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Abstract

Sparing schemes were proposed to improve the relia-
bility of RAID 5 disk arrays. The usage of a spare
disk makes the reliability of disk arrays dependent on
the reconstruction time during which data of the failed
disk are reconstructed on the spare disk space using
the surviving disks. Several reconstruction algorithms
have been suggested for reducing the reconstruction
time and thus improving the reliability of disk arrays.
Parity sparing shows better performance than other
sparing schemes, but the merging process during the
reconstruction cause the scheme to have rather long
reconstruction time. We propose « new reconstruc-
tion algorithm, called wvariant-block piggybacking, for
RAID level 5 using parity sparing. We have found
that though variani-block piggybacking degrades per-
formance a little. it dramatically reduces reconstruc-
tzon time and thus improves the reliability of disk ar-
TAYS USING HATUHY SPATIng.

1 Introduction -

RAID(Redundant Arrays of Inexpensive Disks)
level 5 is one of the most cost-effective, reliable storage
system with high performance. It does not lose any
data though a failire happens[l]. Using the parity-
based data protection and block-interleaving, RAID

level 5 shows high reliability and good performance[2].

RAID 5 disk arrays have been proposed as a hard-
ware solution for providing high data availability.
When a disk in a RAID 5 array fails, the data on
that disk can still he accessed,. albeit less efficiently,
by reading surviving disks and regenerating the data
via the exclusive-OR operation. The array cannot,
however, survive a second disk failure. Therefore it is
necessary that the data on the failed disk be restored
to a spare disk in a timely manner. In case of a disk
failure, sparing scheme rebuilds the data of the failed
disk on a spare disk and thus improves the reliability

"of disk arrays{3]. Several sparing schemes have been
proposed to improve the performance and reliability
of disk arrays by uiilizing the spare disk[2].

The reconstruction process of disk arrays means to
reconstruct the contents of the failed disk on spare
disk area using surviving disks. In a disk array us-
ing sparing scheme, the reliability is tightly related to
the reconstruction time in reconstruction mode. Re-
construction algorithm improves the reliability of disk
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Figure 1: Array organization in hot sparing

array by reducing reconstruction time. Until now,
several reconstruction algorithms have been proposed
for reconstruction. In this paper, we propose a new
reconstruction algorithm, called variant-block piggy-
backing, evaluate the performance and reliability, and
compare variant-block piggybacking with the previous
algorithms.

For performance and reliability comparison, we
consider baseline strategy, redirection of reads, pig-
gybacking of writes, minimal operation, and variant-
block piggybacking proposed in this paper.

The rest of the paper is organized as follows. Sec-
tion 2 acknowledges previous work in the field. Sec-
tion 3 describes the proposed algorithm. Section 4
describes the simulator and workload used. Section
5 compares reconstruction and response times for the
proposed algorithm and the other reconstruction algo-
rithms. Section 6 presents our conclusion and future
work.

2 Related Work

RAID level 5 does not lose any data though a fail-
ure happens. Without immediate and fast reconstruc-
tion, however, it may lose data by an additional disk
failure. With a spare disk, the reconstruction process
starts immediately after the failure, and the data in
the failed disk arve reconstructed from the surviving
disks to the spare disk. Therefore, with a spare disk,
disk arrays have high reliability because of having the
less possibility of an additional disk failure.

Several sparing schemes were introduced according
to the usage of a spare disk. The traditional approach
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Figure 3: Array organization in parity sparing

is hot sparing(3] in Figure 1. In hot sparing, the spare
disk is idle most of time and does not contribute to
the normal operation of the system. But with a disk
failure, it is used instead of the failed disk. In dis-
tributed sparing[4] in Figure 2, the spare disk is used
to store data and parity. Instead, spare blocks are
distributed evenly across the disks in the disk array.
Spare blocks in each disk in disk arrays play the role
-of a spare disk when a failure occurs. Additionally,
because each disk is partially empty, each disk fail-
ure requires less work to reconstruct the contents of
the failed disk. In parity sparing[6] in Figure 3, the
spare blocks are used to store another parity data.
In parity sparing, a parity group is splitted into two
small parity groups, and the spare block and the par-
ity block are used as the parity blocks for two small
parity groups.

With a spare disk, disk arrays have several differ-
ent phases of operation: normal mode, failure mode,
reconstruction mode, reconfigured mode, and restora-
tion mode. Menon and - Mattson identified these
modes of operation in [5]. Normal mode is the period
during which all the disks in the disk array are func-
tional. Failure mode is the period during which a disk
has failed and no reconstruction process begins. Re-
construction mode is the period during which recon-
struction of a failed disk is in progress. Reconfigured
mode is the period after the reconstruction process
finished the reconstruction process of the data on the
failed disk, but before a new spare replaces the failed
disk. Restoration mode is the period during which
a new spare is brought into the system to replace a
failed disk. After the restoration mode, the disk array
operates in normal mode.

A disk array in failure mode and reconstruction
mode cannot survive a second disk failure. Thus, it is
important for the disk array to enter reconstruction
mode and reconstruct the failed disk as quickly as
possible. Several reconstruction algorithms were pro-
posed to reduce reconstruction time and thus improve
the reliability of disk array. Muntz and Lui [8] pro-
posed two reconstruction algorithms. In the first al-
gorithm, called redirection of reads, when user’s read
request to the failed disk causes a data block to be re-
constructed, the reconstructed data block is written
to the spare disk as well as delivered to the request-
ing process. In the second algorithm, piggybacking of
writes, when a user write request to the failed disk
causes a data block to be reconstructed, the recon-
structed data block is written to the spare drive as
well as delivered to the requesting process. Without
reconstruction algorithm, it is called baseline sirat-
egy. Minimal operation[7] uses redirection of reads
and piggybacking of writes together. J. Chandy in [7
evaluates minimal operation through simulation an
shows more improved reliability.

The reconstruction algorithms described above are
the reducing methods of disk access number by us-
ing user request in reconstruction mode. M. Holland
in [9] proposed multiple points of reconstruction be-
sides the above algorithms. The motivation of this
method is the fact that the load of reconstruction
isn’t evenly distributed across all disks. Unlike re-
constructing one parity group sequentially in previ-
ous methods, multiple points of reconstruction recon-
struct several parity groupsin parallel and thus reduce
the reconstruction time. This method enhances the
utilization of all disks, reduces the possibility of sud-
den disk head movement, and uses disk arrays more
effectively. However, since there is more possibility of
reconstruction at that time of user request, response
time of user request may increase. The number of
parity groups reconstructed in parallel is called re-
construction thread in section 5.

In reconstruction mode, reconstruction algorithms
can reduce the reconstruction time but increases the
respénse time of user request. The target of recon-
struction algorithm is to reduce reconstruction time
and additionally reduce performance degradation as
much as possible.

3 Variant-Block Piggybacking

Parity sparing scheme shows better performance
than other sparing schemes since it uses the spare
disk without disk failure. Parity sparing shows less
performance degradation in failure mode and better
performance in reconstruction mode than shown in
other schemes. However, parity sparing shows rather
bad reliability, since the merging process during the
reconstruction cause the scheme to have rather long
reconstruction time. In parity sparing, in order to
improve the reliability, it is important to reduce the
reconstruction time. The proposed algorithm, called
variant-block piggybacking, focuses on the reduction
of reconstruction time in parity sparing scheme.

Although track piggybacking algorithm was pro-
posed in gil()], it was only limited to hot sparing
scheme. In parity sparing, however, track piggyback-
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ing algorithm can’t be used since data blocks and par-
ity blocks are evenly distributed across all disks unlike
hot sparing., So, block-based reconstruction has been
used in parity sparing. Variant-block piggybacking
shows single block access or continuous two block ac-
cess according to the location of accessed data and
parity blocks in disk arrays.

Figure 4 and 5 shows the reconstruction process of
minimal operation when there is a read request to the
failed disk. Figure 4 shows read accesses necessary to
reconstruct the data block of failed disk. We assume
that disk 0 is failed. If the read request to the data
block 0 occurs, the shaded blocks should be read to-
service the requested data block 0, reconstruct the
data block on a spare block, and generate new parity
block. For example, to recover the data block 0, data
block 1, 2, and parity block P1A are read and then
exclusive-ORed. To generate new parity, P1B is read
and then exclusive-ORed with P1A.

Figure 5 shows the writes of the reconstructed data
block 0 and the new parity on disk arrays. The re-
constructed data block 0 is written to the block P1A,
and the new parity is written to the block P1B.

Figure. 6 and 7 shows the proposed algorithm,
called variant-block piggybacking. If there is a read
request to a data block on the failed disk, the pas-
ity group. including the requested data block and the
continuous parity group in the same track are recon-
structed together. Figure 6 shows the two continuous
parity groups. The shaded blocks have to be read to
do reconstruction process. In this case, there exist
continuous blocks which can be read with one disk
access. Of course, these blocks exist continuously at
the same track on a disk. Figure 7 shows the writes
of the reconstructed data block and the new parity
block. Like the read request, continuous write blocks
are written with one disk access. With the proposed
algorithm, we can reconstruct the continuous two par-
ity groups together through single block and continu-
ous block accesses, reconstruct more quickly by reduc~
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Figure 6: Read accesses for reconstruction of continu-
ous parity groups with read request to the failed disk
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Figure 7: Write accesses for reconstruction of con-
tinuous parity groups with read request to the failed
disk

ing seek time and rotational delay and thus improve
the reliability of disk arrays.

Figure 8 and 9 shows read and write accesses per
one track when there is a read request to the failed
disk block. On reconstructing one parity group, the
reconstruction of the continuous parity groups occurs
simultaneously.

Figure 10 and 11 shows the read and write accesses
per one track when there is a write request to the
failed disk block. As the operation of read request,
single block and continuous block accesses occur when
there is a write request to the failed disk.

In summary, a detailed description of the algorithm
is given as follows. We assume that one disk of RAID
5 using parity sparing is failed and a user read/write
request to the failed disk block have to be delivered.

Step 1. The single or contiguous data/parity blocks
of the failed parity group and contiguous parity group
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Figure 8: Read accesses for reconstruction with read
request to the failed disk (track)



Proceedings of International Conference
on Computer Architecture

disk 0 disk t disk 2 disk 3 disk 4 disk 5 disk 6

0 102 3 4 PA || PB

6 7 8 s | ['pa PB 5

T 12 13 14 PA .PB i0 1

; 18 19 PA PB- 15 16 17

k| 20 PA B 20 2 22 23

PA | I PR 25 26 27 28 29

PB 30 el 32 33 34 PA
Failed
Disk

Figure 9: Write accesses for reconstruction with read
request to the failed disk (track)
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Figure 10: Read accesses for reconstruction with write.
vequest to the failed disk (track)
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Figure 11: Write accdesses for reconstruction with
write request to the failed disk (track)
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Table 1 Disk parameters

bytes per sector ol2
sectors per track 112
tracks per cylinder 20
number of cylinders 2500
revolution time 8.3 ms
cyhnder switch time | 1.8 ms
average seek time 10.0 ms
maximum seek time | 20.0 ms

are read to reconstruct the failed data block and §he
deliver the block.

Step 2. The data and parity blocks have to be
exclusive-ORed according to their relation. The failed
data block is reconstructed by using exclusive-OR. op-
eration is delivered to user request.

Step 3. The reconstructed data and parity blocks
are written to two parity spaces of RAID 5 using par-
ity sparing. If the contiguous blocks exist, the blocks
can be written to disk at a time. After these op-
erations, RAID 5 using parity sparing is changed to
typical RAID 5.

Variant-block piggybacking reconstruct the contin-
uous two parity groups included in the same track,
when there exists read or write request to the failed
disk block. In continuous parity groups, continuous
blocks can be accessed at a time. Through the con-
tinnous block read and write accesses, we can reduce
seek time and rotational delay and thus improve the
reliability of disk array. Using variant-block piggy-
backing, we can dramatically improve the reliability
of disk arrays using parity sparing.

4 Simulation Model

In this section, the simulated system model is de-
scribed. We assume that a disk array is composed
of 7 disks including a spare disk. Data and par-
ity blocks are placed according to the left-symmetric
placement|11]. We consider the 5 algorithms, baseline
strategy, redirection of reads, piggybacking of writes,
minimal operation, and the proposed algorithm. Disk
parameters considered for the simulation are given in
Table 1.

To model a seek time cost function, we used below
non-linear model reported in [11].

or [0 SD=0
=\ V3D —1+WSD-1)+¢, 5D >0

ST : Seek Tawme
SD : Seek Distance

The values of constants a and b in above model are
0.2 and 0.0032 respectively, according to disk param-
eters. Constant ¢ means minimum seek time, namely,
cylinder switch time in table 1. Seek distance means
the number of cylinders hetween the cylinder number



where the disk head is placed to serve the previous re-
quest and the cylinder number where the head must
be moved to serve the current request. The disks are
modeled to have two queues of requests. One of the
queues is the user request queue which is operational
at all times. The other queue, the reconstruction
queue,.is operational only during the reconstruction
or restoration process. The user request queue has
a higher priority over the reconstruction queue. The
requests in the reconstruction queue are served only
if the user request queue is empty. However, once a
reconstruction request is started, it’s not preempted
until completion,

Also, we assume that disk drives support a split
access operation. We used C-LOOK policy for serving
the requests at a disk queue.

There are many cases where a user request needs
several disk accesses. The response time of those re-
quests is the time elapsed from the time the request is
issued to the time when the last access completes. The
response times during reconstruction mode of opera-
tion are the averages of response times of all user re-
quests served during that time. Reconstruction time,
the time spent in the reconstruction mode is mea-
sured. It is important to keep the reconstruction time
to be as small as possible to avoid data loss hy an ad-
ditional failure during this time. :

To measure the performance according to the
size of workload, requests rates are varied from 20
I/Os/sec to 120 1/Os/sec. In these cases, the requests
are assumed to be read requests with 70 percent prob-
ability and writes requests with 30 percent probabil-
ity. Requests are assumed to be uniformly distributed
over all the disks and over all the blocks in a disk. We
assume that requests arrive with a discrete uniform
distribution.

The simulator was implemented using smpl[12],
a C based simulation library. The results obtained
through simulations are presented in the next section.

5 Simulation Results

Figure 12 shows average response times of recon-
struction algorithms when the reconstruction thread
is 1. Under low workload from 20 to 100 I/Os/sec.
the average response time of variant-block piggyback-
ing shows shorter response time than that of minimal
operation by the reduction of the read/write response
time to the blocks already reconstructed. However,
under high workload over 100 I/Os/sec, the average
response time is longer than that of minimal opera-
tion because of relatively long read/write time to the
continuous block. With continuous block access, the
proposed algorithm shows a little performance degra-
dation under high workload.

Figure 13 shows average response times when the
reconstriction thread is 4. All the response times of
reconstruction algorithms are a little longer than re-
construction thread 1 in Figure 12. The increased
reconstruction thread can help to reduce the recon-
struction time, but degrades the performance by in-
creasing the average response time.

Figure 14 shows average response times when the
reconstruction thread is 8. The average response
times are longer than those of reconstruction thread
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1 and 4. However, there is' no change in the order of
reconstruction algorithms.

Figure 15 shows average response time when the re-
construction thread is 16. The average response times
are longer than those of reconstruction thread 1, 4,
and 8.

Figure 16 shows reconstruction times of reconstruc-
tion algorithms when reconstruction thread number
is 1. The baseline strategy shows the longest recon-
struction time. Variant-block piggybacking shows the
shortest reconstruction time by reducing the seek time
and rotational delay in reconstruction process. Redi-
rection of reads shows shorter reconstruction time
than piggybacking of writes since redirection of reads
is more effective and read request of all service holds
70 percent.

Figure 17 shows reconstruction times when recon-
struction-thread is 4. Reconstruction times of recon-
struction algorithms are dramatically reduced com-
pared with the case of reconstruction thread 1. This
figure shows that by increasing the reconstruction
thread number, reconstruction time can be reduced
and the reliability of disk array can be improved.

Figure 18 shows reconstruction times when recon-
struction thread is 8. It shows more reduced recon-
str:ilction time than those of reconstruction thread 1
and 4.

Figure 19 shows reconstruction times when recon-
struction thread is 16. Under reconstruction thread
16, since disk utilization arrives at peak point and
thus the more reduction of reconstruction time may

12

—— Vat iant-bloch
Piggybaching

—— Bininal Opsration

—=— Piggybacking of urites

——= Radisection of reads

—— Bavel tne

/—///

20 44

60 &0 120
10 request ratos{lfOsfsec)

Figure 18: Reconstruction time (reconstruction
thread 8)

—e— Varfant-block
450 piggybacking
= Binizal CGparation
=490 1|~ Piggrbecking of ofites
e —— Reditection of resds
5 388 7| —— Basoing
§ 300
S0
g 200
Zue
g 100
50
9
20 40 60 80 120
H0 roguost rotes(1/0s/sec)
Figure 19: Reconstruction time (reconstruction

thread 16)

not be expected, reconstruction thread 16 does not
show large reliability improvement compared with re-
construction thread 8.

Through the increase of recomstruction thread
number, overall performance of reconstruction algo-
rithms degrades a little. However, variant-block pig-
gybacking is more reliable than other algorithms and
through the increase of reconstruction thread number,
reconstruction times of all reconstruction algorithms
are reduced. These results shows that though there is
a little performance degradation, we get dramatically
improved reliability through variant-block piggyback-
ing and multiple reconstruction thread.

6 Conclusion and Future Works

In this paper, we propose a new reconstruction
algorithm, called variant-block piggybacking. With
continuous block accesses, variant-block piggybacking
reduces the reconstruction time and thus improves
the reliability of RAID level 5 using parity sparing.
The simulation results show that in recomnstruction
mode, variant-block piggybacking has the shortest re-
construction time compared with the previous algo-
rithms. In multiple poinis of reconstruction, the pro-
posed algorithm shows the same results. As a future
work, we will improve the proposed algorithm, re-
search into the reconstruction algorithm in detail, and
propose more generalized reconstruction algorithm.
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