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Abstract

The Generic Cell Rate Algorithm (GCRA) is
recommended by the ATM Forum to perform
Usage Parameter Control at the User Network
Interface in ATM network where every traffic
source is policed by a GCRA enforcer before
entering the access node at the edge of the
network. In this article, we investigate the
characteristics of the model that GCRA-enforced
traffic sources are merged together by a
multiplexer in the edge node. Traffic parameters

concerned include peak cell rate, mean cell rate,

CDV tolerance and burst tolerance. Based on the
worst output traffic pattern from a dual-stage
GCRA enforcer, we obtain the upper bound of
the queue length as the function of the GCRA
parameters and number of connections.

1. Introduction

Call Admission Control (CAC) and
Usage Parameter Control (UPC) are two
important steps for congestion control in ATM
networks. During the CAC phase, the network
user declares the source traffic parameters and
the regnired Quality of Service (QoS), so as for
the network to decide whether to accept the

connection or not. After a connection is accepted,

some UPC scheme must be utilized to monitor
and control traffic by detecting whether it

conforms to the declared parameters. In the past.

the Leaky Bucket (LB) is the most popular one
due to its simple algorithm [1,2]. At the edge
node of the network, traffic enforced by the UPC
scheme is usually multiplexed by a multiplexer
before entering the network. Based on the cell

loss ratio at the multiplexer, [3] has discussed
whether the full rate periodic on/off pattern is the
worst pattern. Based on the criteria of average
queueing delay at the multiplexer, [4] found out
the worst pattern under the assumption that
multiple cells can pass through a LB at the same
time as long as there are sufficient tokens in the
pool.

The ITU-T Recommendation 1.371 [5]
used the Generic Cell Rate Algorithim (GCRA)
to define the traffic parameters Peak Cell Rate
(PCR) and Cell Delay Variation Tolerance (CDV
Tolerance) of an ATM connection. The ATM
Forum [6] applied the algorithm to define
Sustainable Cell Rate (SCR, the upper bound of
average rate) and Burst Tolerance (BT) so as to
facilitate UPC function. There are two pairs of
parameters based on GCRA for conformance
testing at the User Network Interface (UNI). The
PCR (represented by the peak interarrival time

1) and the CDV Tolerance (denoted as Lp) are

tested by GCRA( L Lp ). In the same way, the
SCR (represented by the mean interarrival time
J,) and the BT are tested by the GCRA(/,, ).
where [, is the sum of BT and the specified
CDV Tolerance (7,) at the UNL While the
parameter BT is conveyed through the expected
Maximum Burst Size (ABS) that may be
transmitted at peak cell rate according to

BT = (A/lBS—IﬁS -—Ip)

So far, the worst traffic pattern after the GCRA
enforcer has not been fully discussed in the
literature. In this paper, based on the worst
output traffic patiern from the GCRA enforcer,
we obtain the upper bound on the average queue
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length as the function of the GCRA parameters
and number of connections.

2. Description of system model

The system contains traffic sources.

Before they are multiplexed by the multiplexer
in the edge node, every source is enforced by a
dual-stage GCRA enforcer with a parameter set

(IP,LP,IS,LS). The flow chart of the dual-

stage GCRA enforcer is shown in Fig.1. It
comprises two single-stage GCRA UPCs. For
such a system, we make the following
assumptions for the sake of convenient
manipulation.

(1). The enforcer only discards non-conforming
cells, while it keeps transparent to
conforming cells.

The transmission time of the source, the
processing time of the enforcer and the
propagation delay time are neglected. So,
any cell departing from a source would be
immediately sent out of the enforcer and be
multiplexed to the buffer as long as it is a
conforming one.

Any cell found at the input port of the
multiplexer is stored in the buffer. If more
than one cells arrive at the multiplexer at
the same time, the arrival times of these
cells at the buffer are treated as the same.
There is sufficient buffer size in the
multiplexer such that no cell would be lost.
Due to constant cell size, the service time, which
is denoted as 1/ (or ), is also constant. Such a
multiplexer may stand for the one set in front of
a switch so as to concentrate user traffic and
reduce the required input ports. On the other
hand, it may stand for the logical multiplexer at
the output port of a switch that collecting cells
from different input ports.

For the system to be stable, the total sustainable
cell rate must be less than the link capacity, i.e.,

).

(3).

).

D
T

Besides, if &g p , there would be no bursty
»
level congestion even if all cells arrive at peak
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cell rate. As a result, for the purpose of nonirivial
discussing, we assume that

N,
Ip

3. Most Clumping Pattern (MCP)

In this section, we would like to find out
when a cell passes through a dual-stage GCRA
and how soon the following cells may pass
through it.

As the flow chart shown in Figure 1, if
there are some non-conforming cells before the

k-th arriving cell, then f - /. However, any non-
conforming cell would neither pass through the

enforcer nor bring a new TATP(1+1) or

TAT(I+1) - As a result, we may assume that

the sources only send out conforming cells. That
is to say, we may simultaneously substitute /
with £, and ignore the blocks enclosed by dashed
lines in the flow chart and assume that

(k)= max {TAT, (k)- L, TAT, (k )~ L, }

As we can see from Fig,. 1,

[TAT, (k) 1, if (k)< TAT, (k)
|t)+ 1,0 if t(k)> TAT, (k)

As a result, for the k-th cell to minimize

TAT, (k+1)=

TAT,(k+1) - t(k) must be subject to

(k)< TAT, (k) -
Similarly, for the #A-th cell to minimize
TAT,(k +1) ,,_«(k) is subject to

(k)< TAT, (k) -

Besides, the inherent
transmission line is

Hk)=t(k—1)+n >

limitation om the

n= l is a unit slot time.
1

where
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Thus, the earliest time for the A-th cell
to be a conforming cell and to minimize the

allowable arrival time of the (k +1) -thcell is

1o (k)= max{TAT, (k)- L, TAT, (k)= L, (k= 1)+n }
Without loss of generality, we may
assume the arrival time of the first cell is

t(l): o and set the initial value

such that the first

TAT,(1)= TAT,(1)=0

incoming cell is conforming. It results in
TATP(z)z 1, and TAT, (2): I, - Similar as

the above derivation, we may let the arrival time
of the second cell be

t(2)=max{lp~Lp,1,,.—L,,,,n} W

Here comes out the problem of
determining the maximum_ of three terms in
Eq(1). Similar problem would be encountered
when determining the arrival time of the
following cells. It involves the comparison
among the GCRA parameters and n. It is so
complicated due to various conditions. However,
we may simplify it by the following procedure.
At first, we define

X(co):om >
Y)=ol,-1, and

Z(co)=c0]s -L, - where ¢y eRT.

The inherent relation between the mean
interarrival time, peak interarrival time and the
unit slot time is

I,z1,2n -
They respectively correspond to the slopes of
l(co) , Y(g)) and Z(co) with respect to .
Three possible relationship among X(co) R
V) and Z() are shown in Figure 2.

Initially, Y(©)z¥@) ad Y(©)2Z(@)
We define
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A(I polpdy L,s,) : the minimum positive integer

such that y(@)>X() and Y()zZ()
and

B(I polp s, Ls) : the minimum positive integer

such that 7(e )2 X(@) and Z(0)zY(@)

Evidently, B does exist. However, 4 may not
always exist. Now, we divide the relationship
between the GCRA parameters and m into two
classes. For class 1, 4 does exist and for class 2,

A does not exist. As a result, Figure 2-(a)'s is

classified as class 1 while Figure 2-(b)'s is
classified as class 2.
Class 1
Because both 4 and B exist, we mnay
describe the discrete characteristics in this class
as
\

l‘x(W)z Y(7)and X(7)2 Z(7), 0< W< 4-1, BRI
¥()2 X(W)and Y(7)2 X(W) ASW<B-1, |
lZ(W) > X(7)and Z(¥)= X(W), B<W,

where ¥/ may be any positive integer.
So, in this class, we can obtain the result of Eq (1)

as -f1(2)=71 (i.e., W =1 ), where the subscript

'l' means class 1. Referring to Fig. 2, we have

TAT,(3)=TAT,(2)+1, =21, and

TAT,(3)= TAT,(2)+ I, =21
Then, according to Eq (5), we may let the third
cell arrives at the earliest time (/7 =2 ), i.e.,

1(3)=1,6)=max I, - L, 21, - L,2m }=2n

Similarly, we may let the i-th cell arrive at the
earliest time (W =i -1 ), i.e.,

4 = max i - 1), - Ly (i~ W~ LG~ }

=(-1n,1<i<4d,ieN.

Following the same principle we can obtain the
carliest arrival time of other cells and express
them as,

(i-1;, 1<i< A4,

H@)=G-),-L,, A+1<i<B,
(-1, L, B+1<i.



If we denote the interarrival  times
asAy(i)= 1 (i +1)-1,() -then
. 1<i<d4-1
Aly~L,—=(A=1)n. i= A,
AE)=11,- A+1<i<B-1
Bl,~L,~(B-1),+L,.i=B.
I, B+1<i,
where < 47 p—Lp— (1 - 1);] <I, and
]],<BIS—L,,.—(B—1)[P+LP<[,y For an

arrival pattern with such a  sequence of
interarrival time, all cells (except the first one)
arrive with the shortest allowable time apart
from the first one. So, we name such a pattern as
Most Clumping Pattern (MCP) of class |.
Class 2 :

Because only B exists as shown in
Figure 2-(b), we may describe the discretc
characteristics in this class as

{X (W)= Y(Fyand X (V)2 Z(V) 0<W < B-1,

ZV)z X (F)and Z(V)2 Y(F), B<IF.

Similar as the derivation for class 1, we may
assign the earliest arrival time of each cell at

tz(i):{(i—l)q, I<i<B.

(-1, L, B+1<i.

We similarly define

Ay ()= + 1)~ 1,()

and obtain

. I<i<B-l
Ay(i)={Bl, - L,~(B-1).i=B.
1 B+1<i.

b

For an arrival pattern with such a sequence of
interarrival time, all cells (except the first one)
arrive with the shortest allowable time. So. we
call such a pattern as Most Clumping Pattern
(MCP) of class 2.

4. Average queue length
In this section, we shall derive an upper
bound for average queue length in the
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multiplexer buffer. Before that, we shall
introduce two lemmas. First, we define some
notations as follows.

u(t) - It is a funtion representing the number of
arriving cells in [(), t] . It also stands
for the arrival process.

Ny : The number of busy periods.

E/ff/‘} 1<k < Ny, It stand for the range of the

k-th  busy period, where the
superscriptor "s" and "e" represent
starting and end points, respectively.

1
&y =g

the

L) —— 120 B
average queue length corresponding

to the arrival process oc(t) during the

period [ta.ts ]

Lemma 1.
For a server with constant service times
and sufficient buffer size,

o (1)< 213]5[ :f L (r))]
proof.

See ref [7].
This lemma allows us to find the upper bound of
average queue length only by observing the
worst busy period. In the following, we shall
investigate how to maximize the average queue
length as well as what the quantity is.
Lemma 2.

Assume an arrival process a(l‘)

feeding to a server with constant service
times and sufficient buffer size and
resulting in a unique busy period

[0’ tp,\. d]. If any of the cell arrival time,

except the first one, is shifted forward,
and the resulted arrival process is

' represented as o(-"”\(t), then
¥

PO
Proof.

See ref[7].
Then, according to this lemma, in order to get
the upper bound of average queue length in one
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busy period. we should hasten the arrival time
legally for every cell in one busy period.

4.1 Synchronous Clumping Condition
{SCC)

We first define the condition that all
sources synchronously send out MCP as
Synchronous Clumping Condition (SCC). Under
this condition, all of the transmitted cells would
transparently pass through the dual-stage GCRA .
We call the p/ cells that simuitancously arrive

at the multiplexer as a bulk (or a batch). For such
an aggregated traffic process. we wish to know
that at least how many bulks must arrive at the
buffer so as to maximize the average quecuc
length. The derivation must include two classes
corresponding to that of MCP.
4.1.1 Class 1

To find the maximum of average queue
length for class-1 arrival pattern, we shall divide
the arrival pattern into three parts according to
interarrival time. For convenience, we let the
arrival time of the first bulk be  — () and denote

that of the i-th bulk as 1’.(/'). where the subscript

"1" means class 1.
Part I; For the first 4 bulks, the arrival time of
the i-th bulk is

WO={-iy

According to the definition . average queue
length during the busy period (0, /() ) is
defined as

i=1
2<i< d

ZU (1 /1)

_ n=1

N

B

i=

i—1WV. —
_@EO L 6 gL sicw)
2pn e

where the numerator represents the total time all
cells have spent in the queue during the busy
period (0, t1() ), the denominator represents the
busy period and #1(i,n) is unfinished work (or
waiting time) caused by the n-th cell in the i-th
bulk which can be derived as

I)N +n-1 1

w(i,n)= €

-G -1)1, 12is N tans N,
i3

For convinience. we define
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IV i1
7 () (21—1)1\/ -1

“ i Ny (1 1)_

Hence the average queue length in the mterval (0,
11(j) )is

dy +dy+--+d;

1

1\1

It follows that 7. —4, | =—$—~>0 (. Ny= 1)

so the afi (j) Isincreasing.

It can be easily checked that

0,()>0(-1) 2<i<Ad
Hence, the maximum of average queue length
for Part I is obtained as

Ql(“)“[I(L")’

Part II: The bulk arrival times in this part are
expressed as

n(@)=G-p- L,

Similarly we have

A+1<i<B

Wy (in)=[(i-1)N prn-1 =1, (i-1)+L,, for A+1<i<B

and

- 21N, -1h-21,(i-1)+2L
cf1(1)=[1 at ]]2 ot 2

Hence the average queue length in the interval (0,
tl(i))is

A
k=1
i

ai6)=

, for A+1<i< B

Since we have assumed that N n > I, it

follows that
(71(1.)—(?1(1. - ].)= ]V’YT] _‘IP >0

So J](,) is increasing with i (for 1<i< B)
can be easily proved that



0.()>0,G-1) 1<i<B

Hence, the maximum of average queue length

for Part I and Part II occurs at j = B and it is
expressed as

a()=

«&S’ZNJ—B— A+ Ap-(B- A)[(.4+B~1)1P—2Ly]}

281

Part I: From the (B+l) -th bulk on, the
arrival  time of the i-th bulk is
n(@)=@G-1,-L, . To maintain a busy

period, the next bulk must amrive before its
previous bulks are completely served, thus we
have

(-, -Ly<(i-1)Ng

So, there is a limit on the bulk number in a busy
period and the maximal one is

I+ L~ N
8(11!7’I'P~"’S»~LS)= [_LZ:)NT‘J

Following the derivations similarly as before, we
obtain

W n)= (- DV g+ - N - I = 1)+ Ly for B+1<i
and 1Sw<Ng

70)= [@i-nv, - 1]12— 2 (i -1)+2L
, and

i
_ zd)
0,()= kzlin , for B+1<i<se

Since we assumed Nm<I ., it follows that
di(i)<dy(i-1) for B+1<i<e
Although ‘Z(’) is decreasing with i

(for B+1<i<e) it isnot true that 0,() is

also decreasing for B+1<i<e . However, it
can be easily checked that
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{a@)za(i—u if )2 G-1)
3.0)<Ti-1) if <D 6-1)
Summarizing the results analyzed in from Part I

to Part ITI, we make the following statements.

(). If 4(B+1)<0y(B) - then the maximum
of average queue length in a busy period
happens at j = B (for 1<i<e) and the
maximum is 0, = 0,(B) .

(ii). On the other hand, if 31(34_1)2 O (B) ,
then the maximum of average queue

length happens at a certain jl* -th bulk
@HSII*SS) , and the maximum is

8=a) -

The condition that i: exists is that

, for B+1<iy <e

76 )n06 1)

ih-1_
T dy(k)
k=1

zr -1

It means that ,'l* must also satisfy the following
inequality

00~ N G~ N} - (- 20y + BN, - B, + 81, 4 20BL, JE O
B _ s -
where g, = kz 1dl (k) and i is a positive

integer with B+1<i) <e

In summary, we obtain the maximum of average
quene length under the synchronous clumping
condition (SCC) as

_ |&(B), if iy does not exist,
t —Q_IG) if i) existsfor B+1<i; <e.
@
4.1.2 Class 2
To find the maximum of average queue length

corresponding to class-2 pattern, we shall divide
the arrival pattern into two parts for discussion.
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Smularlv, summarizing the results analyzed in
Part 1 and Part II. we make the following
statements.

). If Jz (B+1)<11§2(B) , then the maximum
of average queue length in a busy period

happens at j = B (for 1<i<e) and the

maximum is 0, = 0,(B) .

(ii). On the other hand, if 4, (B+1)2 10, (B) .
then the maximum of average queue length

happens at a certain ; -th bulk Qﬁ’ +1<is < s) .

and the maximum is Q’Z - Qz (;)

The condition that i: exists is that

dz( )zngz(z—l) for B+1<is <¢

It means that ;* must also satisfy the following

inequality

G- N~ (- N —(l—:pd; + BNy~ WB2 1, + BT+ :uu,)s 0.

B (Ny-th

where ; _ B~ (N and ;* is a positive

integer which satisfying p 1< ,-;‘ <e

In summary, we express the maximum of
average queue length for class-2 arrival pattern
under the SCC as

L .* .
it’ i, does not exist,

02(B).

25 = . .
ng) if i; exists for B+l$i§$s‘

3)

4.2 Any condition other than SCC
For any arrival pattern we can show that [7] the
maximum of average queue length for the system

in Figure 1 is upperly bounded by Q as in Eq
(2) for class-1 arrival pattern or by Q2 in Eq {(3)

for class-2 arrival pattern obtained under SCC.

5. Numerical examples and discussion
Exzample 1.
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If we choose

].v =10. LP =20. =1 B(maximum burst size)=20,

N,=15

we can get

Ly=Br+L, =(B—1XIS—IP)+LP =210
cells time.

0,(B)=17285 cells,

L
A=|1+—E—|=3 |,
Ip -n

:—:(maximum number of bulks in a busy period)= 43

And the arrival pattern belongs to the class-1

pattern, we obtain 0 < il’“ < 28, but l'l"‘ is also

subject to the inequality 215,~1* <43 - So the

maximum of average queue length happens at 1'1*
=28 and the maximum is 80.46 cells,

Example 2.
If

1,=20,1,=10, Ny =15, B=20, L, =171 n=1,

he arrival process belongs to class-2 pattern thus
we obtain

LSIBT'F.LP =361 N

set
t

we

0,(B)= 140 cells time, & =73 We also

have 0 < ;* <38, but j2* is also subject to the

inequality 215;;‘ <73 . So the maximum of

average queue length happens at i; =38 and the
maximum is 180.5 cells.

6. Conclusion

In ATM networks, the UPC mechanism
plays a key tole for congestion conirol, namely,
in order to prevent illegal traffic by malicious
users from entering network, each source must
be monitored by the UPC mechanism before
entering network. Hence, the behavior of
aggregaied enforced souce at the multiplexer and
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[ Amival of k-t cell at 1,(K) |
the relationship with GCRA UPC parameters are - ---------w-coeoeooiooaoo_fococoooo--nox

worth discussing. In this article, we have found ]
TAT,()> t,()+ L,

out an upper bound of average queue length for :

the system in Figure 1. It was obtained when the
N, sources send out cells under synchronous
clumping condition (SCC). Although the relation

P

we obtained the result by simply classifying it as
two classes only. We also showed that the upperi
|

bound under synchronous condition is larger than
that for asynchronous condition. '
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