PERE/N\+AFZETERES

DOS/Win95 x86 #5 4 £ 2 4 A L HREBIVE
Analysis of x86 Instruction Usage in DOS/Win93 Applications
and it’s Implication on Microarchitecture Design

HEE

YTE

Ing-Jer Huang, Tzu-Chin Peng
Institute of Computer and Information Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan
Email: {ijhuang, tcpeng} @cie.nsysu.edu.tw

HE

1R4E Amdahl's laws * BHGEMAE RAREGHHKE
ERARERFASESAANTEPELHRLELEBAR
BEBAGKRAL MELTHOFHNAN SR BEMAE
RO RERHNRTELTAGHES - AERX Q%S
—BERFS% LERDOS AVindS TERRBHMNES
#ofabny LK ERRYUVEAXIGRA R
o BUALBTHIMEHNBRIAS AL RH X
X86 EAS ARkt Lay — i o
Met: MAHSE HRHBELE BT -HBLE B
AELH - Ea

Abstract

x86 is a popular microprocessor family based on
the CISC architecture. It has an abundant instruction set,
and complex addressing modes. To enhance the
microprocessor’s performance, according to Amdahl’s
laws (make the common case fast) [6], it is more
efficient to improve the execution of most used
instructions. So we first need to understand the run time
behavior of the instruction set including the most
frequently used instructions and instruction pairs in
application programs. The information is helpful to
optimize the microarchitecture and compiler for efficient
instruction execution. This thesis presents a monitoring
system to obtain the usage information under the MS-
DOS and MS-Windows95 environment, including
instruction set usage, instruction pairs, addressing mode,
and operand types and sizes. The implications of the
DOS/Win95 analysis on the x86 superscalar architecture
design are investigated.
Keywords: CISC, RISC, superscalar, instruction set,
instruction pair, addressing mode
1. Introduction

x86 is a popular microprocessor family based on
the CISC architecture. It has an abundant instruction set,
and complex addressing modes. To improve the x86
execution performance, there are three technique might
be used in the design of a superscalar x86, including
* out-of-order microinstruction issue”, “overlapping
microinstruction sequences”, “superscalar execution of
RISC Core instruction set”.

In order to determine the new microarchitecture to

¥ This work is supported by NSC, R. O. C. under contact
number NSC85-2262-E-009-0102

C-44

enhance the microprocessor’s performance, according to
Amdah!l’s laws (make the common case fast) [6], it is
more efficient to improve the most used instructions. So
we first need to understand the run time behavior of the
instruction set that include the most frequently used
instructions and instruction pairs in application programs.
The information is helpful to optimize the
microarchitecture and compiler for efficient instruction
execution. .

We have developed a monitoring system to obtain
the usage information of DOS application and use Intel’s
tool “VTune” [5] to get instruction trace of Windows95
applications.

After the benchmarks were traced, we analyze the
data about instruction (list in appendix) and find out the
implications related to four kinds of issues including (1). .
issues related to the decoders. (2). issues related to the
function units. (3). issues related to the microarchitecture.
(4). issues related to pairing of x86 instruction. It will be
mentioned in section 8.2.

In section 2, we discuss about the relative research

about this topic, and mention the drawback the their
research. : .
Our analysis tools will be discuss in section 3 4 ,5
and 6. The “monitor program” will be discussed later in
section 3. The “VTune” will be discussed in section 4.
The “x86 instruction analyzer” will be discussed in
section 5. The integrated environments will be discussed
in section 6. '

In section 7, we introduce the benchmark we have
traced and discuss the data we trace and list the data.

In section 8, we introduce the superscalar
architecture model for x86 and mention about the
implication on x86 architecture design. And then we
introduce the instruction pairing mechanism in pre-
decoding.

In section 9, we summarize the implication and list
in a table to make conclusion. And discuss our future
work.

2. Related Work

Some papers have been released about this topic.
In [3], it mentions about the implementation technique of
the software instruction counter for debugging and
profiling, but works only when source code is available.
In [4] they also analyze the usage of x86 instruction set
on MS-DOS, but they do not analyze the detail size of

hERE/\ T AFREHERTES

and type of their operand.
3. Monitoring in DOS environment

Under the DOS environment, there is a very
convenient way to do this job. We can take advantage of

single-step mode of x86 family CPUs. And according to .

whether the source is available, our monitor includes two
approaches—“with source code” , and “without source
code”. ' '
3.1 With source code

When the source is available, there are many
approaches also available. Our approach is to take
advantage of the single-step mode, so we need not to add
any additional function before each instruction. We can
monitor any pieces of target program by just adding a
small code before the program to open the T-flag and
adding another code after the of program to close the T-
flag. While T-flag is opened, the x86 CPU is set to the
single-step mode. As Figure 1, we rewrite and set the
ISR of intl before spawning the benchmark program.
In the benchmark program, after each instruction,
program will trap to the ISR of int1 when T-flag is set.
In the ISR, we can get the op code the instruction that
will execute later, and record related data. After
benchmark program is terminated, information will be
arranged and reported.

manitor

Benchmark

Program ISR of int?
Sot The (8R of § !
ntr c By
gel the value of
CSuP
o1 Tetlag In steck

o
Soawn bonchmark ll
srogram
.

benchmark gl OPcode

orogram

I

rocord retated
date

ortonge the
informetions and
autput 1hrde tllos close T-leg

Figure 1: Monitor with source code
3.2 Without source code

When only executable (binary) files are available,
i.e. source code is not available, we have to use a special
skill to open the T-flag.

We replace the lowest byte of the first instruction
that will be executed in the executable file with 0xCC
(that means int3). Then rewrite the ISR of int3. In
the modified ISR of int3, (as Figure 2), we open the T-
flag and change back the first inst.iction of modified
program and let the program counter point to first
instruction of benchmark program. After the ISR, the
benchmark program can execute as if its first instruction
is in its original location. Then we can start tracing the
benchmark program from the beginning of the
benchmark program.

Once the modified benchmark program is loaded
and execuied, int3 would be executed first and then set
the T-flag before the executing of benchmark. After T-
flag is open, the benchmark program can be traced the
same as “with source code” approach.

C-45

Modified
benchmark
Program

ISR of int 3

191 ths ISR of intt
803 i3

TepTace The Towe
byte of iest

wnsteuction of
grogram mith0ny

o aagis
spewn benchmark
progrem
.

srrangs the
intormotione and
Qulput Ihree tilas

recover the hest
dyte of oragram i

exacute i3

SRR

Teeover he B |
vawe 10 pont brst 7
mattucyan of B

re pr

e spoce s ansness oo

nare progrym %
bencamars
program
recovar the ‘ 61 Tutlag o
program +
TSI . TSR
(end) (ena)

Figure 2: Monitor without source code
4, Monitoring in Windows95

environment

On Windows95 environment, we use Intel's
performance tuning tool — VTune to help us to get
sample of instruction trace. We use two passes to get
instruction traces (as Figure 3). First, we sample the
executing instruction at regular interval (0.1ms). In the
sampling data, we will know find the program blocks
that have been executed. In second pass, we use simulate
each program block that have been sampled.

In the first pass, VTune saves the sampled machine
state by using interrupt. The interrupt was triggered at
regular interval. After the program terminated, VTune
will list all the address and times which instruction was
executed.

Executing
froequence of each
dlocks

I I Simulation pass

. plcesses of 2
program-trace

A R

Figure 3: The VTune approach under Windows95

Because VTune cannot simulate whole program,
we divided program into blocks. We instruments VTune
to simulate each block individually. After simulating
each block, we will get instruction trace of each block.
The analyzer will read these instruction traces and output
the instruction's frequency file and the instruction pairs
file.

“VTune” is not design to produce instruction trace.
We have to repeatedly operate the simulation pass
manually in order to get the traces of all program blocks
that was sampled by sample pass. This is really a time
consuming job, and the user should stand by while
program is simulating. So we will use WinBatch
program to run simulation pass automatically and

hERE/\+AFEEEERTE

repeatedly.
5. The Integrated -Environment for
DOS/Win95 Analysis

In order to operate this system easily, we write a
user interface under EXCEL macro. At first, our macro
program will ask user Win95 or DOS benchmark will be
trace. If users select DOS, our monitor program will be
called and start monitoring. If users select Win95,
VTune and Winbatch will be invoked. After user choice
the sampled file and decide which program to simulation,
Winbatch will operate the VTune (mentioned in section
4) automatically and output the trace file. After the
trace file was generate, EXCEL macro will invoke
analyzer to analysis the trace and output x86 instruction
using frequency file. EXCEL macro will automatically
draw a curve of x86 instruction usage according to the
x86 instruction using frequency file. After this
information showing, it will ask user to input the x86-to-
MOP mapping table to generate the using frequent of
MOP.

Our mapping program will be called after the x86
instruction using frequency file was generate and output
MOP using frequency file with x86 to MOP mapping
table and MOP executing cycle table is available. Once
this file was generated, EXCEL macro will automatically
draw the statistic curve of MOP using frequency
according to the file.

After the MOP using frequency curve drawing, the
EXCEL macro will ask user whether to trace another
benchmark. If user answer “yes”, EXCEL macro will
help user to trace another benchmark as first benchmark
automatically. If user answer “no”, EXCEL macro will
merge all the x86 instruction using frequency files and
draw the curves of all x86 instruction using frequency,
pair using frequency, all MOP instruction using
frequency, cycles using frequency, operand using
frequency, addressing mode, and instruction
classification.

WinBatch is the Windows Batch Language that
user can use to write Windows 95 batch files to control
almost every aspect of your machine's operation.
Because VTune does not support user to write a script
file to control VTune in batch, we use WinBatch to run
_VTune automatically.

6. Benchmark Amnalysis
6.1 DOS/Win95 Benchmark Suite

In order to obtain a better combination of
programs, we use the Standford Benchmark, and 14
DOS programs and 4 Windows95 programs and one
system kernel' (kernel32) as benchmark.

We calculate the percentage of the table list in this
section by the equation

' The most use system kernel is VMM (Virtual Memory
Manager). but this file is in W4 format VTune can not
handle this format.

This _ kind _of _ instruction* weight
Total _ traced _ inst*werght

z 2l _ heachmarks
The “weight” lists in appendix 1, 2, 11, 12, 13, 14.
The “total_traced_inst” lists in appendix 1, 2.

Dos benchmark program Windows95 benchmark program

Stanford Benchmark ver 4.1, ARJ2S,|Netterm, MS-WORD 7.0, NETSCAPE
Chkdsk, Find, Format, Grep, Link, Mem,|3.0, EXCEL 7.0, and Kernel 32
Telnet, Qsort, Primes, Bgidemo, Tedit,

Cview, and Cedit

6.2 Frequent used instructions

We rank the instructions according to their usage
frequencies in the Table 1. In these table, we list those
instructions that cover over 90% of program execution.

In Table 1, the column of “# mop” means the
number of “Micro Operation “ (mop) that a x86
instruction can be mapped into. In order to distinguish
detail information of operands, we describe operands as:

r: represent “Register”, r16 means a 16 bits
register.

m: represent “memory”’,m16 means a 16 bits
memory block.

i: means “immediate”, 116 means a 16 bits
immediate data.

d: means “displacement”, it is next to “m”, used
to describe the displacement of the memory
offset. For example,“m16d16” means a 16
bits memory block with 16 bits offset.

We notice that the frequencies of push, and pop
are very close. Because the stack will always be in the
state of balance, the rank “push” and “pop” instruction
will very close. The same observation holds true for
callnand retn.

6.3 The frequency of instruction pairs
The instruction pairs appear more frequently list in

- Table 2. The column of “# of mop” means the number of

“Micro Operation (Mop)” contained within an x86
instruction.

Notice that, “pop, pop” and “push, push”
pair appear in very high frequency. The must be a lot of
small functions in these applications. And in some
application such as Stanford Benchmark, it uses a lot of
recursive function.

A complex instruction may be mapped into several
mops. If these mops consume different hardware
resources. The dispatch unit can dispatch these mops into
properly functional units such as ALU, FPU, etc. The
more functional units are utilized, the more instruction-
level parallelism will be achieved. When these two
complex instructions are combined to a pair. This pair
may use the same functional unit. If happens, the second
instructions of the pair will be delayed until the first one
releases the functional unit [9].

6.4 The frequency of micro operation

In the experiment the most used micro operations
are “1d” (load from memory) and “st” (store to
memory). The usage of these two micro operations is
about 30%. And the percentage of cycles used by MOP
instructions. “1d” instruction used 32.6% of cycle

C-46

hERE/TAEREHEHRES

(almost 1/3 of cycles). Most cycles are used by some
specific MOP instructions (such as “1d” (load), “st”
(store), “shl” (shift left), and “mov” (mov-r-r)). It
means most resources are use by these MOP instructions.
6.5 Average Instruction cycles

We have count total x86 instruction, total MOPs
and total cycles execute of our all benchmark. The
average cycle one x86 instruction needs to execute is

Total _cycles
~ ¢!
2.75 cycles (——Tom/_XS«Sm =) The average cycles one MOP

needs to execute is 1.84 cycles (%). One x86

Total _ MOPs

instruction will translate to 1.5 MOPs (5—=====

) in

average(very close to the ROP of Nx686).

Rank |instruction I# of MOP |executed ratio

1 push r32 2 8.4%

2 mov r32 m32d8 1 7.1%

3 jz i8 1 5.7%

4 pop r32 1 4.2%

5 mov r32 r32 1 4.0%

6 inc r32 1 3.0%

7 mov r32 m32d0 | 29%

8 xor r32 r32 1 2.7%

9 jnz i8 1 2.7%

10 calln i32 b 2.2%

11 cmp r32 r32 i 2.2%

12 mov rlé mliéds 1 21%

13 test r32 r32 1 2.1%

14 retn i32 ? 1.9%

15 jl is 1 1.9%

16 mov r8 m8ds I\ 1.7%

17 cmp r32 i32 1 1.6%

18 add r32 r32 1 1.5%

19 add r32 is 1 1.3%

20 cmp m32d32 i8 2 1.3%

21 jz i32 1 1.3%

2 lea r32 m3240 1 1.3%

23 lea r32 m32d8 1 1.3%

24 cdg 1 1.3%

25 mov m32d8 r32 1 1.3%

TOTAL 68.1%

Table 1: Top 25 most used x86 instruction under Win95
rank Ifst_inst l sec_inst | percentage
1 cmp_R32_132 j1_I8 3.7%
2 cmp_R32_R32 jnz_I8 3.7%
3 cmp_m32D32_I8 jz_18 3.7%
4 inc_R32 cmp_R32_I32 3.1%
5 movzx_R8_mSD0 inc_R32 0.9%
6 inc_R32 mov_R32_m32D8 0.9%
7 movsb pop_R32 0.9%
8 mov_R32_R32 cdq 0.9%
9 sub_R32_R32 lea_R32_m32D0 0.9%
10 lea_R32_m32D0 xor_R32_R32 0.9%
Table 2: The most used x86 instruction pairs under Win93
7. Implications on x86

microarchitecture design

To speedup x86 instruction execution, we use a
two level microarchitecture. The outer level accepts x86
instructions, and translates the x86 instructions into
micro-operations or RISC-like instructions which the
inner level of the microarchitecture accepts. The inner
level adopts a superscalar microarchitecture to speed up
the execution.

C-47

7.1 A superscalar architecture model for x86
Our target microarchitecture has two types of
decoder, simple decoders, general decoder (as Figure 4).
The simple decoders can handle only simple (register to
register) instructions. On the other hand the complex
instruction can only be decoded by the general decoder.
The decoders translate x86 instructions into micro-
operations (Mops). These Mops will log in reorder
buffer to make sure that it can be retired in program
order. Then these Mops wait in the reservation station
until their source operands are all available. In each
cycle, several Mops can be dispatched according to the

number of function units available.
X86 Instruction

&

Micro Operation
Reorder

Butter)
Register

—-l Ganoral decoder L—l = File
I I 1l

8492 UONIMSY]

I Reservation Station Id——
TR | 1 | S
S || | e
g o g g7

l Result bus

Figure 4: x86-to-RISC microarchitecture (simplified)
7.2 Implications of Benchmark Analysis

we analyze the instructions using frequency and
find the implications related to four kinds of issues
including (1). issues related to the decoders. (2). issues
related to the function units. (3). issues related to the
microarchitecture. (4). issues related to pairing of x86
instruction.

(1). Issues related to the decoders -

One important design issue is to determine the
right mix of x86 instruction decoders. Since general
decoder is expensive to build, we assume that there is
only one general decoder in any case. However, the ratio
between simple and general decoders is yet to be
decided.

In Pentium Pro and K5 processors, its simple
decoder just can decode the simpie x86 instructions that
will be translate to one MOP. The complex instructions
that will be decoded to over 2 MOP are decoded by
general decoder.

In the benchmarks, the usage ratio of simple
instruction to complex instruction is 2.1:1. In addition,
the complex instructions seldom appear as a pair in our
instruction pair analysis.

Actually, Pentium Pro use two simple decoders
and one general decoder. On the other hand, K5 want to
have a better performance in decoding. K5 use three
general decoders. But in the performance report, K5
does not have any benefit from: this expensive design.

In NSC98 processor, the simple decoder is used to
decode the x86 instruction that will be translate io one or

hERE/NTAERERERER

two MOPs. The complex x86 instruction that will be
decoded to over three MOPs are decoded by general
decoder.

In NSC98 definition, the rate of x86 instruction
use simple decoders to general decoder is 8:1. It is better
to design simple and complex decoders to fit this rate.

Actually, NSC98 has 8 simple decoders and one
general decoder. This design is fit to instruction rate.
There is still a question about simple decoder design.
Since the rate of one MOP to two MOPs in the
benchmark is 3:1. In most case, there is just one MOP
instruction was decoded by the simple decoder. It seems
to spend too much cost to use such a simple decoder. But
if we implement the decoders like Pentium Pro, the
simple decoder of NSC98 just decode one MOP
instruction per cycle. We may need three extra complex
decoder to decode those x86 instruction that will be
translate to over two MOP instructions. And these three
extra complex decoders will cost much more than
enhance the eight simple decoders to decode two MOP
instructions pet cycle.

| # of MOP a x86 inst. is mapgd to ! x86 Percentage

] 67%
>

3

22%

7%
4 3%

over 5 <0.5%

Table 3:Number of MOP a x86 instructions is mapped to

Some most used x86 instructions will be decoded
to more than two MOPs. If this x86 instructions is very
easy to implement in one micro operation. In order to
have better performance we may add a new MOP that
this x86 instruction can map one-to-one. The Pentium
addressing mode calculation like below. Linear address
will complete in two pipeline stages. First, to generate
effect address (offset address) and select a base address

in pipeline stage 1. Then the AGU could generate the

linear address in pipeline stage 2.

In the case of NSC98, one of the most used x86
instruction - “PUSH"(5.7%) is decode to two micro
instructions “SUBIN” and “ST”. The Pentium addressing
mode calculation like below. Linear address will
complete in two pipeline stages. First, to generate effect
address (offset address) and select a base address in
pipeline stage 1. Then the AGU could generate the linear
address in pipeline stage 2.

In the first cycle of AGU, it will add base register,
index register, and displacement value ‘in a three input
adder. But when we access stack, there is just one input
*sp” to this adder. We may substrate sp in this adder and
output to result bus to update the SP value. Meanwhile,
the SP value which is substrate by 2, will be send to next
cycle to count the address of stack entry as original store
MOP. There is almost no extra hardware to implement
this MOP. It only needs a extra bus to result bus.

Begmant Ragistore

Baeo Aegistar
——

— Pipoting Stege 1
Doscripior Aagisterd

(I

Pentium Addressing Mode Calculation
We may add a new micro instructions “PUSH” to
micro instruction set and implement the instruction in the
Load/Store unit. When we execute the x86 “PUSH”
instruction we will reduce one cycle per instruction. The
additional H/W in the AGU is minimal.
We calculate the improvement by the function

155.7¢%
1.5

Pipoling Stage 2

(reduced _cyeles _ per _ patien Y2 palera _ trequency) Uinst #) -
Cinst #Y* CPI

Because P6 and NSC98 were full pipelined, so there is
one MOPs executed every cycle in a function unit. The
al_MOB 1 §
all _ X36_inst *
Because “substrate 2” is originally execute in ALU,
implementation of this**push” MOPs will also reduce the
usage of ALU by 7.1%

=3.8%

CPI is calculated by the function

(reduced (MOPs ., _ reduced | X36uast ratio)CX36inst 8) _ _ S7% o 1)
MOPs _use _ALU (MOPy _use _ALL _ ratio)*(#_of _MOP) ‘3 4% 1.5
%86 instructions Original MOPs With new MOPs
Subin SP,2 PUSH AGU(sp.0...).AX
PUSH AX < I*sp=sp-2 %/ 5 /*store AX to stack & sp=sp-2*/

ST AGU(sp.0..).AX
/*store AX to stack®/

Figure 5: MOPs of “push”

The other, one of the most used x86 instruction -
“POP”(3.9%) is decode to two micro instructions “LD”
and “ADDIN". It store the value to memory stack that
was pointed by stack pointer and add the stack pointer by
2.

sp 0 +-2

[
+)

v v
select left i
°POP*

First cycle
in AGU

v
To result bus

To next"cycle of
AGU
Implement push and pop in AGU
We may add this new micro instructions “POP” to
micro instruction set and implement the instruction in the

#_of _MOP

°(kel 1.5) was discuss in section 7.10

hERENATAEZEERES

Load/Store unit. When we execute the x86 “POP”
instruction we will reduce one cycle per instruction. The
additional H/W that complete in- pipeline stage 1 in the
AGU is minimal.

We calculate the improvement by the function

(redoved _cyeles _per _ patten)*(pattern _ frequency)*(inst .#) - 1¥3.9% =2.6%
(inst #)*CPl
%86 instructions Original MOPs With new MOPs
LD AX,AGR(sp.0...) POP AGU(sp,0...).AX
POP AX <P [rload stack value to AX®/ = /*store AX W stack &
ADDIN SP,2 sp=sp+2*/
/*sp=sp+2°%/

Figure 6: MOPs of “pop”
Because “add 2” is originally execute in ALU,
implementation of this “push” MOPs will also reduce the
usage of ALU by 4.9%

reduced MOPs . (reduced | X36inst ratio Yo (X360t #)
MOPs _use _ALL ratio Y \#_or _MOP)

{MOPs _use _ALL
ALU is very busy function unit. If we implement both

a

1.9%
4%

“push”, “pop” will reduce the workload of ALU by
12.0% (reduced MOPs _. 9.6% % _1_)
MOPs _use _ALU $3.4% 1. 5

(2). Issues related to the functions units

In different processor, there are different number
of function units to execute MOPs (Table 4). We should
make sure that there is enough function units.

lFunction unit !Number of function units in NSC98 l

ALU 4
Branch unit 1
’ Floating point unit 2
MMX unit 2
Load/store unit 2

Table 4: Number of function unit in NSC98

In the data we analyze, “1d” (19.2%) and “st”
(10.2%) MOPs are used at very high frequency. These
MOPs are executed in load/store unit. It is important to
use enough Load/Store units to make these Mops
executed without bottleneck.

In P6, it uses one load unit and one store unit.
Because every cycle it will fire three MOPs from ROB to
RS, we assume there are three MOPs will send to
function unit per cycle. In average, there are 0.6 “1d”
will be send to load unit and 0.3 “st” will be send to
store unit. One load unit and one store unit are enough to
handle “1d” (19.2%) and “st” (10.2%) in this case of
three MOPs sent to function unit per cycle.

In NSC98, it use two load/store unit there are use 8
simple decoders and 1 complex decoder to make sure
eight MOPs will be send to ROB per cycle. In average,
there are 2.4 “1d” or “st” will be send to load/store
units, but it just employ 2 load/store units. There are 0.4
“1d” or “st” have to wait function unit per cycle.

In NSC98, we may consider to add one load/store
unit to make sure it can handle 3 (>2.4) “1d” and “st”
per cycle. It will increase the number function unit from

10 to 11. We calculate the improvement by the function -

#_of _MOP

?(e 1.5) was discuss in section 7.10

R

C-49

of “LDIST " _used _to _delayed _ per _

MOPs _executed _ per _cycle
(3). Issues related to the microarchitecture

One of the most used instructions (11.1% in total
MOP code, including of “movi”)is “MOV R4, R3". It
just copy the value of R3 to R4, is however like other
complex instructions, it still needs to have a entry in
ROB, RS, a function unit to execute it, and need to wait
result bus to send data back or register file. We may
simply this simple instruction in implementation.

Typically, this instruction was executed in the
function unit as other instructions. Because the new
architecture such as Pentium Pro and INSC98 have
“Reorder Buffer(ROB)” to implement register renaming.
And these register-to-register move instructions just copy
the value of R3 to R4. We may take advantage of register
renaming facility, and implement this instruction in the
reorder buffer. This instruction will not need to stay in
the Reservation Station to wait the function unit
available. It just enters the reorder buffer after decoding,
and waits in the reorder buffer until retired then write the
value of the source register to the destination register.

cyr/g - 0é4 = 5%

RF

199 voluo yang
)

£}
Y
3

ROB

Tags vhiue teg o
ot A3
1 A4

add R3,R1,R2
mov R4,R3

{add ®3, R1. R2
imav R4, RH)

nnﬂ 0

F

S

2

Rosul

Functlon Unit |

Function Unit |

ol

s

Figure 7 : Implement register-to-register MOV in ROB

For example (as Figure 7), After decoding, “MOV
R4, R3” enters ROB, the value of source register R3
was fetched to ROB according to whether the value is
available in the register file. If R3 is available in register
file, then write R3 value to the “value” column of R4 row
of this instruction in ROB and waiting to retire. When
this instruction is in it’s turn to retire. It will write the
value of R3 to R4 in register file and finish the “MOV R4,
R3".

If R3 is not available in the register file, then we
write the tag identifier in the reservation station stands
for R3 to the column value of this instruction. Once the
tag value stands for R3 is calculated in function unit, the
value will write back to ROB and replace the tag
identifier. When this instruction is in it’s turn to retire, it
will write the value of R3 to R4 in register file and finish .
the “MOV R4, R3".

Since most of hardware needed to implement
‘mov’ operation within ROB has been available, we just
need to add little control hardware. In the case of the
value of source register is available, the only extra
control hardware to implement this instruction in ROB is
to make the value of source register write to ROB. The

hERE A A EHEEEE

ROB to register file bus is exist (in order to implement
renaming), but the bus is only one-way bus. We need to
add a write port to register file and read port to ROB to
make the value in register file can write to ROB. In order
not to add a read/write port, we may add a new bus from
write port of the register file to read port of ROB. The
extra hardware will be very limited. In the case of the
value of source register is not available, the extra
hardware is to make the tag value write back the value
which is calculated after function unit to possibly
multiple destinations in ROB. But in design of ROB, it is
support associate look up. So it may not need any change
in ROB to support multiple destinations write back.

In the processor NSC 98, “MOV” instruction will be
executed in ALU. Because this instruction is used at very
high frequency (about 9.5%) and the arithmetic MOP
instructions executed in the same ALU is also at very
high frequency (53.4%). The possibility of waiting this
function unit must be high. If we implement “mov” in
ROB, the benefit will be significant. The “mov”
instruction need not in reservation station to wait the
ALU available. And the arithmetic MOP instructions
executed will wait less time for ALU. It will reduce the

17.8% (==t = 23%) of workload to ALU. It

is over 1/4. In NSC98, we use 4 very complex ALUs, we
may reduce one ALU with this implementation. The
benefit is very large, because the ALU is very expensive.
8. Conclusions and future work

The x86 is a very popular and widely used
microprocessor. We have written a monitor and used
VTune to record the dynamic information about
instruction usage. We used monitor to get the whole
instruction trace of DOS applications and used VTune to
sample the trace of Windows95 application then analysis
it. This paper has reported the dynamic instruction
frequencies and instruction pairs frequencies found in
several programs running under the DOS and
windows95.

We have noticed that 25 of the x86 mnemonic
code constituted 90.1% of the benchmark execution.
When considered op code, 25 of the x86 op code
constituted 72.3% of the benchmark execution.

The most common instruction classified by
functionality is “data transfer”. The most common
operand sizes are 16 bits in DOS and 32 bits in
Windows95. The most common memory displacement
size is O bits. The most common operand types are using
a register operand and an immediate operand. The most
common mermory addressing mode are “bp + [disp]” of
base addressing in 16 bits DOS code and 32 bits base
addressing in 32 bits Windows95 code.

We have analyzed the benchmark and propose
some suggestions to the microarchitecture design. Since
every five instruction contains one branch instruction, it
is necessary to employ a good prediction to avoid
pipeline flush from branch prediction penalty. Too many

x86 instructions use implicit registers as operand. It need
use extra register to register data transfer instructions.
We may make the implicit operand explicit. Three
operands addressing mode is seldom use both in x86
instruction or Mops. Two operand addressing operands
can be considered for the Mops in order to save the bit
width of the Mops. The comparison instruction and
condition jump usually appear in sequence. These two
instructions may be combined into an instruction for the
Mops. "1d" and “st” are used at very high frequency. It
is need to enhance the memory interface to reduce
memory latency. The better ratio of simple decoder to
general decoder is 1: 2.

Our future work will automate the interfaces with
instruction synthesis and instruction mapping tools. The
instruction synthesis tool will create new instructions for
the better performance. Our instruction analysis tools
will recognize these new instruction and count the using
frequency of the new instruction. The instruction
mapping tool will create x86 to MOP mapping rule
automatically and the MOPs using frequency for the new
mapping rule will be generated in. our integrated
environment,

9. References

[1] Rakesh K. Agarwal, 80x86 Architecture &
Programming Volume II: Architecture Reference.
Prentice Hall. 1991

[2] Pentium Family User's Manual. Volume 3
Architecture and Programming Manual. 1994

(3] J. M. Mellor-Crummey and T. J. LeBlanc . A
Software Instruction Counter. ~ ASPLOS-III
Proceedings, 1989

(4] Thomas L. Adams and Richard E. Zimmerman, An
analysis of 8086 Instruction Set Usage in MS DOS
Program. ASPLOS-III Proceedings, 1989

[5] Mark Atkins and Ramesh Subramaniam. PC
Software Performance Tuning. IEEE Computer,
August 1996

[6] David A Patterson, John L Hennessy.Computer
organization & design the hardware/software
interface. Morgan Kaufmann

(71 David W. Wall. Limits of Instruction-Level
Parallelism. ASPLOS-IV Proceedings, 1991

[8) Thomas Ball and James R. Larus. Optimally
Profiling and Tracing programs. ACM transaction
on Programming Languages and System, Vol.16,
No. 4, July 1994

[9] Gurindar S. Sohi and Sriram Vajapeyam. Tradeoffs
in Instruction Format Design For Horizontal
Architectures. ASPLOS-III Proceeding 1989.

[10] Linley Gwennap. Intel's P6 Uses Decouple
Superscalar Design. Microprocessor Report Vol. 9,
No. 2, February 16, 1995

C-50

