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Abstract

Several of the recent Intel x86/compatible microprocessor
designs employ a special decoder that translates the x86 instructions
into RISC-like micro-operations. In this paper a variety of P6-like
decoders are studied in terms of various decoding schemes,
instruction scan window size and their constituents. The trade-off
between performance and die areu of these decoders is also studied
in details. We find that the constituent of a decoder dominantly
decides its performance, while the influence of the decoding scheme
and window size is quite limited.

1. Introduction

The recently announced x86-compatible microprocessors such as
Intel P6 and Pentium I, AMD K5 and K6, and NexGen Nx686 (which
has been acquired by the AMD ) all employ a special decoder that
translates an x86 instruction into some micro-operations before the
instruction is executed by functional units. The execution of an x86
instructions is fulfilled by performing its corresponding micro-
operations. For example, the x86 instruction ADD Mem, BX should be
translated into a sequence of three micro-operations: LOAD R2, RI;
ADD R3, R2; STORE R1. R3, where Mem is a memory address held in
R1. Thus, the execution of ADD Mem, BX _is carried out by executing
the three micro-operations ( briefly called micro-ops).

The decoder usually consists of several translators that convert x86
instructions into micro-ops. Those instructions that can not be handled
by the decoder are passed over to the microcode instruction sequencer
(briefly the micro-sequencer). Figure | shows the decoder architecture
of the Intel P6's microprocessor [1-8). Example | illustrates how Intel
P6’s decoder translates the x86 instruction into the micro-operations,
The NexGen Nx686°s [5] and the AMD K5's [6) decoder architectures
employ a technique similar to Intel P6’s approach.

Example 1: Suppose Insty, Insts, Insts, Insty, Insts, Insts, Insts,
Insts, Insts and Instyy forin a stream of x86 instructions that have to be
respectively converted into 2, 4, 2, 1, 1, 1, 5, 1, I and 2 micro-ops and
initially reside in the instruction cache. Table 1 shows the instructions
that are translated by P6’s decoder at each clock cycle. It takes 6 clock
cycle to completely translate these instructions. The < Insty, Insty, Inst;
>, < Insty, Inst, Insty > and the like are the instruction sequences
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inspected by the decoder. Only one instruction sequence is inspected
per clock cycle. The last column gives the instructions inspected by the
decoder during each cycle. The entry denoted by (/nst, J) under each
translator represents /nsy; is translated into j micro-ops by the
designated translator. If (/nsr, j) is in the column micro-sequencer, it
indicates that /as; will be translated by the micro-sequencer into at
least j micro-ops. In general, the micro-sequencer will put out a certain
number of micro-ops per cycle until an x86 instruction is completely
decoded. For simplicity, we assume that all micro-ops will be
generated by the micro-sequencer at one cycle. 0
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Figure 1. Intel P6's decoder-architecture.

Because we are only concerned with whether an x86 instruction
can be translated by a translator, the number of its corresponding
micro-ops, not the operations of the instruction itself, is of our interest.
Therefore, a number 3 will be used in an instruction stream to denote
an x86 instruction that must be translated into 3 micro-ops. For
example, the instruction stream <3, 2, 2,... > denotes a sequence
of x86 instructions that will be translated into a sequence of 3 micro-
ops, 2 micro-ops, 2 micro-ops, . . .. However, if an x86 instruction
must be coaverted by the micro-sequencer, it will be denoted by one
plus the largest number of micro-ops that can be generated by any
translator, i.e., the number of micro-ops generated by the micro-
sequencer per cycle.

Table 1. A decoding scenario by P6 decoder
Clock | Simple Simple | Complex Micro | Instructions inspected
Cycle | Translator | Translator | Translator Sequencer

1 {Inst;, 2)

< Insty, Insty, Insts>

2 (Insta, 4) < Insts, Insts, Insty>
3 Unsty, 1) | (Unsts, 1) | (Insty, 2) < Insty, Insty, Insts>
4 (Inst;, 1) < Insts, Inst;, Insts>
5 (nstz, 5) | < Insty, Insts, Insts>
6 (Insty, 1) | {Unsts 1) | (Insty 1)

< Insty, Insty, Insty>

The effectiveness of a decoder is measured in terms of the number
of x86 instructions translated and the number of micro-ops generated
ateach clock cycle. In {9] the decoding process of this sort of decoders
is modeled as a Markov chain and Markov chain theory is employed to
evaluate the performance of a decoder. In [10] the authors study the
trade-off between the P6’s performance and the die area of the
decoders of different constituents. The authors study how dependency
between instructions and limited reordering of instructions will
influence upon the performance of the decoder. The simulation results
demonstrate that the influence of instruction dependency on decoder
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performance is quite limited. In {11] simulation is performed to study
the performance for several decoders similar to the one used by the P6.
In this paper. we will explore more design options that would be
possible to enhance the performance of a decoder. The approach
proposed in [9] is employed to evaluate the performance of a decoder.
The rest of this paper is organized as follows. In Section 2 the
proposed works are briefly presented. In Section 3 an abstract model of
decoder architectures is introduced [9). In Section 4 the five decoding
schemes are described in detail based on the abstract model. In Section
5 the above four issues are investigated based on a large amount of
performance figures. The last section draws some conclusions.

2. Proposed works

In example 2.1 if we inspect the instruction sequence closely and
reorder the instruction stream into Insty, Insty, Instz, Inst;, Insts, Insts,
Insty. Insts, Insta and Instye, the instructions decoded per clock cycle
are tabulated in Table 2. S

Table 2. Another decoding scenario of instruction with reordering &
Clock | Simple Simple | Complex Micro | Instructions inspected
Cycle | Translator | Translator | Translator | Sequencer
(Insty, 1) (Inst;, 2)
(Insty, ) < Instz, Insts, Insts>
Unsts, 1§ (nsts, 1) | Unsts, 2)

< Insty, Insty, Insi>

< Insty, Insts, Inste>
(Inst;, 5) | < instz, Insts, Insto>
< Insty, Insty, Instp>

wnidfwlto) —

(Insts, 1Y} (Unsty, 1) {nstio, 1)

Comparing Table 2 to Table 1, the number of clock cycles spent in
this case is one less than that in the previous case. Thus, we guess that
the reordering of instructions during decoding will increases the
decoder performance in terms of the number of instructions decoded
per clock cycle. What “reordering of instructions™ means is in fact to
bypass some instructions that can’t be converted by an available
translator during decoding. There are two bypassing strategies: first fit
and best fit, which will be discussed in detail in the following
paragraphs. '

Normally, Intel P6’s decoder won't translate the instructions
following the one that must be translated by the micro-sequencer. We
expect that the number of instructions translated by the decoder will
increase if it can translate the instructions behind the one that must be
handled by the micro-sequencer. We call this capability “lookahead”.
Based on whether with or without lookahead, with or without a
bypassing strategy, the following five decoding schemes will be
studied in this paper.

Decoding scheme I Intel P6 decoding scheme.

Decoding scheme 2: Intel P6 decoding scheme without lookahead

and first fit.

Decoding scheme 3: Intel P6 decoding scheme without lookahead

and best fit.

Decoding scheme 4: Intel P6 decoding scheme with lookahead and

first fit.

Decoding schene 5: Intel P6 decoding scheme with lookahead and

best fit.

Moreover, the number of x86 instructions eligibly inspected by the
P6's decoder at each clock cycle is equal to the sum of the translators.
If the number of instructions inspected can be increased by a number
W, we expect the number of instructions decoded per cycle will
increase too. We call W the size of a scan window in which the x86
instructions are eligible for translation. Based on the above
observations, the following issues with regard to designing of a
decoder for higher superscalar capability are investigated in this paper.
(1). The decoder performance in terms of the constituent of a decoder,

i.e., the number and the types of translators that form a decoder.
(2). The decoder performance in terms of decoding scheme.
(3). The decoder performance in terms of scan window size.
(4). The relation among decoder performance, die area and the
constituents of decoders.

3. Abstract model of a decoder

In order to formally address the performance evaluation problem,
the abstract model for the decoder architecture proposed in [9] is
extended to model the above five decoding schemes and presence of a
scan window. The abstract model shown in Figure 2 consists of three
types of translators and a micro-sequencer. The abstract model is
denoted by D(S(1.X), G(1.Y), C(K.Z). H, W), where §, G and C are the
three types of translators. The numbers of type S, G. and C translators
are respectively equal to 7, J, and K. The type § translator can convert
an x86 instruction into one to X micro-ops. The type G translator can
convert an x86 instruction into one to Y micro-ops, and the type C
translator can convert an x86 instruction into one to Z micro-ops. W
gives the size of a scan window. H is a number denoting the decoding
scheme that will be adopted. For example, if H = 2, the decoding
scheme 2 is used. Based on the abstract model, a particular decoder
architecture can be constructed by assigning values to I, J. K. X, Y. Z
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Figure 2. An abstract model of decoder architecture
4. Five decoding schemes

In this section detailed descriptions of the five decoding schemes
are presented. Take the decoder D(S(1.X). G(J.Y). C(K.Z), H, W) for
instance. First, let T={T}, T>, ..., To}. where Q=I+J+K, be the set of
translators and L(T;) denote the maximum number of micro-ops that
can be generated by translator T; . Note that some of these translators
may be of the same type. Despite the difference among the five
decoding schemes, the following two assumptions are common to all
decoding schemes.

(1). Without loss of generality, it is assumed 0 < X < Y < Zand 0 <

L(Ti) SL(Ti+1) < N for all i, where N= max L(T;) + I denotes the

number of micro-ops that can be generated by the micro-
sequencer.

(2). At each cycle a translator can translate only one x86 instruction.
That is, up to Q x86 instructions can be decoded at each cycle.
Thus, the number of micro-ops generated by the translators per

[
cycleisupto YL(T)=1*X+J*Y+K*Z.
i=l

Additionally, let T* be the set of available translators during the
decoding of an instruction sequence and R’ be the set of ( Inst;, T; ) or
( Inst;, micro-sequencer ) pairs, where ( Inst;, T;) denotes the translator
T; is assigned to translate Instj and ( Inst, micro-sequencer) denotes
the micro-sequencer is assigned to translate Insy, And <lInsi,
Insts, ..., Insty > is the instruction stream eligibly inspected by the
decoder, where M=0+W.

Decoding scheme 1: The Intel P6 deceding scheme.
Step l:Let T =Tand R' = O.
1f Inst; must be translated by the micro-sequencer.
Then R = R U {( Inst;, micro-sequencer)} and go to step 3.
Step 2: For (j = 1: (j < M+1 and T" 1= ©): j++) { /* For each instruction */
Find a translator 7; & 7~ such that 1;151;\(L(T, )- Inst g )2 0.

If T;is found, "= R* WU {(Inst, T} and T =T - { i }.
Otherwise. go to step 3.
}
Step 3: Decode the instructions that have been assigned with translators or the
micro-sequencer. Then, form a new instruction sequence by
fetching some instructions from the /-cache. Goto step 1.

Decoding scheme 2: Without lookahead and first fit.
Step l:LetT'=Tand R = Q. ‘
1f Inst; must be translated by the micro-sequencer.
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Then R' = R U {( Insty, micro-sequencer)} and go to step 3.
Else if Inste, F'e(2. ... . M), is the first instruction that must be
translated by the micro-sequencer.
Then F=F".
Else F = M+1. /* No instruction that must be translated by the
micro-sequencer */
Step 2: For(j=1:(j < Fand T '= OY; j++) { /* For each instruction */
Find a translator 7; € 7" such that Té;'(I‘(T' )~ Inst f )2 0.

16T is found, R =R" U {(Inst, T )} and T =T - { T3 ).
!
Step 3: Decode the instructions that have been assigned with translators or the
micro-sequencer. Then. form a new instruction sequence by
fetching some instructions from the /-cache. Go to step 1.

Decoding scheme 3: Without lookahead and best fit.

Step l:Let T =Tand R' = Q.
1€ Insr; must be translated by the micro-sequencer.
Then R = R U (( Inst), micro-sequencer)} and go to step 3.
Else if Inste, F'ef2, ..., M}, is the first instruction that must be
translated by the micro-sequencer.
Then F=F'- . .
Else F = M. /* No instruction that must be translated by the micro-
sequencer */
1" = { Inst;, Inst, ..., Instr ).

Step 2: For (i = 1; (i < Q+/ and /" = @): i++) { /* For each translator */

" Find an instruction Jnst; & I such that rrréirx([‘(ﬂ)—lns;)ZO.

1f Instyis found, R* = R" U {(Inst, T))Y and I = 1" - { Inst; ).
}

Step 3: Decode the instructions that have been assigned with translators or the
micro sequencer. Then, form a new instruction sequeace by
fetching some instructions from the /-cache. Go to step 1.

Decoding scheme 4: With lookahead and first fit,
Step i Let T'=Tand R = @,
If /nst; must be translated by the micro-sequencer.
Then R" = R" U {( Inst;, micro-sequencer)} and go to step 3.
Step 2: For(j=1; (j<M+/and T' '= O); J++) { * For each instruction ¥/
Find a translator 7; € 7* such that l;lgp(L(T,)- Inst, )2 0.

"I Tiis found, R =R U ((Inst, T} and T =T« { T} ).
}
Step 3: Decode the instructions that have been assigned with translators or the
micro-sequencer. Then, form a new instruction sequence by
fetching some instructions from the /-cache. Go to step 1.

Decoding scheme 5: With lookahead and best fit.
Step :Let T' =T, R =G and I" = { Insty, Insty, ..., Instyy ).
I Inst; must be translated by the micro-sequencer.
Then &' = R" U (( Insty, micro-sequencer)} and gotostep 3.
Step 2: For (i = 1; (i < Q+/ and I '= @); i++) { /* For each translator */
Find an instruction fstye £ such that rTnEl‘rr\(L(T, )= Inst f )2 0.

If Instis found, R* = R" L {(Inst;, i)} and £ =1 - { Inst; ).
}
Step 3: Decode the instructions that have been assigned with translators or the
micro-sequencer. Then, form a new instruction sequence by
fetching some instructions from the /-cache. Go to step 1.

In the last step of the algorithm for each decoding scheme, if the
number of translated instructions is &, where k €/1.2,...,M}, then the
first M-k instructions in the next instruction sequence are just those
instructions that are not translated in the current sequence, and the last
k instructions are fetched in order from the instruction cache.

5. Experimental results

In order to evaluate the performance of a decoder, an instruction
mix in terms of the number of micro-ops generated per x86 instruction
should be obtained first. In principal, benchmark programs should be
executed to find out the instruction mixes. However, it requires to
know exactly how many micro-ops are used to make up an individual
x86 instruction. None of this kind of information has been published.
Therefore, we simply adopt the set of instruction mixes used in [11] to

characterize the typical programs. Table 8 lists the sets of instruction
mixes used in our experiments. The instruction mix of a program is

denoted as a vector < yy, vz, ... ¥¥>, where a number v;, i 1S5 {1...N-1},
gives the percentage of x86 instructions that will generate i micro-ops.
The last number yv gives the percentage of x86 instructions that will
generate at least N micro-ops. The need of different sets of instruction
mix is due to difference in the maximum number of micro-ops
generated by the micro-sequencer. Thus, instruction mix is designed in
such a way that the percentages of simpler instructions remain the
same while the percentages of more complex instructions vary when
the maximum number of micro-ops generated by the micro-sequencer
changes. In addition, according to numerous published results, most of
the instructions executed in an x86 program are simple instructions.
This argument is also supported by the fact that Intel P6's decoder
consists of two simple translators that convert an x86 instruction into
only one micro-op. Thus, the instruction mixes are designed to give
higher probabilities to the instructions that are converted into fewer
micro-ops.
Table 8. List of instruction mixes.
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Instruction mix

Set | Set 2 Set 3 Set 4
80, 10, 05. 2.5, 2.5 80.10.05,05 $0,10,10 80,20
75, 15,05, 25,25 75.15,05,05 75,1510 75.25
70, 15, 10, 2.5, 2.5 70.15,10,05 70,1513 70,30
65, 20, 10, 2.5, 2.5 65,20.10,05 65,20,15 63,35
-60, 20, 10, 05, 05 60,20,10,10 60,20,20 60,40
55, 15, 15, 10, 05 55,15,15,15 55,15,.30 55,45
50, 40, 05, 2.5, 2.5 50.40,05,05 50,40,10 50.50
45, 40, 05, 05, 05 45,40,10,05 45,40,15 45,55
40, 35, 15, 05, 05 40,35,15.10 40,35,25 40,60
35, 35, 20, 05, 05 35,35,20,10 35,35,30 35,65
25, 25,25, 15. 10 25,25,25,25 25,25,50 25,75

In Section 5.1, the performance of various decoders that have been
once the candidates for the Intel P6’s decoder is evaluated and
compared. The purpose is to see if we are the Intel P6 designers, how
would the decision be made in choosing a decoder in terms of its
performance. In Section 5.2 we will study more decoders in terms of
decoding scheme, scan window size, and trade-off between constituent
of decoders and die area.

5.1 Performance of Intel P6’s decoder

In [10] the following five decoders accompanied by their die area
have been once considered to be the alternatives to Intel P6's-decoder.
(. D(S(1,1). G(0.,2), C(1.4), H, W) whose die area is 75% of (II)'s.
(). D(§(0.1), G(1.2). C(1,4), H, W) whose die area is 87% of (1y’s.
(D). D(S(2.1), G(0.2), C(1,4),"H, W) whose die area is used as a

reference for other decoders. :
(IV). D(§(0.1), G(2.2), C(1,4), H W) whose die area is 125% of (IIN's.
(V). D(5(0,1), G(3,2), C(1.4), H, W) whose die area is 200% of (Iy’s.

It is interesting to see why Intel chooses the decoder specified by
(Ill) as the decoder for P6. Table 9 shows the performance of these
decoders (under the decoding scheme 1). The first column gives the
instruction mix of a program. For each decoder the first column gives
the average number of x86 instructions translated by the decoder per
cycle (call measure 1); the second column provides the average
number of micro-ops generated by the decoder per cycle (call measure
2); the third column gives the average number of the micro-ops
generated by the translators per cycle (call measure. 3). Note that
measure 3 does not include the micro-ops generated by the micro-
sequencer and is used to evaluate the performance of the translators in
a decoder. The last row represents the average performance of the
decoder for each measure,

All of these five decoders have good performance and only (I)'s
measure 2 is less than 3. Although the average of measure 2 for (1) is
greater than 3, the first three entries of measure 2 are all less than 3. If
most of the instruction mixes of the programs would be more like the
first three entries, this performance figure is not viable. In terms of
measure 2, it seems that the decoder specified in (111, (IV) and (V) are



all good candidates for the decoder of Intel P6’s processor. To inspect
further, Table 10 shows the ratios of decoder performance to the die
area for the five decoders. The row named “Performance” denotes the
performance measure based on the decoding scheme 1 and the row
named “Ratio” denotes the ratios of decoder performance to die area.
Apparently, the decoder specified by (IV) has the best ratio. However,
Intel chooses the decoder specified by (III) as P6’s decoder. This is
contrary to what the performance figures should suggest. Our
reasoning is as follows. Given 25% increase in die area, the decoder
specified by (IV) generates more than four micro-ops in average in
terms of measure 2 per cycle. This may not be best matched to the
superscalar capability of Intel PG execution units that retire only 3
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micro-ops per cycle. Therefore, Intel chooses the decoder specified by
(110) as Pé’s decoder.

Note that CPU performance is not only influenced by the
performance of a decoder, but also by some other factors such as
balancing of a pipeline, clock cycle time, etc. Since only the
performance of a decoder can be quantified in terms of the number of
micro-ops generated and the number of x86 instructions translated, we
will use decoder performance instead of CPU performance in our
studies for various decoders. We also assume that these two decoders
are all based on the same micro-architecture. That is, an x86
instruction will be translated into the same set of micro-ops by these
two decoders. )

Table 9. The performance measures of the decoders in [9] under the decoding scheme 1.

Instruction Mix {h (In (111 (IV) V)
80.10,05.2.5,2.5 1804 | 2604 |2367[1.922] 2643 | 2403 || 2656 | 3.652 | 3.320 || 2.7690 | 3.807 ) 3.461 | 3541 | 4869 | 4.426
75.15,05.2.5,2.5 1870 | 266+ | 2430 119221 2730 | 2499 || 2562 | 3.651 | 3331 || 2769 | 3.945]| 3.599 §| 3541 | 5045 | 4.603
70.15.10.2.5.2.5 1.838 | 2.803 | 257301911 ] 2915 | 2676 || 2447 | 3731 | 3426 | 2725 | 4155 | 3.815 || 3434 | 5235 | 4.806
65,20.10,2.5.2.5 1799 | 2834 | 2600 || 1.ot1 | 3.010 | 2771 || 2316 | 3647 | 3358 || 2725 | 4.291 ] 3951 || 3434 | 5406 | 4.977
60,20,10.03,05 1.717 | 3.005 | 2576 ) 1.338 1 3.217 | 2757 || 2122 | 3714 | 3184 || 2523 | 4414 3783 f 3.066 | 5361 | 4.596
55,15,15,10.05 1670 | 3.256 | 2839 || 1.791 | 3493 | 3.046 || 1994 | 3880 | 3390 || 2.356 | 4594 | 4.005 || 2.719 | 5.302 | 4.622
50.40.05.2.5.2.5 1642 | 2750 | 254 f19227) 3220 | 2979 || 1.892 | 3.170 | 2933 || 2769 | 4.636 | 4.290 [| 3.541 | 5928 | 5485
45,40.03.05,05 1578 | 2.801 | 2604 || 1o11 | 3.393 | 3154 || 1741 | 3222 | 2786 || 2725 | 4.834 | 4493 || 3434 | 6.083 | 5.660
40,35,15,05,05 1.496 | 2991 | 2617|1818 3.636 | 3.182 I} 1.624 | 3.248 | 2842 || 2450 | 4.891 | 4.280 §| 2.908 | 5.801 | 5.076
35.35,20,05.05 1430 | 3.004 | 2661791 ) 3762 | 3314 || t.516 | 3.183 | 2.804 || 2356 | 4.936 | 4348 | 2.719 | 5693 |5.015
25,25,25.15,10 1.285 | 3.341 | 2699 || 1.566 | 4.072 | 3289 || 1.321 | 3434 | 2773 || 1.807 | 4.699] 3.795 || 1.897 | 4.933 | 3.984
Average 1.656 | 2014 [ 2501 1846 ] 3282 | 2915 || 2017 | 3304 | 3004 || 2543 {4473 | 3984 | 3112 | 5424 [4.841

Table 10. The performance/die-area of (1) to (V).

() (n (11 (1IV) V)
Performance 1.656 | 2.914 | 2.591 [[1.846] 3.282 | 2015 || 2.017 | 3054 | 3104 || 2543 | 4473 | 3984 || 3112 | 5424 {4841

Die area 75% 87% 100% 125% 200%
Ratio 2208 | 3.885 | 3455 ||2.122] 3772 | 3351 |} 2017 | 3.054 | 3.004 || 2034 {3578] 31487 || 1556 | 2712 | 2421

Table 11. The average performance measures of decoders
SWS Decoding Scheme 1 Decoding Scheme 2 Decoding Scheme 3 Decoding Scheme 4 Decoding Scheme 5

0 1.887 | 3371 | 2991 [ 1.887 ] 3.371 | 299t || 1.887 | 3.371 | 2991 || 1.887 {3371 ] 2.991 || 1.887 | 3371 | 2991
Case (1) 1 1.887 | 3.371 | 2991 || 1.887 | 3.371 | 2991 |l 1.887 | 3.371 | 2.991 |f 1.921 | 3.435 | 3.047 || 1.921 | 3435 |3.047
2 1.887 | 3.371 | 2.991 {§1.887 § 3.371 | 2.991 || 1.887 | 3.371 | 2.991 | 1.922 | 3.439 | 3.050 || 1922 | 3.438 |3.050
0 2401 | 4.226 | 3.326 || 2401 | 4.226 | 3326 || 2401 | 4226 | 3.326 || 2451 | 4.320] 3.396 || 2451 | 4320 [3.39%
Case (2) 1 2401 | 4.226 | 3.326 || 2.401 | 4228 | 3327 || 2402 | 4229 | 3328 {| 2.543 | 4.492 | 3.526 || 2.544 | 4493 [3.527
2 2.401 | 4226 | 3326 11 2402} 4228 | 3.327 §f 2.402 | 4220 | 3328 || 2557 | 4.521 | 3.546 || 2557 | 4519 | 3.545
0 2752 | 4790 | 3.788 [f2.761 | 4.807 | 3.802 || 2.761 | 4.807 | 3.802 || 2.884 | 5.035§ 3.974 || 2.883 | 5.033 |3.973
Case (3) 1 2752 | 4790 | 3788 || 2.784 | 4.845 | 3.834 || 2.802 | 4.876 | 3.859 || 2.997 |5.234 | 4.130 || 3.013 | 5.261 |4.153
2 2752 | 4790 | 3.788 |} 2794 | 4.861 | 3.847 || 2.815 | 4.900 | 3.879 || 3.033 5297 | 4.179 || 3.05¢4 | 5334 |4.209
0 2810 | 4.886. ] 3.875 12828 { 4918 | 3.900 || 2.829 | 4920 | 3.901 || 2.952 | 5.146 | 4.073 || 2953 | 5.148 | 4.075
Case (4) 1 2.310 | 4.886 | 3.875 1 2.850 | 4.959 | 3.933 || 2.864 | 4984 | 3953 || 3.080 | 5.376 | 4.253 j| 3.094 | 5400 {4273
2 2810 | 4.886 | 3.875 | 2.855 | 4.960 | 3.941 || 2.875 | 5.001 | 3.965 || 3.119 [ 5450 ] 4310 || 3134 | 5478 | 4331
0 2958 | 5.093 | 4.048 )} 3.001 | 5169 | 4108 | 3011 | 5185 | 4121 §| 3195 |s.518 ] 4376 || 3.205 | 5.536 | 4.390
Case (5) 1 2958 | 5.003 | 4048 §13.028 ] 5213 | 4145 || 3056 | 5257 | 4181 || 3309 | 5712 ] 4.531 | 3.334 | 5750 | 4.561
2 2958 | 5093 | 4.048 [[3.037 ] 5227 | 4.157 || 3.073 | 5284 | 4202 || 3356 | 5.791 | 4.593 || 3.384 | 5.836 | 4.627
0 2.336 | 3.964 | 3143|2365 | 4.008 | 3.180 || 2.365 | 4.008 | 3.180 || 2463 | 4165 | 3303 || 2.460 | 4.160 | 3.299
Case (6) 1 2336 | 3964 | 3.143 02374 ] 4020 | 3190 || 2381 | 4.032 | 3200 §| 2495 Ja4211 ] 3341 [f 2495 | 4211 | 3342
2 2336 | 3964 | 314312828 | 4022 | 3483 {| 2380 | 4043 | 3.208 || 2.510 § 4233 ] 3360 || 2513 | 4236 |3.362
0 2209 | 3.820 | 2334 2209 ) 3.820 | 2334 [| 2209 | 3820 | 2334 || 2.368 | 4.105 ] 2.500 || 2.368 | 4.105 | 2.500
Case (7) 1 2209 | 3820 } 23342209 3.820 | 2334 || 2209 | 3.820 } 2334 || 2493 {4322 ] 2632 || 2493 | 4322 | 2632
2 2209 | 3820 § 2334 2209 3.820 | 2334 || 2209 | 3820 | 2334 || 2.533 | 4395 ] 2672 §| 2531 | 4392 | 2671
0 2396 | 4120 {2536 2397 | 4121 | 2537 || 2397 | 4121 § 2537 || 2.655 | 4.579 | 2.807 ! 2.655 | 4.579 | 2.807
Case (8) 1 2396 | 4120 {2536 (12399 | 4125 | 2540 || 2403 | 4130 } 2543 || 2779 14792 | 2.939 || 2782 | 4.797 | 2.943
2 2.396 | 4120 | 2536 2400 | 4127 | 2541 || 2405 | 4132 | 2545 || 2.827 | 4.878 | 2.989 || 2.831 | 4.877 |2.984
0 2436 | 4164 | 2569 f2a42 | 4173 | 2575 || 2442 | 4173 | 2575 || 2776 | 4758 | 2.923 || 2.776 | 4758 | 2.923
Case (9) 1 2436 | 4164 | 25692445} 4178 | 2579 || 2448 | 4184 | 2583 [I 2871 [ 4.915 | 3.021 || 2.873 | 4919 | 3.024
2 2436 | 4164 | 2569 [ 2.445 ] 4179 | 2.580 || 2451 | 4.188 | 2.586 || 2.912 | 4.985 | 3.063 | 2917 | 4.991 |3.060
0 2190 | 3.637 V22082151 3652 | 2239 {| 2151 | 3.652 | 2239 || 2403 | 4.071 | 2491 || 2403 | 4.071 | 2491
Case (10 1 2140 | 3.637 | 222811 2153 | 3.655 | 2241 || 2.157 | 3.660 | 2245 || 2444 V4134 ] 2533 | 2446 | 4137 | 2535
2 2140 | 3.637 22282153 | 3655 | 2242 || 2,159 | 3.664 | 2248 || 2466 | 4.167 | 2555 J| 2470 | 4.173 | 2.559
0 1574 | 2703 | 0929 | 1.574 ] 2703 | 0920 || 1.574 | 2703 | 0929 || 1923 | 3.288 | 1141 |t 1923 | 3288 | 1141
Case (11) } 1.574 | 2703 | 0929 [ 15741 2703 | 0929 I 1.574 | 2703 | 0929 || 1.969 | 3361 | 1171 || 1969 | 3361 | 1171
2 1574 | 2703 | 0920 |l 1574 | 2703 § 0929 fj 1.574 | 2703 | 0929 || 2.001 {3414 ] 1091 §| 2001 | 3414 | 1191




5.3 Decoders supporting high degree of superscalar capability

After studying the performance of various decoders once
considered for P6 processor, we are wondering what kind of decoder
architectures would be better in terms of performance and die area cost
when higher degree of superscalar capability is required. In this section
we would like to address this issue based on the design options
mentioned in section 2. The following decoders which could support
up to 8-way issues are considered.
Case (1). D(5(0.1), G(0.2), C(2,4). H,
Case (2). D(S(0.1). G(1.2). C(2,3), H.
Case (3). D(S(2.1). G(0.2). €C(2.3). H.
Case (4). D(S(1.1). G(2,2), C(1.3). H,
Case (5). D(8(3.1), G(1,2). C(1,3). H,
Case (6). D(5(5.1), G(0.2), C(1,3). H,
Case (7). D(S(0.1). G(4.2). C(0.3). H,
Case (8). D(5(2.1). G(3,2), C(0,3). H, W).

Case (9). D(S(4.1), G(2.2). C(0.3), H, W).
Case (10). D(8(6.1), G(1.2), C(0.3). H. W).
Case (11). D(S(8.1), G(0.2), C(0,3), H, W).

From now on, the decoder specified by a case will simply be
referred by its case number if no confusion arises. For example, case (1)
is used to indicate the decoder specified by case (1). We assume that
the decoders are all based on the same micro-architecture. Table 11
shows the average performance for each decoder. The performance
figures will be analyzed in the following four sections. '

W)
W).
W)
w).
w)
W).
W)

5.2.1 Performance and constituents of decoders

Figure 3 shows the average performance of decoders based on the
decoding scheme 1. Case (5) has the best performance and case (11)
has the worst performance. Comparing the performance of case (5) to
that of case (11), case (5) is respectively 187.9%, 188.4% and 435.7%
better than case (11) in terms of the three measures. Cases (3), (4) and
(5) have better performance and case (5) gives the best performance.
These three decoder architectures are composed of various types of
translators. For example, the decoder architecture of case (5) consists
of three type S translators, one type G and one type C translator.
Consequently, if a decoder architecture which consists of various types
of translators will have better performance.
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Figure 3. The performance measures of decoders based on the decoding
scheme 1 and scan window size 0

5.2.2 Performance and decoding schemes

Based on the results in Table 11, since the relative performance
generated by the five decoding schemes is almost invaried with the
decoder constituent, the decoder specified by case (5) which has the
best performance is selected for further studies. Figure 4 shows the
performance of case (5) for the three measures for all decoding
schemes without a scan window. The decoding schemes 2, 3, 4 and 5
have better performance than the decoding scheme 1. The performance
of the decoder is improved by reordering of the instructions. We can
find that the performance figures based on the decoding schemes 2 and
3 are approximately equal. The performance figures based on the
decoding schemes 4 and § are also approximately equal. However, the
performance gap between the decoding schemes 3 and 4 is evident.
Thus, the influence of with or without lookahead on the performance is
larger than that of bypassing strategy. Nevertheless, the influence of
reordering the instructions on the performance is still very limited
(about 8.69%). This outcome may be possibly explained as follows.
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From Example 2, we find that if we maximize the number of
instructions decoded (or the number of micro-ops generated) in one
cycle, it is equivalent to saying that we could possibly minimize
the number of instructions decoded (or the number of micro-ops
generated) in another cycle. So the canceling effect makes the
decoding schemes having limited influence on decoder performance.
Note that since cases (1), (7: and (11) consist of only one type of
translators, they have the same performance under the decoding
schemes 1, 2 and 3.

6,000 B Scheme |
4.000 8 Scheme 2
2,000 D Scheme 3 |
0.000 DIScheme 4 |
Measure |~ Measure 2 Measure 3 B Scheme § 1

Figure 4. The performance measures of case (9) based on different decoding
schemes and scan window size 0.

5.2.3 Performance and scan window size

Similarly, since the relative performance generated by
implementing different scan window sizes almost invaries with the
decoder constituents, the decoder specified by case (5) is also selected
for further studies. Figure 5 shows the performance of case (5) under
the decoding scheme 5 with a scan window sizes 0, 1 and 2. We can
also find that the influence of increasing scan window size on the
performance is also small. This outcome may be possibly explained as
follows. The instructions contained in the scan window may have little
chance being inspected due to limited number of translators or early
encountering of an instruction that must be translated by the micro-
sequencer. However, the performance of case (5) under the decoding
scheme 5 with a scan window size 2 is increased by 14.5% when

compared to that under the decoding scheme 1. !
8.000
6.000 Bsws=0
4.000 BSws=1
2.000 .
0.000 Osws =2
Measure | Measure 2 Measure 3

Figure 5. The performance measures of case (9) based on the decoding
scheme 5 and different scan window sizes.

5.2.4 Performance and die area

The performance can be measured based on the approach proposed
in {9]. The cost is measured in terms of die area. However, the die area
is not known for the decoder specified in some cases. Thus, we will
derive some information about the die area from [10]. These derived
data will be used to compute the total area required by a decoder.
Based on data about dic area presented in Section 5.1.1, the following
information is derived.

(1). The die area is increased by 25% when one type S translator is
added to Intel P6’s decoder. This information can be derived from
(I) and (111).

(2). The die area is increased by 38% when one type G translator is
added to Intel P6’s decoder. This information can be derived from
(i) and (IV). .

(3). The die area is increased by 12% when one type S translator is
replaced by one type G translator. This information can be derived
from (1) and (II).

(4). The die area is decreased by 13% when two type § translators are
replaced by one type G translator. This information can be derived
from (I1) and (III).

The die area of a type C translator can not be derived directly from
[10]. However, it can be derived indirectly. Here a type C translator
can have two kinds of decoding capability. One can translate an x86
instruction into one to three micro-ops, while the other can translate an
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x86 instruction into one to four micro-ops. Moreaver, based on the
information presented above we can derived two different die areas for
each kind of type C translator. All the derived data are distinguished
into two groups as shown in the following.

Group (A) Rules:

(A.1). The die area is increased by 50% when one type C translator,
_generating one to four micro-ops, is added to Intel P6's decoder.
Note that this die area is derived from subtracting the die area
of P6’s decoder by the die area of two type S translators,
specified in (1).

(A.2). The die area is increased by 44% when one type C translator,
generating one to three micro-ops, is added to Intel P6’s

decoder. Based on the die area obtained in (A.1) and the die

area specified in (2), the die area is increased by 12% when one
type G translator is replaced by one type C translator which can
generate one to four micro-ops. We will assume that the die
area is increased by 6 % when one type G translator is replaced
by one type C translator which can generate one to three micro-
ops. Thus, the die area of one type C translator which can
generate one to three micro-ops is 44% of the area of P6's
decoder.

Group (B) Rules: ) .

(B.1). The die area is increased by 50% when one type C translator,
generating one to three micro-ops, is added to Intel P6’s
decoder. By the same analogy, based on the area specified in
(3), replacing one type G translator by one type C translator
which generates one to three micro-ops increases die area by
12%. So based on die area specified in (2), adding one type C
translator of this sort to P6's decoder increases die area by
50%.

(B.2). The die area is increased by 63% when one type C translator,
generating one to four micro-ops, is added to Intel P6’s decoder.
By the same analogy, based on the area specified in (2) and
(B.1), replacing one type C translator which generates one to
three micro-ops by one type C translator which generates one to
four micro-ops increases die arca by 13%. So based on die area

_specified in (B.1), adding one type C translator of this sort to
P6's decoder increases die area by 63%.

Based on the observations from Sections 5.2.1, 5.2.2 and 5.2.3, we
. can find that the influence of decoder constituent on the performance
is most evident. The influence of-the decoding schemes and scan
window size on the performance is quite limited. Therefore, the
constituent of a decoder rather than the decoding scheme or scan
window size will ditate the performance of a decoder. Thus, in this
section we will simply study the performance/cost ratio based on the
decoding scheme 1 with scan window size 0.

Tables 12 and 13 show the die areas and performance based on
measure 2. In Table 12 all the ratios from cases (1) to (5) are greater
than 3. The ratios of cases (10) and (11) are less than 2. Among all
these cases, case (3) has the best performance/cost ratio, while case (11)
has the worst.

In Table 13 all the ratios of cases (2), (3), (4) and (3) are also
greater than 3. The ratios of cases (10) and (11) are still less th . 2.

Among all these cases, case (4) has the best performance/cost ratio,
while case (11) has the worst. Thus, when designing a new deceder
architecture with high degree of superscalar capability, the decoders
specified by cases (2), (3), (4) and (5) may be the better choices. If
higher decoding performance is targeted, cases (3), (4) and (5) would
be good candidates. The decoders specified by cases (10) and (11) will
not be viable at all.

6. Conclusions

In this paper about a dozen of decoder architectures that can
support up to 8-way issues of micro-ops are thoroughly studied in
terms of decoding scheme, scan window size and constituent of a
decoder. We find that the constituent of a decoder has a decisive
influence on the performance of a decoder while the influence of the
decoding schemes and scan window size on the performance is limited.
The trade-offs between performance and die area for these decoders
are also studied to opt for the best decoder for some underlying micro-
architecture. In general, if a decoder has a variety of translator types
would give better performance.
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Table 12. The performance/cost of decoders under group (A) rules.

Group (A) Rules
Case (1) | Case (2) § Case(3) | Case (4) | Case (5) | Case (6) | Case(7) | Case (8) | Case(9) | Case (10; | Case (11)
Performance 3371 4226 4.790 4.886 5.093 3.964 3.820 4.120 4.164 3.637 2.703
Die area 100% 126% 138% 145% 157% 169% 152% 164% 175% 187% 200%
Ratio 3371 3354 3471 3.370 3.244 2.346 2.513 2.512 2379 1.945 1.352
Table 13. The performance/cost of decoders under group (B) rules.
Group (B) Rules
Case (1) | Case (2) | Case(3) | Case(d) | Case(5) | Case (6) | Case(7) | Case(8) | Case (9) | Case (10) ) Case (11;
Performance 337 4.226 4.790 4.836 5.093 3.964 3.820 4.120 4104 3.637 2.703
Die area 125% 138% 150% 151% 163% 175% 152% 164% 175% 187% 200%
Ratio 2.70 3.062 3.193 3.236 3125 2.265 2513 2.512 2.379 1.945 1.352
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