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Abstract

To show the performance of Hierarchical Storage
Svstem (HSS) when receiving the requests from the
clients in the nerwork, a simulation model is proposed
and a simulation is undertaken. In the simulation model,
we build a general and open queuing model to simulate
HSS. To observe the behaviors of the storage. system
under different situations, some workload parameters,
cost parameters. and measure parameters are also
given.

Keywords: Hierarchical storage system, Multimedia
storage server, Simulation. Queuing model

1 Introduction

Recent advances in computing and communication
have made on-line access to multimedia information
both possible and cost-effective. The environment to
support these services consists of multimedia storage
servers and numerous client sites connected with high-
speed networks. Clients can retrieve multimedia
information from the servers for real-time playback.
Furthermore, client can issue different requests such as
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stop, pause, resume, even fast-forward and fast-
backward in an interactive way. The media can be
classified into two types,-namely non-continuous media
such as conventional text and numerical data, and
continuous one which could be audio and video.

The continuous media (CM) has two fundamental
characteristics {4]. One is real-time storage and retrieval
- CM recording devices generate a contiguous stream of
media quanta that must be stored in real-time; in reverse.
the media quanta must also be presented using the same
time sequence in teal-time. Any derivation from this
time sequence will incur the jerkiness in video
presentation, or pops in audio play. Another is high data
transfer rate and large storage space - Digital video and
audio playback demand a high data transfer rate.
Moreover video and audio media usually require a lar‘ge
storage space provided by multimedia storage servers. -

To support these two fundamental characteristics
of CM, an efficient large-scale storage -setver must be
designed. Large-scale storage servers will need to
combine the cost-effectiveness of - archive. storage
devices with the high performance of magnetic disks,
RAIDs [1] [3]. and CD-ROMs. The storage system is
organized as a hierarchy where magnetic disks and
RAIDs are used as a cache for the archive storage
devices [5]. To make the storage system as efficient as
possible in processing client requests, the powerful and
efficient Hierarchical Storage System (HSS) must be
analyzed first and then designed later.

To analyze the performance of HSS when
receiving the requests from the clients in the network, a
simulation model is proposed and a simulation is
undertaken in this paper. The reason why an analytic
model is not adopted here is the complexity and
intractability of HSS. The simulation work proceeds in
two stages. In the first stage, due to no decision about
the configuration of HSS, we ty to tailor a general
simulation model to fit all different configurations of
HSS. In the second stage, the workloads resulted from
clients will be investigated and analyzed deliberately.
Feeding these workloads into the simulation model, we
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can figure out how the performance tuning is carried out
in HSS according to different workloads.

The remainder of the paper is organized as follows.

Section 2 describes the environment of hierarchical
storage system. Then a simulation based on the
environment is proposed in Section 3. In Section 4, we
conduct a series of experiments and show how to
construct the hierarchical storage system. Finally brief
conclusions and future research directions are given in
Section 5.

2 The environment of hierarchical
storage system

The environment of the hierarchical storage
system shown in Fig. 1 is a client/server model [9]. At
one end, a client such as a video application, medical
one, or shopping one can issue an access request to a
storage server at the other end through a high-speed
wide area network. After the storage server's processing,
the data transmitted back to the client could be text, still
image, graphic, audio. and even video, and they may be
displayed on the client’s screen in multiple data streams.
Multiple data streams not only are synchronized with
each other. but must be transmitied in a real-time
performance requirement (2] [6] [7]; that is, during
playback, no output devices suffer from starvation or
jitter. Currently, no editing is supported in our model. In
other words, the applications at the client end are based
on Media on Demand (MOD) [5] technology to
retrieve their target data.

The storage server at the other end of the wide
area network can be viewed as a logical site which
‘consists of several physical nodes connected with an
Ethernet-based Local Area Network (LAN). These
nodes can be classified into three types; that is filters,
media servers, and archive servers. The request from a
client is first received by the filter, and the filter then
retrieves its local structured text data if necessary or
dispatches the request to appropriate media servers
according to the dictionary stored in the filter. Thus the
filter plays both roles of the dispatcher and the server
storing structured text data. In order not to occupy the
bandwidth of a high-speed channel, the request and the
reply of structured text data are planned fto be
transmitted in a low-bandwidth channel. As for the
media servers, when receiving the forwarded request,
they retrieve the variety of data from different facilities,
such as hard disks, CD-ROMs, and even high-
performance RAIDs. If the target data are currently not
available on the media servers, they may request an
archive server to download the target data to their local
devices through LAN. In general, the archive server is
facilitated with  jukeboxes whose components could be
CD-ROMs or tapes. The multimedia data stored at
media servers and archive ones. in general, occupy large
storage space, and require a specified storage server (o
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process themselves. Furthermore, the multimedia data
retrieved from media servers are transmitted back to the
client through another high-bandwidth channel in order
to meet the real-time requirements.

3 The simulation model

In this section, a general queuing model which can
actually reflect the behaviors of the storage server when
receiving a request from a remote client, is proposed.
There are several features involved in this queuing
model. First, it can simulate the behaviors of the storage
server under different traffic loads. Second. given the
variety of the maximum data stream and cost parameters.
the capability of the storage server could be scalable.
Third, from the model, we can determine how large the
buffer size should be such that it is the most efficient for
a media server. Fourth, it can reflect the performance
under different hit ratios of hard disks and RAIDs. Fifth.
it can also show the situations under different load
biases of facilities.

As the workloads, related parameters could be
categorized as follows. They are 1) request pattern. 2)
system environment, and 3) media granule. In order to
study the effect of the server resulting from the requests,
a set of cost parameters about CPU time, /O time, and
transmission time are given. Finally, two measure
parameters such as throughput and start-up latency are
used to show the strengths and weaknesses of
performance under different workloads.

3.1 The queuing model

To make the simulation as close to a real situation
as possible, a general and open queuing model shown in
Fig. 2 is proposed. This model simulates the storage
server mentioned in Section 2. The requests from clients
arrive at the storage server at a specified random interval.
The filter of the storage server first catches the requests,
and then processes them as long as the number of data
streams currently being active in the storage server is
below an upper limit. If the upper limit is exceeded, the
storage server would not handle the requests and put
them in Data Stream Control Queue till some active
requests are consumed in the storage server. As the
requests go through Filter CPU Queue and Server, the
filter determines appropriate servers where they should
be dispatched, according to the dictionary stored in the
filter. If the target data are text files, they will be fetched
directly from the local filter and sent back to the clients
through a low-bandwidth channel. Filter IO
Queue/Server and LBC Queue/Server shown in Fig. 2
depict this situation. If the target data are stored in
remote media servers, the requests will be forwarded to
appropriate servers through LAN.

There could be several media servers connected
with LAN, though only one media server is shown in Fig.
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2. The media server is a general one equipped with a
few different facilities, such as hard disks, CD-ROMs,
and even high-performance RAIDs. When the media
server receives a forwarded request, the server processes
it immediately as long as the system’s free buffers are
enough. If the available buffers are not enough, the
request will be suspended in Buffer Control Queue till
some occupied buffers are released. As the request goes
through Media CPU Queue and Server, the server
determines the facilities where the target data are stored,
according to the request pattern. For different facilities,
each one has its own queue and server. The target data
will be retrieved from appropriate facilities and sent
back to the clients through a high-bandwidth channel.
The different VO Queues/Servers and HBC
Queue/Server shown in Fig. 2 depict this situation. If
the target data are too large to be fetched at one time,
the same procedure will be executed once more.
Furthermore, based on the concepts of hierarchical
storage system, hard disks or RAIDs act as a cache
storage of archive servers in the queuing model. In other
words, when a client issuing an initial play request, if the
target data are not available on the media server, they
must be downloaded from the archive server first, and
then retrieve them from hard disks or RAIDs. The

related Archive CPU Queue/Server and Archive /O

Queue/Server are shown in Fig. 2.

The requests issued from clients could be
classified into two types. One is control requests such as
stop, pause, and resume which themselves do not fetch
data. Another one is retrieval requests such as

“conventional access. play, fast forward, and fast
backward. As mentioned before, the retrieval requests
fetch their target data from appropriate servers.
Correspondingly, the control requests will be processed
in a different way. Stop and pause requests record the
demanded action of a client, and resume requests wake
up the retrieval request suspended in Block Queue. The
demanded status will be referenced when a retrieval
request has more data to fetch. If the demanded status is
stop, the retrieval request needn’t fetch data again and
completes. While the demanded status is pause, the
retrieval request will be put into Block Queue till a
resume request is issued later.

3.2 Workload parameters

In the simulation model, the workload parameters
as shown in Table I can be categorized into three types.
They are 1) request pattern, 2) system environment, and
3) media granule. According to different workloads, the
queuing model can reflect the behaviors of the storage
server when receiving a request from a remote client.
Moreover, by giving these parameters appropriate
values, the features involved in the queuing model could
he shown up in the simulation.
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The parameter req_arr_time is the mean inter-
arrival time among requests from all clients in the
network, and can be used to simulate different traffic
loads. The next three parameters are related to each
other. The parameter fewer_data_stm_prob is the
probability of requests with fewer data streams. The:
parameter fewer_data_stm_mno is the mean number of
data streams for requests with fewer data streams. The
parameter more_data_stm_no is for requests with more
data streams. These three parameters have a great effect
on the data stream control in the storage server. The next
three parameters are also related to each other. The
parameter small_req_prob is the probability of small
requests occurring in the simulation. The parameter
small_req_size indicates the mean size of data retrieved
by a small request. The parameter large_req_size is for
requests with a large amount of data. These three
parameters have an influence on the frequency of device
I/Os executed in the storage server. Then, the parameter
dist_dev_type describes the ratio of target data
distributed on devices such as the filter’s hard disks, the
media servers’ hard disks, RAIDs, and CD-ROMs. Last.
the parameter play_prob is the probability of play
request among all requests.

The parameter max_data_stm is the maximum
number of data streams being processed in the storage
server in order to guarantee the quality of services (Qos).
In cooperation with the cost parameters discussed in the
next section, the maximum data stream can be adjusted
to show the capability of the storage server. The
parameter max_buf_size is the maximum size of system
buffers allocated in the media server. It aids us to tailor
the system buffer and makes a media server most
efficient. Another two system parameters are related to
the hit ratio of device-based caches; that is the parameter
hd_hit_ratioc for hard disks and the parameter
raid_hit_ratio for RAIDs. They are used to reflect the
performance under different hit ratios.

The last three parameters are related to the granule
size of different devices [5]; that is hard disks, RAIDs,
and CD-ROMs. In general, a block (granule) size of
hard disks and CD-ROMs is fixed, whereas a granule
size of RAIDs could be different when RAIDs are
configured as level 5. Different granule sizes are
associated with the number of device [/Os executed in
the media server.

3.3 Cost parameters and measure
parameters

To evaluate the performance of HSS, several cost
parameters must be given to the servers described in the
queuing model. These cost parameters shown in Table II
could be classified according to l) server types, 2)
request types, and 3) cost types. There are iotally ten
servers in the queuing model. In spite of what requests
are, they all are processed in Filter CPU Server first,
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but only local requests flow through Filter /O Server.

Only one cost parameter is required for each filter server.

For remote requests dispatched to media servers,

different cost parameters are given for Media CPU

Server, based on control or retrieval requests. For
retrieval requests, when they must download the target
data from archive servers, the cost parameters about
CPU and I/O are specified for Archive CPU and
Archive /O Servers, respectively. For each device
server, different cost parameters are given according to
the request types such as play, fast forward, and fast
backward. Finally, we also consider the transmission
cost on a low bandwidth channel and a high bandwidth
channel, respectively. ‘

Finally two measure parameters are used to show

the performance of HSS; one is throughput and another .

one is start-up latency [8]. The throughput measures
the number of completed requests per unit of time. The
start-up latency measures the delay when the first target
data are received from the storage servers. These both
measure parameters can truly reflect strengths and
weaknesses of different configurations for the same
workloads. A good configuration should have a higher
throughput and a shorter start-up latency.

4 The experimental results

4.1 The experiments

As for the experiments, the simulation model is
implemented with the language GPSS World which is
the third-party product run on OS/2 in Pentium PC.
Each experiment is simulated for 107 time units.

Experiment 1: Traffic load

This experiment sirnulates the behaviors of the
storage server- under different traffic loads. The
throughput and start-up latency under different inter-
arrival time are shown in Fig. 3. From this figure, we
find that the throughput is almost in inverse proportion
to the inter-arrival time, except the case of 10° ms. The
reason is that the system is too busy to handle the
incoming requests, so the throughput in the case of 10°
ms is not as we expect. However, in general, the more
heavy load, the more throughput produced. As for the
start-up latency, there is no great difference among these
traffic loads, except the heaviest load (i.e. the case of
10" ms). We have the same reason to explain why there
is a enormous start-up latency occurred in the case of
10° ms. Besides, regardless of traffic loads, any play
request must be processed at least 2 seconds to get its
first target data.

Experiment 2: Scalability
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Given the variety of the maximum data stream and
cost parameters, this experiment simulates the capability
of the storage server. The throughput and start-up
latency under different cost parameters and 10 data .
streams permitted are shown in Fig. 4. From this figure,
we find that the throughput is almost the same under
different cost parameters. As for the start-up latency, in
general, the more cost, the more start-up latency
produced. Fig. 5 shows the throughput and start-up
latency under different maximum data streams permitted
and fixed filter CPU cost. From this figure, we find that
the throughput is also almost the same under different
maximum data streams. As for the start-up latency, we
find that the start-up latency is almost the same, except
the case of 10 data streams. This fact explains that at
least 30 data streams are required to support in the
system to get better performance.

Experiment 3: Buffer size

This experiment simulates and shows how large
the buffer size should be such that it is the most efficient
for-a media server. The throughput and start-up latency
under different buffer sizes and fixed probability 0.1 for
small requests (i.e. most requests are large) are shown in
Fig. 6. From this figure, we find that the throughput is
almost the same, except the case of 1 MB. As for the
start-up latency, we have great improvement when 8 MB
system buffers are allocated in the system, and no more
benefits are got when buffer size is 16 or 32 MB. Fig. 7
shows the throughput and start-up latency under
different probabilities of small requests and 1 MB buffer
allocated. We find. that the more small requests, the
more throughput produced, unless the. probability of
small requests is more than 0.5. As for start-up latency,
we have the best performance when the probability of
small requests is 0.9. Besides, not shown in both figures,
we also observe when most requests are small, they will
have less start-up latency if more system buffers size are
allocated in the storage server.

Experiment 4: Hit ratio

This experiment simulates and reflects the
performance under different hit ratios of hard disks and
RAIDs. The throughput and start-up latency under
different hit ratios for RAIDs are shown in Fig. 8. From
this figure, we find that the throughput is the same for all
cases. As for the start-up latency, we have better
performarice when the hit ratio is higher. Fig. 9 shows
the throughput and start-up latency under different hit
ratios for the media server’s hard disks. We find that the
same results occur in the media server’s hard disks.
Thus we know if the hit ratios for storage devices are
high, it will have little start-up latency.

Experiment 5: Load bias
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This experiment simulates and shows the
situations under different load biases of facilities. The
throughput and start-up latency under different load
biases of facilities are shown in Fig. 10. From this figure,
we find that the throughput is almost the same under
different ioad biases of facilities, except the case - more
loads on the filter’s hard disks. As for the start-up
latency, it is related to what device the target data is
stored bias. The start-up- latency increases with the

filter’s hard disks, CD-ROMs, RAIDs, and the media |

servers’ hard disks. Although CD-ROMs have largest
cost parameters, they still perform better than RAIDs
and the media servers’ hard disks, because there is no
overhead to download the target data from the archive
storage.

4.2 Summary

After analyzing the results through these
experiments, we have some observations and
suggestions to build up a hierarchical storage system.
First, in general, the more heavy load, the more
throughput and start-up latency produced. However
under extremely heavy load, the throughput is not
increased as we expected, and the start-up latency will
be very serious. Second, the cost parameter specified in
the filter CPU and maximum data streams permitted in
the storage server has little influence on the throughput.
However that the data streams permitted in the storage
server is too small will result in worse start-up latency.
Here we suggest at least 30 data streams are required to
support in the system to get better performance. Third,
when most requests are large, only 8 MB buffers are
enough to get better start-up latency. In general, the
more small requests, the better start-up latency, specially
when more buffers are allocated. Fourth, the hit ratio has
little influence on the throughput, but if the hit ratios for
storage devices are high, it will have little start-up
latency. Thus an efficient device-cache management is
destrable in a hierarchical storage system. Last,
surprisingly, CD-ROMs has better start-up latency than
RAIDs and the media servers’ hard disks. because there
is no overhead to download the target data from the
archive storage. Therefore it is critically important to
design an efficient device-cache management to
eliminate the download overhead from the archive
storage.

5 Conclusions

In this paper, a general simulation model is
proposed and a simulation is conducted to evaluate a
hierarchical storage system. We expect the simulation
model can measure any different configurations of HSS,
and then provide us a guideline to find the most efficient
configuration for different workloads. Feeding these
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workloads into the simulation model, we can figure out
how the performance tuning is carried out in HSS.
Besides after observing these experiment resulis, we
consider an efficient device-cache management is the
most urgent in a hierarchical storage system. Finally,
based on the proposed model, we can also explore more
sophisticated one to analyze the scheduling algorithms
implemented in different devices attached at media
servers and the inter-process communication between
processes running at media servers.
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Table I Workload parameters

Request pattern:

req_arr_time

fewer_data_stm_prob 0.5
fewer_data_stm_no |2
more_data_stm_no |5

small_req_prob

10%, 5x10°, 10%, 5x10%. 10% (ms)

0.1,0.3,0.5,0.7,0.9

small_req_size 500 KB
large_req_size 10 MB
distr_dev_type 0.2,0.3,0.3,0.2 0.7.0.1.0.1. 0.1
0.1,0.7,0.1,0.1 0.1,0.1,0.7,0.1
0.1.0.1,0.1,0.7
lay_prob 0.5

System environment:

max_data_stm
max_buf_size
hd_hit_ratio
raid_hit_ratio

10, 30, 50, 70,90
1,2,4,8.10, 16,32 MB
0.1,0.3,05,07,0.9
0.1,0.3,0.5.07.0.9

Media granule:

hd_gran_size 5 KB
raid_gran_size 10 KB
cd-rom_gran_size 5 KB

Table II Cost parameters

filter_cpu

filter_local_io
media_control_cpu
media_retrieval_cpu
archive_retrieval_cpu
archive_retrieval_io
hd_play_io
hd_fast_forward_io
hd_fast_backward_io
raid_play_io
raid_fast_forward_io
raid_fast_backward_io
cd-rom_play_io
cd-rom_ fast_forward_io
cd-rom_ fast_backward_io
lbc_trans

hbc_trans

1,2,4,8, 16 (ms)
20+total granular no.*2
1

1

1

1000

20+granular no.*2

10

10

6+granular no.*0.6

3

3

60+granular no.*6

30

30

500 -
50




