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Abstraci“

Lyapunov istability theory for conventional systems
is extended in a natural way to investigate stability
conditions for a class of uncertain singular (descriptor)
systems with or without external inputs. It is shown that
the perturbed system stability can be determined via
the solution of a generalized algebraic Riccati mairix
- equation. The algebraic Riccari matrix equation is
solved using a recurrent neural network.
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1. Introduction

Recently, specific characteristics for singular
(descriptor) systems, such as stability, regularity,
impulse observerability and controllability,
normalizability, stabilization, have drawn the
considerable atiention of many researchers due to
extensive applications of these systems in large scale
systems, singular perturbation theory, and in particular,
constraint mechanical systems [1, 2]. There have also
been publications on rtobust siability for perfurbed
linear or nonlinear singular systems [3-3]. However,
these researches focus only on the worst possible case
of perturbations, i.c. the unsiructured perturbation.
Since strurtural properties about uncertainties have not
been used, it is unavoidable that these results may be
conservative for some cases,

In this article, we first study the stability and
estimate the state response bound of a class of singular
systemhs with uncertain variations, Lyapunov stability
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theory for conventional systems is extended in a natural
way to investigate stability conditions. The presented
approach involves the bound as well as the structure
information of the uncertain variations. QOur result
includes perturbations of the unstructured type as a
special case. It is shown that stability of perturbed
systems can be determined by solving a generalized
algebraic Riccati matrix equation.

Traditionally, Lyapunov and Riccati equations are
usually solved using a variety of numerical algorithms
[6,7). Much commercial computer software, such as
MATLARB, is also available for solving these equations.
However, most algorithms are not appropriate for
solving our proposed generalized algebraic Riccati
Tnatrix equations. Specially, they cannot be used for on-
line operation. We extend here the recurrent neural
network given in (8] to find solutions of generalized
algebraic Riccati matrix equations. Because of the
parallel-distributed nature, the mneural networks
proposed here could be available computational models
for promptly obtaining the desired solutions. Finally, an
example is given to demonstrate the proposed results.

2. Uncertain singular systems

Consider the following linear time-invariant
singular systems with parameter uncertainties

Ex(t) = (A+ Ad)x(t) + (B + AB)u(f) (1)
where

A4 =R Ad(0)R,,AB = 5, AB(c)S,
and x(f)e®R"; u(t)eR" describes ihe external input
vector, it may be unknown or uncerfain but with
u(tye L[0Ty for some T ef0,»), that is

j:lbl(t)uzdt <o where [u()] = [u" (). The
uncertain vector ¢ € @, QC R’ is a prescribed subset

of ¥ In the above, R, R, and S5, represent the
stmctures of the interconnection between the nominal
and uncertain paris. Assume that {E, 4} is regular, i.e.
det(sF - 4) =0 and the unceriainties satisfy
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AT (6)Ad(o) < I, AB™ (0)AB(6) < 1 (2)

3. Stability analysis

Lemma 1.

Let x and u be vectors, D and E be matrices with
compatible dimensions. The following inequalities hold
for any real constant g >0:

()2x"DE™u prrDDTx-l-—l—urEE’u
Yol

(3a)

(i)2x"DE"x < px"DD"x + }-erE’x
P

(3b)

Lemma 2,
Given any real constant p > Oand matrices D, E,
F with compatible dimensions such that F*F < J then

(1)2x" PDFEu < px’PDD’Px-i-—l-uTE’Eu (4a)
Yol

(ii)2x" PDFEx < px" PDD" Px + 1 x"ETEx (4b)
” P

In the above, p=1 is a typical selection for most -

applications of (3) and (4).

With reference to the class of perturbations (2). it
is possible to derive the following theorem for stability
of the uncertain singular system (1) with or without
external inputs.

Theorem 1.

Suppose the uncertainties appeared in (1) satisfy
(2). If, for a given Q=0Q" >0, there exist real
constants &, p,, p, >0 and a solution P =P" >0 for
the algebraic matrix equation

ATPE + E"PA + E"P(— BB + pRR” + p,S,STVFE
=
+LR2’R2 +ETQE =0

1
then the system state response is bounded by

Fiegal <gecop [ ] ©

where the norm ||, = (v"#3)* with y being a vector,
W, a symmeiric matn'\: and

ST

)

R= 5’1+

5

Furthermore, if the external input u(f)=0, the

perturbed system would be asymptotically stable
provided that P =P” >0 is a solution of

ATPE+E" P4+ p E"PR R’ PE +-1—R,’R2 +ETQE=0(7)
P

Proof: It is known that stability of a singular system is

mainly dependent on the dynamic part and is

independent of the static part. According fo the solution
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structure, the stability is correlated to the generalized
state Ex. Thus, we first conmstruct a generalized
Lyapunov function as

V(Ex) = ?lz-x’E'PEx

where P=P7 >0, Pe®R™". It follows that
M = -l-.%’E TPEx + ! x"E"PE%
dt 2 2
Introducing (1) gives
ﬂ%"# -l-x’(A’PE +ETPd)x + x"E"PR,AX(0)R, x +
%(x’E"PBu +u"B" PEx) + x"E7PS, AB(5)S,u ®)
Applying Lemma 2, we have

2x"E"PRAA(0)R,x < p,x" E" PR R PEx +— X'RIR.x
Py

2x"E" PS,AB(0)S,u < p,x" E"PS,ST PEx + iufsf S,
P

where p, and p,are positive constants. Combining

these w ith (8) yields

ﬂ;f‘) ¥ (L PE+ETPA +pE’PRR PE + p,EPS.S7PE

+-—R.R ,)x+ x"E"PBu +$-u SISu
Usmg Lemma 1, we further have

24"E"PBu < ;lfx’E’PBB "PEx + 6"’
Combining the above inequalities giv: es

k) ’[ ATPE + ETPA + ETP(

— =BB" + pRR] +

0:S.STYPE + LRJ R,Jx+ L &1+ —S§ S (9)
Py 2 P

For the given O>0, if there exists a solution

P =P7 >0 of (3), (9) reduces to
AEx) S——l-xTE’OEx-!--l-u’Ru
dt 2 = 2

where the symmetric, positive definite matrix R is
defined as in (6). Integrating both sides of this from

1=0 to T>0 gives
V(Ex(T)) -V (Ex(0)) < —-l- [ x"E7QFxt + %L o Rudt
Since V(Ex(zf)) 20 forall 20, then

(10)

317 BBt < LB PE(0)+ L (w7 Ruct

The state response bound can then be estimated as

Pl + s o3 + [l )
While in the absence of external inputs, the stability
requirement can be obtained from (9) by letting
u,B,5,,5, =0. This gives rise to (7). The Lyapunov
derivative is
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) <- lx’E "QFx
dt 2
That is the generalized state Ex— 0 as t = .
In (6), P, Q and R can be viewed as the weighting
matrices where Q is the weight of the generalized sate.
If the system is initially at rest, the state response can

be estimated as

Il lestae < |[F el an

That is the sysiem will be bounded-input bounded-
output stable. For systems without uncertainties, it
follows that RS, =0,=12. It trns out that the

stability requires

ATPE+ETPAd+

—-I;-E’PBB’PE+E’QE =0 - (12)
The swstem response bound can be estimated as

Fiegal <gesofye +e[ pral (13)

The response of Ex will be attenuated with respect to
u(t) by a factor &.

Dropping out the input matrix B, (12) reduces to

ATPE+E"PA+E'QE =0 (14)
which is the standard Lyapunov equation for linear
singular systems.

We now consider the case of unstructured
perturbations. If the uncertainties A4 and AB are
bounded by

|ad|< a. J2B)< B (15)
where |4 =[A,. (A7), it is easily shown by the
Rayleigh principle that

x(AMTAd-a*Dx<0 u (AB'AB- B Iu<0
Therefore (13) implies

AMTAd <@’ ABTAB < 1

Comparing this to (1) and (2), this is equivalent to
letting R =1, R,=al, S,=1, S,=p. The
stability requirement can now be induced from (7):

2
A’PE+E’PA+p1ETPPE+-a—I+E’QE=0 (16)
1
It is easily seen that the derived algebraic Riccati
equation (6) encompasses various special cases of
interest. And that Lyapunov stability theory for
conventional systems is a particular case of the
Lyapunov stability theory for singular systems. The
result proposed in [5] for general singular systems is
valid only for the worst possible case of A4, i.e. the
unstructured perturbation. Since no more information
other than the bound of A4 is utilized, the result may
be sometimes conservative .

4. Recurrent neural network solving for
matrix equations

We start by considering the procedure for solving

systems of . linear matrix equations in terms of the
recurrent neural networks. The first step is to formulate
the objective matrix function

G(X)=0 (17

‘where X is the solution matrix, G e R"* is a matrix of

functions of X e ®*“. For example, to solve for
Sylvesier equation X4-FX =C we define the
objective matrix function G(X)=X4-FX -C. The
second step is to construct an appropriate computation

energy function
E,[G(X] =22 ¢,lg, (D] (18)

= =1

The derivation of the energy function enables us to
transform the minimization problem into a set of
ordinary differential equations on the basis of an
artificial neural network with appropriate connection
weights, input excitations, bias, and activation

functions. A popular choice for the energy function is

the following
e;(g; (X)) = —g,,(’&) , (19)

It should be emphasmed that the choice of energy
function is arbitrary. Other convex energy functions
can also be chosen, for example, ¢,(g, (X)) = |gj (X)l ,
e, (g,(X))=cosh(g,(X)). The dynamic equation of

the recurrent neural network for solving linear matrix
equations is first proposed in [9]:

dx, &, g, [X ()] ‘
= l,...,p, j= L_.‘.,q

where 7 >0 is the update gain, f,(g,)= 2;“ is the

-]
activation function. For the energy function defined by
(19), the activation function is linear, i.e. f,(g,) =8, -

If e,(g,(X)=|g,(X)| then f,(g,)=sgn(g,). If
e,(g,(X))=cosh(g, (X)) then f,(g,)=sinh(g,).
The specific choice of 77 must ensure stability of the

differential equations and an appropriaie convergence
speed to the stationary solution state. It is easy to show
that the system of differential equations (20) is
asymptotically stable and its steady state matrix
represents the solution matrix.

The formula described in (20) is, in fact, a
standard result of the conventional gradient algorithm
[8],i.e.

ax® _ _E e E By
a o Ta U{ZZ }

k=1 =1 @U &lj

{Z’; o )]fu(gum:m} e

]
=L...pJj=1l...49
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where {au},i=1,,,,,p,j=1,,,,,q indicates the pxgq
matrix with elemenis a,- If the energy function (19) is

used, (21) simplifies to

dx (r) 2 5. ()) -
_dt = “U{; zzzn: “—&U gyl X (t)]}, (22)

i=l...pj=L....q

is convenient to adopt the matrix expression (21) as a
standard form, and use this to convert various control
problems into solvable matrix equations. Before
extending the result to synthesize a neural net-based
LQ controller, we first present the following useful
derivative operations of a scalar-valued function
defined as (18) with respect to the solution matrix .\’
‘These equalities will be useful for putting the
generalized algebraic Riccati matrix equations of (3)
and (7) in the form of (21).

Lemma 3.

For the solution matrix Y e ®™" and the matrix of
non-decreasing activation functions F ={f,(g,)} = F".

4eR™, E e R™", the following derivatives hold

() if G(X)=.4"XE then f7E_f=AFE’ (232)
(i) if G(X) = E" XA then % =EFA"  (23b)
(iii) if G(X) = E" XAXE then

% = A" XEFE" + EFE" XA (23¢)

S. Neural network solving for generalized
algebraic riccati matrix equations

Solving the generalized algebraic Riccati matrix
equation (3) in terms of recurreni neural networks, we
first introduce the following objective matrix function

G(P)=A"PE+E"PA+ E’P(-l,-BB’ +pRR] +p,8,S]YPE
& .

+-I—R:TR2+ETQE
A

=[gyP)], Lj=L..,n (24a)

It is well known that a Riccati equation has many

solutions. However, only one of them is symmetric

positive definite. To avoid the solution obtained

converges to the one which is not positive definite, we
suggest to impose the following constraint

GI(P,R,)T—-P—R,R,T =[g.(P,R)Li, j=L...,n (24b)

where R, is some nonsingular matrix. By defining the
computation energy

En[P,R,1=§§{e,U[:gw (P)+ e, (2., (P.R )1}, using

(21) to minimize the computation energy and making

function
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use of equalities (23), it is straightforward to derive the
following dynamic equation of the neural network

dP _ E,
"

=-
-0, {AF(P)E" + EF(P)4" + EF(P)[(—~ BB +
=

PRE; +p,SSTPEY +[E'P(—BB + pRR]  (252)
=

+ 0,88 F(P)E" + F,(P,R)}

dR oF

— = -5, —==7,F,(P,R)R 25b

@ g TAERIR (250)

where the update gains #,.7, >0 and

RP)= Fl[.-'lTPE +ETPA +ETP(—£-BBT + le,RlT +
. g-
pZSlS{ )PE + lR{R2 +ETQE]
P

F,(P,R,)=F,[P-RR]] (26b)

The architecture of the proposed network for
solution of the generalized algebraic Riccati matrix
equation of order n consists of two bidirectionally
connected layers and each layer consists of an nxn
array of neurons. Equation (26) acts as the hidden layer,
(25) as the output layer. The hidden layer performs a
functional transformation, it calculates and propagates
G,,(P) through the matrices of activation functions

(26a)

F,(P,R,). The matrix LRT R, +E"QE in (26a)
P
acts as biasing threshold matrices adding to the hidden
layer. There are no bias for the neurons in the output
layer. Ther is an integral transformation in the output
layer. Solutions P,,i,j=12,.,n of the generalized
algebraic Riccati equation are present on the weights of
the network. Since the matrix dynamic equation (25)

possesses stable feature, if the update gains 7, are
17, chosen - appropriately, P(:) and R (f) will
approximately reach their steady values in finite time.

Note that to ensure the steady value P being positive
definite, we require that R (f) converges faster than

P . Therefore, we suggest to choose 7 , <<77,.

Note that there are nxn dynamic equations
needed to be solved in (25a). Since the bias

—;—-Rf R, +E"QF is constrained to be symmetric, (25a)
1

is symmetric. Thus, nearly half the computations are
redundant. The recurrent network for solving (23a) can
be reduced to ™™/ unique training pairs, which
corresponds to the upper or lower triangular part of
(25a). After solutions of these pairs are found, the
remaining solutions of P can be obiained directly by
copying the solved weights from the opposite elements
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along the diagonal. From this fact, neurons in (26a) are
arranged into # blocks with the i-th block containing
n+1-i neurons. After calculation for the hidden layer
is completed, elements of the upper triangular part
of F,(P) are copied onto the opposiic elements along

the diagonal to form a complete F (P) matrix.
Calculation for the hidden layer of (26b) can also be
reduced to ™! pairs. The neuron outputs of the
output layer are multiplied with the update gain -7, .
After integration of ™/ neuron outputs, the upper
triangular part of the matrix P is generated. These
elements are then copied to the opposite elements along
the diagonal to form a complete solution matrix P.

Similarly, to solve for the generalized Riccati
matrix equation (7) we define the objective function
matrices

G,(P)=A"PE + ETP4+ p,E" PRR] PE + !

—RIR,
A

+E"QE =[g,,(P)]. i,j=l.n (272)
G,(P.R,)=P-R R =[g,,(P.,R)Li,j=1..n (2Tb)

The neural dynamic equaions of the output layer
solving for (7) are given by

‘;—}; = {AF,(P)ET + EF,(P)A” + p,EF,(P)(R RT PE)"
.+ p(ETPRRIY F,(P)ET + F,(P,R,)} (282)

dR

Tt’ =n,F,(P,R)R, (28b)

The hidden layer is constructed by

F,(P) = F,[A"PE + E"PA+ p,E"PRR’ PE

+LRIR +E7OE] (292)
P

F(P.R)=F,[P-R,R]] (290)

6. Simulation resulis

Example: Let’s consider the following linear time-
invariant singular system with parameter uncertainties.
Let the system matrices be

o dasls 2ol

Assume the initial state vector is x=[0 O]T. The
system is subjected to the following uncerainties

0 02
iy o) el
0.lo,

E

0 030,

where the perturbation o, is uniform in the interval
-0.520,<0.5 and o, is uniform in -l<o, <I.

The input is a unit siep signal. For the above
perturbation matrices, we can have the following
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0.2 ~
decompositions: R, ={0 3}, R, = [0 I], Ad(o) =0,

0 -
and S, =H, S, =1, AB(6)=0.lc,.

0  0.0001

and ¢=1. Update gains for the neural netwoerks are
chosen as 7, =5000 and 5, =20000. We use the
neural dynamics (23) to solve for the generalized
algebraic Riccati matrix equation (3).

Transitions of the objective matrix functions G,
and G, are, respectively, shown in Figs. 1 and 2 for

, 0001 0O
Let’s choose Q= =1, p,=01

5x10™ seconds of numerical integration. Transitions
of the solution matrix P and the additional constraint
R, are, respectively, illustrated in Figs. 3 and 4. The
steady state values of P and R, are approximately
obtained as

_ 0.0093

- {5.8165 x 107
0.0963 -0.0009
[0.0025 0.2508j|
Clealy matrix P is symmetric and positive definite.
Therefore, the perturbed singular system would be

stable with respect to the perturbations. Responses for
the perturbed system states x, and x, are, respectively,
shown in Figs. 5 and 6. It is also found that the state
response is bounded by
[Pleqal =ozsa <[ ppal =10621
0 2 U] 2

where R =11. This verifies inequality (6).

5.8165x107
0.0629

»

7. Conclusion

Quantitative stability conditions for singular
systems with uncertainties are derived using the
Lyapunov stability theory. The presented approach
utilizes the possible bounds as well as the structure of
the uncertain variation; the results apply for systems
subject to perturbations of the unstructured or
structured type. We show that the state response bound
and stability are guaranteed by generalized algebraic
Riccati matrix equations. A set of multilaver recurrent
neural networks is also proposed to solve the Riccati
equation. The nature of parallel and distributed
processing renders the proposed neural networks
possessing the computational advantages over the
traditional sequential algorithms in solving Riccaii
equations,

References

[1]Dai, L., Singular Control Systems, Springer-Verlag,
Berlin (1989).



FERE/\TAFRERIERTER

[2]Lewis, FL., “ A Survey of Linear Singular
Systems,” J. Circuit, Syst., Signal Processing, Vol.
5, pp. 3-36 (1986).

{3INichols, NKX., “Robust Control System Design for
Generalized State-Space Systems,” Proc. IEEE
Conf. Decision Contr., pp. 538-340 (1986).

[4]Wu, H. and K. Mizukami, “Stability and Robust
Stabilization of Nonlinear Descriptor Systems with
Uncertainties,” Proc. IEEE Conf. Decision Contr.,
pp. 2772-2777 (1994).

[5)Zhang, QL. and X H. Xu. “Robust Stabilization of
Descriptor Systems,” Proc. IEEE Conf. Decision
Contr., pp. 2981-2982 (1994).

[6]Salama, A. and V. Gourishankar, “ A
computational algorithm for solving a system of
coupled algebraic matrix Riccati equations.” IEEE
Trans. Comput., Vol. 23. pp. 100-102 (1974).

[7]Laub, A.J., “A Schur method for solving algebraic
Riccati equations,” IEEE Trans. Automa. Contr.,
Vol. 24, pp. 913-921 (1979).

[8]Lin, C.L., “ Neural net-based adaptive linear
quadratic control," 1997 IEFE Int. Symp.
Intelligent Contr., Istanbul, Turkey (1997).

[9]Wang, J., “Recurrent neural networks for solving
linear matrix equations,” Computers AMath. Applic.,
Vol. 26, pp. 23-34 (1993).

G1

0.5

045
04
0.35
03
0.25
0.2
0.15
01

0.05
0 1 2 3 3 5
time(sec) x 10"
Fig. 1 Transient of G,
62
0.05
0.04
0.03
0.02
0.01
o e ——
0.01 /
0 1 2 3 4 5
time(sec) x 10°

Fig. 2 Transient of G,

C-31

0.07
.08 r”'
0.05

0.04

0.03

0.02

0.01

(

0 1 2 3 4 5
time{sec) x 10"

0

Fig. 3 Transient of P

Rr
03

0.25

0.2§

0.15

01

0.05

0.08
0 1 2 3 4 5
time(sec) x 10"

Fig. 4 Transient of R,

x1

1] S 10 15 20 25 30 35
time(sec)

Fig. 5 Unit step input response of x;

x2
1.2

1

08

0.6

04

0.2

Q

0 5 10 15 20 25 30 35
time{sec)

Fig. 6 Unit step input response of x»



