshop, Nov. 1992, pp. 69-80.

[14]QNX Software systems Lid. “QNX 4 Operating
System-System Architecture”, July 1993.

[15]QNX Software systems Ltd. “QNX 4 TCP/IP-
Programmer’s Guide”, August 1993 .

[16]QNX Software systems Ltd. “QNX 4 TCP/IP-User’s
Guide”, August 1993.

[17]C. Ruemmler and J. Wilkes, “An In troduction to Disk
Drive Modeling,” IEEE Computer Magazine, March
1994, pp. 17-28.

[18]Drafi International Standard, “Coding of Moving
Pictures and Associated Audio: Systems,” ISO/MEC
13818-1, Nov. 1994.

