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Abstract

We study the relations between boolean functions
and symmetric groups. We consider elements of a
symmetric group as variable transformation oper-
ators for boolean functions. Boolean function may
be �xed or permuted by these operators. We give
some properties relating the symmetric group Sn
and boolean functions on Vn.

1 Introduction

The values of a boolean function for each vector
in Vn form a binary sequence of length 2n called
the trace of the function. The trace of a boolean
function is widely used in communication systems
such as DES and S-box theory [1, 2]. To pro-
tect against cryptographic attacks boolean func-
tions must satisfy some algebraic properties such
as nonlinearity, balance, the propagation criteria
and correlation immunity. These are called cryp-
tographic properties [6, 8, 11]. In this paper, we
use symmetric groups to study boolean functions.
The transformation of variables, xi ! xj, is called
an operation or a variable transformation opera-
tor. We consider elements in the symmetric group
as a variable exchange operators for boolean func-
tions. We study the conditions under which a
boolean function is �xed or transformed by this
operation.

2 Background

2.1 Boolean space and boolean func-

tions

The set of n-tuple vectors,

Vn = f� = (a1; � � � ; an) j
ai 2 GF (2); i = 1; � � � ; ng;

is a boolean space if its arithmetic is in a Galois
�eld. A boolean space Vn contains 2n vectors.
Clearly, all the vectors in Vn are binary sequences.
A boolean function is de�ned on Vn by the map-
ping

f(x) : Vn ! V1

where x is a variable vector in Vn.

There are several ways to represent a boolean
function: by a polynomial; by a binary sequence;
and by a (�1; 1) sequence. Here we use the poly-
nomial representation to discuss boolean func-
tions. Let x� = xa11 xa22 � � � xann denote a monomial
on Vn. Then a boolean function on Vn is a linear
combination of monomials

f(x) =
M
�2Vn

c�x
� c� = 0 or 1; (1)

where the sign� denotes boolean addition (XOR).

For any two binary sequences � and � with the
same length s, we de�ne their multiplication (�)
and binary addition (�) as follows;

� � � = (a1; a2; � � � ; as)� (b1; b2; � � � ; bs)
= (a1b1; a2b2; � � � ; asbs)

(2)

� � � = (a1; a2; � � � ; as)� (b1; b2; � � � ; bs)
= (a1 � b1; a2 � b2; � � � ; as � bs):

(3)
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So ��� and ��� are still binary sequences. If f(x)
corresponds to the binary sequence � and g(x) cor-
responds to �, then the functions f(x)g(x) and
f(x) � g(x) correspond to formulae (2) and (3)
respectively.

We call the number of 1s in a binary sequence,
�, its Hamming weight that is denoted by wt(�).
A vector in Vn is a binary sequence with length n
and the values of a boolean function for each vec-
tor in Vn also form a length 2n binary sequence
that we call the trace of the function. For any two
functions f(x) and g(x), their Hamming distance

is the number of 1s in the sequence of the function
f(x)�g(x). The function (1), with the restriction
such that c� = 0 for all � where wt(�) > 1, is
called an a�ne function and denoted by '(x). Us-
ing the dot product we can write a�ne functions
with the form

'(x) = � � x� c;

where � 2 Vn; c = 0; 1. An a�ne function is called
a linear function if c = 0 (which corresponds c0 =
0 in the function (1)). The following de�nitions
are the most important cryptographic parameters
for a boolean functions in cryptography [3, 9, 10].

De�nition 1 Let f(x) be a function on Vn. If,

as x runs through all vectors in Vn, f(x) = 1 is

true 2n�1 times f(x) = 1, then the function f(x)
is said to be balanced.

De�nition 2 Let f(x) be a function on Vn. The
nonlinearity (denoted by Nf) of the function f(x)
is de�ned by the minimum Hamming distance

from f(x) to all a�ne functions over Vn i.e.

Nf = minfwt(f � ') j for all ' on vng:

De�nition 3 Let f(x) be a boolean function on

Vn. If for a vector � 2 Vn the function f(x) �
f(x � �) is balanced, then the function f(x) is

said to have propagation criteria with respect to

the vector �. If f(x) has propagation criteria with

respect to all vectors with 0 < wt(�) � k, then
f(x) has propagation criteria of degree k denoted

by PC(k). If k = 1, the function is said to satisfy

the strict avalanche criteria (SAC).

De�nition 4 Let 0 � k � n. The function f(x)
on Vn is k-th order correlation immune if the fol-

lowing equation

X
x2Vn

(�1)f(x)���x = 0; for 1 � wt(�) � k;

is satis�ed, where wt(�) is the Hamming weight of
a vector � 2 Vn.

2.2 Symmetric group

For an n-tuple vector, � = (a1; a2; � � � ; an) 2 Vn,
we consider an operation on the vector which per-
mutes the positions of ai and aj. Then the vector
becomes

(a1; � � � ; aj ; � � � ; ai; � � � ; an):

We denote the operation of permuting the posi-
tions of ai and aj by the operator � = (ij) and
then we write

�(a1; a2; � � � ; an) = (a1; � � � ; aj ; � � � ; ai; � � � ; an):

The permutations for an n-tuple vector in Vn may
apply to more than two entries. Thus the opera-
tion � = (ijk � � �) is de�ned by the ith entry goes
to jth position, the jth entry goes to kth position,
and so on. Thus the operator � = (ij � � � k), acting
on the vector �, for example, gives the vector

(a1; � � � ; ai�1; ak; ai+1; � � � ; aj�1; ai; aj+1; � � � ; an):

Let �i and �j be any two operators for a vector
� 2 Vn. Then the combination of the operators is
de�ned by � = �i�j such that

�� = (�i�j)� = �i(�j�):

The inverse of an operator exists. For � =
(ij � � � k); ��1 = (k � � � ji) is its inverse because
���1 = ��1� = e, the unit permutation.

De�nition 5 For an n-

tuple vector (a1; a2; � � � ; an) in the boolean space

Vn, we consider operations � that permute the po-

sitions of the n-tuple. Then all possible operations

on the n-tuple form a group which is called the
symmetric group de�ned on Vn and denoted by Sn
(or permutation group).

2



If a subset of Sn forms a group under the same
laws of combination used in Sn, then the group is
called subgroup of Sn. Any group has at least two
trivial subgroups: the group containing only one
element feg; and the group itself. For a symmetric
group Sn, the following properties hold.

1. The order of Sn (the number of all elements)
is n! i.e. jSnj = n!.

2. We take some elements in Sn as the genera-
tors of the group, if any element in Sn can
be equivalently expressed by those genera-
tors. Then the minimum set of generators for
Sn is of size n� 1. Let f(12); (13); � � � ; (1n)g
be a set of generators of Sn. Then the el-
ement (123 � � � n), for example, is equal to
(1n) � � � (13)(12).

3. The transitive relations of symmetric groups
S1; S2; � � � ; Sn are as follows;

S1 � S2 � � � � � Sn�1 � Sn:

The following statements from group theory
will be used later. Let G and G0 be any two groups
and elements g and g0 be elements with g 2 G and
g0 2 G0.

1. (Homomorphism). If there is a mapping G!
G0 and the laws of combination for the two
groups are preserved, i.e.

gi ! g0i
gj ! g0j

)
) (gigj)! (g0ig

0
j);

then the two groups, G and G0, are said to be
homomorphic.

2. (Isomorphism). For two homomorphic
groups, G and G0, if the mapping is invert-
ible, then the two groups are said to be iso-
morphic.

3. (Kernel). For the homomorphic mapping of
G and G0, the unit element in G maps to a
subset He in G0. The subset He in G0 corre-
sponding to the unit element e in G is called
the kernel of the homomorphic mapping.

4. (Lagrange's theorem). The order of a sub-
group of a �nite group is a divisor of the order
of the group.

5. (Cayley's theorem). Any group with order n
is isomorphic with a subgroup of Sn.

For a boolean space Vn , we say that the sym-
metric group Sn is de�ned on the space, if each
element in Sn just permutes the vectors in Vn .
Let Vm and Vn be subspaces of Vm+n. Let Sm be
the symmetric group for the space Vm and Sn for
the space Vn. Then for any elements � 2 Sm and
�0 2 Sn, it is obviously that ��0 = �0�. We say
that the two groups are commutative (both the
two groups are subgroups of Sm+n and Sm+n is
on Vm+n). Obviously, the set, f��

0 j� 2 Vm; �
0 2

Vng denoted by Sm�Sn (direct product), is a sub-
group of Sm+n with order m!� n!.

Let H be a subgroup of Sn. Then the sub-
set �H, � 2 Sn � =2 H, is called the (left) coset
associated with H in Sn. The subgroup H is
called a normal subgroup (or invariant subgroup)
of Sn if �H��1 = H for any � 2 Sn. For any
subgroup H of Sn, there exists jSnj=jHj elements
gi; (gi =2 H; gi 2 Sn) such that

Sn = H [ (g1H) [ � � � [ (gs�1H); (4)

where s = jSnj=jHj. In the above formula, if H is
a normal subgroup, the set, fH; g1H; � � � ; gs�1Hg,
forms a group (called quotient group or factor

group of Sn) with order n!=jH(f)j. For more de-
tail about group theory, one can refer the books
[7][5].

3 Relationships between sym-

metric group and

boolean functions

Now we turn our discussion to the relationships
between the symmetric group and boolean func-
tions on �nite boolean spaces Vn . We highlight
features of a boolean function under the opera-
tions of a symmetric group.

De�nition 6 Let � denote an element of the

symmetric group Sn. We take all the elements
of Sn as permuting operators on a vector � in Vn.
We say that a permuting operator acts on a func-
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tion on Vn as follows

�f(x) = �

0
@M
�2Vn

c�x
�

1
A

=
M

��2Vn

c��x
��

=
M
�2Vn

c�x
�

where �� = � and c� = c� 2 GF (2).

We denote by Hf a subgroup of Sn associated
with the boolean function f(x) over Vn . Then the
subgroup Hf is described by the following lemma.

Lemma 1 Let Hf denote the subset that contains

all the elements � 2 Sn such that �f(x) = f(x).
Then Hf is a subgroup of Sn.

Proof. For the subset Hf to be a group, we only
need to show the set is closed under the laws of
group combination of Sn. In fact if �i and �j are
in the set Hf , then �i�j and �j�i are also in Hf ,
because

�i�jf(x) = �i(�jf(x)) = �if(x) = f(x):

The set Hf is closed. Therefore it is a subgroup
of Sn. 2

Associated with the function f(x) on Vn and
the symmetric group Sn, we have another group,
denoted by Gf , which is described by the following
lemma.

Lemma 2 If ef(x) = f(x) (e the unit of Sn) is
the unit of the set f�f(x) j � 2 Sng, then the set

of functions forms a group, denoted by Gf , where
the group operation \�", stands for composition of

functions, de�ned as follows

[�if(x)] � [�jf(x)] = (�i�j)f(x) = �kf(x): (5)

Proof. To be a group, the set Gf with the opera-
tion �must satisfy the following conditions: (i) the
unit element must exist; (ii) each element must
have an inverse in the set and the left inverse must
be equal to the right inverse; (iii) the associative
rule must hold for the operation; (vi) the set must
be closed under the group operation. The unit

element of the set is de�ned by the function it-
self f(x). Let �if(x) be an element of the set.
Then the element has its inverse �jf(x), such as
�j = ��1i , in the set, since

[�f(x)] � [��1f(x)] = [��1f(x)] � [�f(x)]
= f(x):

(6)
According to the de�nition of the group operation,

[�if(x) � �jf(x)] � �kf(x) =
�if(x) � [�jf(x) � �kf(x)]

(7)

holds. Hence the associative law holds. The set,
Gf = f�f(x) j 8� 2 Sng, contains all the di�erent
boolean functions generated by permutations in
Sn. Therefore, the set is closed. So we have proved
that the set, f�f(x) j � 2 Sng, with composition
� is a group. 2

The group operation \�" on Gf is not the group
operation of Sn. The equality

(�i�j)f(x) = �kf(x) (8)

does not restrict �i�j to equal �k, because any
element in H�kf will leave the function �kf(x)
unchanged. For convenience, we use the element
�k = �i�j to identity the function �kf . The group
Gf is a set of polynomials on a �nite boolean
space, which is generated by a boolean function
f(x) on Vn and the symmetric group Sn. Each
element, �f(x), in Gf corresponds to a subgroup,
H�f , of Sn. Then for the function f(x), we have
the left coset �Hf and right coset H�f� that give
the function �f(x). Therefore among the elements
in Gf , the following lemma holds.

Lemma 3 Let �if(x) and �jf(x) be any two el-
ements in Gf associated with the function f(x)
over Vn . Then

(i) jHf j = jH�if j = jH�jf j = � � �;

(ii) There exists a subset of

elements fe; �1; �2; � � �g, called representative

set of Sn, denoted by Cf , such that

Sn = Hf [ �1Hf [ �2Hf � � � ; (9)

(iii) Let �i and �j belong to Cf . If �i 6= �j, then
�if(x) 6= �jf(x) and Cff(x) = Gf .
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Proof. The group H�f is the group of the func-
tion �f(x). So H�f contains all the elements in
Sn such that �j(�f(x)) = �f(x). The left coset,
�Hf , acting on the function f(x), also produces
the function �f(x). So j�Hf j � jH�f j. On the
other hand, �Hf contains all elements in Sn such
that (��i)f(x) = �f(x) for each �i 2 Hf . Thus
we have j�Hf j � jH�f j. Therefore jHf j = jH�f j
which proves (i).

Since the intersection of distinct cosets is empty
and all cosets contain jSnj elements, then (ii)
holds.

The part (iii) is obvious. According to the
de�nition of Gf , each function is uniquely gen-
erated by the function f(x). The set of func-
tions, Cff(x), contains all the di�erent functions.
Therefore Cff(x) = Gf 2

The subset Cf is not the only subset. We can
choose one representative from each group H�f to
form a subset Cf . But the group Gf is unique.
Any Cf in Sn generates the group Gf and so may
be used as the identity set for the function f(x).
Each element � in the identity set may be used as
the identity element for the function �f(x). Note
that the class Cf may not contain the unit ele-
ment.

It is clear that an operator acting on a function
f(x) is equivalent to a one-to-one linear transfor-
mation. The functions f(x) and �f(x) in Gf have
many properties in common.

Lemma 4 Let f(x) be a boolean function on Vn.
Then the all functions in Gf have the same (1)
Hamming weight, (2) nonlinearity, (3) propaga-

tion criteria PC(k) and (4) correlation immunity.

Proof. Since each function in Gf relates to an-
other by a one-to-one linear transformation, they
have the same Hamming weight wt(f) and non-
linearity Nf .

Let f(x) on Vn have k-th order propagation
criteria. According to de�nition 3, f(x)�f(x��)
is balanced for all 0 < wt(�) � k. The function
�f(x) = f(�x) and then

f(�x)� f(�x� ��) = f(x0)� f(x0 � �)

Of course wt(��) = wt(�). As � runs through all
vectors such that 1 � wt(�) � k, � runs through

all vectors with 1 � wt(�) � k.

According to de�nition 4, the if f has k-th or-
der correlation immunity, then it satis�esX
x2Vn

(�1)f(x)���x = 0; for all 1 � wt(�) � k:

Let �f(x) be a function in Gf . Since the map
from f(x) to �f(x) is a one-to one linear transform
and the vector � has been chosen for such that
1 � wt(�) � k, �f(x) has the same correlation
immunity as f(x) has. 2

Lemma 5 Let the f(x) be a boolean function on

Vn and ri the number of xi occurs in the func-

tion. (i) The numbers of repetitions of each vari-

able of the xi1 ; � � � ; xik in f(x) being equal (i.e.
ri1 = � � � = rik), is a necessary condition for the

group Sk associated with variables xi1 ; � � � ; xik to

be a subgroup of Hf . (ii) The order of Gf is

greater than or equal to the number of all di�erent

patterns of (r1; � � � ; rn).

Proof. We prove the lemma by contradiction. By
the lemma 1 the element in Hf operating on the
function f(x) does not change the function itself.
Suppose ri 6= rj. After the operation, xj in the
function �f(x) is transformed to xi. Obviously,
the number of repetitions of xi in �f(x) is rj that
induces �f(x) 6= f(x). Therefore � =2 Hf .

Assume that ri 6= rj for all i 6= j; 1 � i; j � n.
Any operation from Sn will change the represen-
tation of the function f(x). So Gf = Sn. For all
ri 6= rj we have �if(x) 6= �jf(x). Therefore we
have proved (ii). 2

Lemma 6 Let f(x) and g(x) be any two boolean
functions on Vn and Hf and Hg be their groups

respectively. Then in the group Hf�g formed by

the function f(x)� g(x), at least the intersection

of Hf and Hg is a subgroup i.e. Hf \Hg � Hf�g.

Proof. Since the intersection set is a subset of Sn,
all the laws of combination for Sn are preserved.
The �rst we prove the intersection Hf \ Hg is a
subset of Hf�g. Let �i; �j 2 Hf and �i; �j 2 Hg.
Then �i; �j are in the intersection set Hf \ Hg.
Because

�i�j(f(x)� g(x)) = �i(f(x)� g(x))

= f(x)� g(x);
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the elements �i; �j and �i�j are in the groupHf�g.
Therefore Hf \Hg � Hf�g. The unit element is
in Hf \ Hg. So to prove Hf \ Hg is a group, it
is enough to show it is self closed under the laws
of combination that are used in Sn. The above
formula shows that the element �i�j is in Hf�g

and also in Hf \ Hg. So Hf \ Hg is self closed.
Therefore it is a group. Because the elements in
Hf�g are all elements in Sn that leave the function
f(x)� g(x) unchanged, Hf \Hg is a subgroup of
Hf�g for the function f(x)� g(x). 2

Note: The groups Hf�g and Hf \ Hg may
equal, since the function f(x)� g(x) may increase
the symmetric properties but also may reduce the
properties. If f(x) � g(x) = 0, Hf�g = Sn and
Hf \ Hg is a subgroup. If f(x) and g(x) do not
contain any common term, then Hf�g = Hf \Hg.

The following are a few trivial facts for some
boolean functions

1. Let k be an integer with 0 � k � n. Then
the function

hk(x) =
M

8�2Vn;&wt(�)=k

x�

has group Sn, i.e. Hh = Sn.

2. Let fi1; i2; � � �g be a subset of f1; 2; � � � ; ng.
Based on lemma 6, for the function

h(x) = hi1(x)� hi2(x)� � � � ; (10)

the group Hh is Sn.

3. Let Hf be the group for the function f(x)
on Vn . Then Hf is also the group for the
function f(x)� h(x), where h(x) is the func-
tion (10) over Vn .

4. Let fi1; i2; � � � ; idg be a subset of f1; 2; � � � ; ng
and

f(x) = xi1xi2 � � � xid

be an algebraic degree d boolean function on
Vn . Then the group Hf = Sd � Sn�d, where
Sd is the symmetric group associated with the
subset and Sn�d is the group associated with
the subset f1; 2; � � � ; ngnfi1; i2; � � � ; idg.

4 Discussion

For a �xed boolean space Vn, there are 2
2n boolean

functions and the size of the permutation group is
n!. Although this is very large, we can use the
permutation groups to discuss boolean functions.
The boolean functions in the group Gf share the
same cryptographic properties such as Hamming
weight, nonlinearity, propagation criteria and cor-
relation immunity. For a group Gf , there exist
subsets, @ = ff jf 2 Gfg, of functions such that @
is a additive group (f;�) if we add the zero to the
subset and regard the zero as the unit element.
There are trivial additive groups, for example,
f0; �if(x)g (since �if ��if = 0). If such a subset
contains m functions (of course m � jGf j), the
additive group is a S-box design n�m (note the
group order ism+1). Good S-box designs need to
satisfy some cryptographic properties such as (1)
any nonzero linear combination c1f1� � � � � cmfm
is balanced, (2) any nonzero linear combination
has high nonlinearity, (3) any nonzero linear com-
bination satis�es the same and good propagation
criteria, (4) the mapping of the S-box is regular
i.e. each vector in Vm corresponds to 2n�m vec-
tors in Vn as x runs through all vectors in Vn once,
and (5) the S-box has good di�erential distribu-
tion [1, 2, 4, 12]. If all components of an S-box
are in an additive group @ and Gf at the same
time, then the discussion of the S-box concerns
the one function f(x) on Vn only.
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