hEREN\TAEZEHEREGE

wRSBNCREBERERAE =B SR
A Distributed and Collaborative Visual Environment for Rendering 3D Model
, ‘Scenes

BRI, 1830 257, MWHE
Emallp e Ele

Institute of Computer and Information Engineering
National Sun Yat-Sen University, Kaohsiung, Taiwan
ROC
cnlee@mail.nsysu.edu.tw

e

AR PEFRTIEAL T BAER AN E L AR A
1R st b e BT BRI » RABAE
EFEBRETS, BHPIFRES TE—FE
TR B T 2 BB NG L A TR -

BT JEES, BRI, S8EEE
Abstract

In this paper, we discuss underlying design concept,
issues and the current applications. We use
performance indices to measure parallel performance
of a program and present some experimental results.

Keyword: Java, Collaborative. Distributed Computing

1. Introduction

Today, many grand-challenge problems have being
studied by the scientists in the world. These researches
require the use of large amount CPU time as well as
depend heavily on collaboration that combines
expertise from different sub-discipline at multiple,
geographically distributed locations. In such
circumstance [1], it is very essential to develop a
‘proper working infrastructure that supports the
distributed computing as well as group collaboration
[2]. The graphics visualization has been exploited to
facilitate knowledge discovery in science. However,
there is little work to address the need of such
integrated infrastructure offering distributed
computing and collaborative facilities. Visualization is
a very computationally intensive and is a kind of
artwork requiring multiple-user efforts. We sense these
requirements and have been involved in design of a
distributed and collaborative infrastructure since 1995.
For distributed computing requirement, it must
provide sophisticated mechanisms to efficiently
- manage all resource, to intelligently schedule

B-205

Rl
BN ROIASHATER

Department of Computer Science and Information
Engineering, National Cheng-Kung University, Tainan,
Taiwan, ROC
tonylee@mail.ncku.edu.tw

computing-power, and to robustly tolerate unexpected
faults in the system. In our system, we exploit PVM {3]
technology to develop our distributed applications,
and also devise an efficient scheduling and a solid
fault-tolerant scheme. For collaborative functionality,
our system satisfies computer supported cooperative
work (CSCW) requirements - sharing an information
space to design an effective technical system [4]. With
such a collaborative capability, people can work
together and perform common tasks in our
environment. A framework with collaboration is
believed to be a better scenario to solve the problem
with common interest.

The access of WWW network resources and use of
WWW browser to obtain information has grown
tremendously in the recent years. Coupled with the
advent of Java, WWW becomes an active document
capable of securely executing code distributed to the
clients. Therefore, the Web-Java has been recognized
as the standard user interface for applications {5]. With
the perception of quickly immense acceptance on
Web-Java technology, the DCVE system is now a set
of Web-Java servers and applets which allow dynamic
collaborative environments, and a set of non-Web
applications which are easily integrated into our
system via the Web-Java interface.

In Section 2, we first overview the related work, and
then present an overview of our DCVE system
architecture namely: collaborative environment, PVM
distributed clustering environment, server fault
tolerance, graphic editor and collaborative toolkit. The
distributed graphics server performance is analyzed
and discussed in Section 3. A short description of
system functionality of the DCVE is given in Section
4, Finally, concluding remarks are drawn in Section 5.

2. DCVE Architecture
2.1 Previous Work

There are multiple ongoing projects in the web to
develop the collaborative environment. TANGO [6] is
a Java-based collaborative system for the World Wide
Web and is aimed at creation of shareable information

hERE T AFEEHERES

spaces. The project PageSpace [7] is targeted at
supporting networked applications which require
interaction between distributed software components
and active processing. It is based on the Internet and
the World Wide Web but introduces a notion of active
Web-pages that are capable of executing code. Juice [8]
is a new technology for distributing executable content
across the World Wide Web. Juice differs from Java in
several important aspects that allow it to cutperform
Java in many "downloadable Applets" applications.
Project SHASTRA [9] is directed at research in
CSCW based geometric modeling, simulation,
interrogative visualization and design prototyping
environments.

2.2 Collaborative Environment

Collaboration means that a group of users work
together on the same problem. In such a situation,
awareness of individual and group activities is an
important issue, especially for a distributed
environment. Awareness is fundamental to
coordination of activities and sharing of information.
Collaboration control mechanism regulates how
multiple users assemble and interact over the shared
data. The infrastructure must provide flexible
collaboration control methods to initiate and terminate
collaborative sessions, to join or leave ongoing
sessions, and to invite a new participant in a
collaborative environment.

HYYP and 7CPAP

i
i

]

b
1

| VRML scenas
—_——

Figure 1. The high level block architecture of the
DCVE system

In Figure 1, a user first accesses our service from any
WWW browser. Then a Java byte-code encapsulating
the front-end GUI is shipped to the client site. From
the front-end GUI, the end-user can configure the
PVM heterogeneous computing environment by
adding or deleting computing hosts. The Java applet
establishes a reliable socket connection with a remote

PVM daemon and sends the system configuration to
the PVM daemon. This PVM daemon later will
execute pvm_addhosts() routine to form a virtual
parallel machine. Similarly, we send the graphics
rendering information to the distributed ray tracer or
send back the rendering result to the WWW browser
through the same socket conmection. The socket
connection in the Web client uses a specified port to
communicate with server socket.

In the following we define collaboration policies and
mechanisms through some operators operating on the
set and its elements. A group
G ={xlxi €G,i=1,2,3,...,n} is defined as an ordered
set with finite nodes, each node is a variable that has
state and information. Collaboration policies are
defined as a set of unary or binary operations on Gi
and its elements, i = 1, 2, 3, ..., n. We list these
operators in the Table 1.

Table 1. The collaborative operators of the DCVE
server mechanism

Empty (G:) : When a group G is empty, it means that
the group doesn’t have a leader or any participant. The
session control agent will terminate an empty group.

Leader (Gi,x) : It assigns x to be the group
manager of the set. x will be placed in the first
element in the ordered set.

Participant (G:) : Participant (Gi) = {xi | x €Gi,

i=1,2,3, .., n}. The operator of element is to find
out the participants in a group.

Join_permission (Gi,x) is a mapping Gi X x
—> True or False. When a new participant wants to
join a group G, he must negotiate the group manager
and wait for the response. If the mapping is true, then
x is allowed to join the existing group G ; otherwise
x is not allowed to join the group Gi.

Create (Gi,x) : A wuser can create a new working
group in the collaborative system. The group
information includes group name, topic, state, group
work attributes, and manager.

Append (Gi,x)= Gi U {x} When x is allowed
to join the group Gi, it is appended to the last
clement.

Participant_information (x:) : The information of 2
participant includes the name, specialty, responsibility,
and location.

Leave (Gi,xi) = Gi - {xi} To leave a group, a user
must inform the group manager. If the group manager
wants to leave, the rule to choose a new group
manager is described as follows :

@ The group manager should find a new group

manager among other participants.

@ If there is a participant that wants to be the group
manager, this group will be chaired by this new

manager; otherwise, the group is terminated.

B-206

rERENTAFREEERES

2.3 Distributed Environment

Following the success of OQak Ridge National
Laboratory’s Parallel Virtual Machine (PVM), it
allows an interconnected collection of independent
" heterogeneous computers to appear as a single virtual
computational resource. The PVM platform provided
a standard interface to support common parallel-
processing paradigms, such as message passing and
shared memory. However, PVM does not provide
capability to achieve good load balancing and tolerate
occasional faults. These two issues are very essential
in distributed environment to ensure high utilization of
computing resource and functional correctness of the
applications. In DCVE, we design an efficient load
balancing scheme as well as fault-tolerance scheme.
We have presented a new dynamic load balancing
strategy, called global distributed control. The global
distributed conirol not only has the ability to
dynamically adjust the load, but also has the fault
tolerance ability. The detailed description of GDC
algorithm is in [10].

Conventionally, to exploit PVM technology, users have
to use command-driven PVM console to add or delete
computers in the parallel virtual machine. It is neither
efficient nor user friendly. Alternatively, users can use
an XPVM built on the X-windows system to
manipulate the PVM system. However, it is limited to
some machine architectures, like SUN SPARC, HP,
and DEC workstations. As a result, it is difficult to
build a portable distributed environment. This
motivates us to establish a portable user interface, and
thus for this purpose, we use Web-Java technology to
design the GUI for PVM.

2.4 Collaborative Toolkit

The objective of the collaborative toolkit is to improve
A\V communication among clients in the DCVE. The
system provides the following media types.

@ Whiteboard

It is used as a sketching tool, and facilitates to the
generation and display of simple 2D sketches.
Drawing can be moved to and from different canvases
using interface facilities. Each participant may mark
up the whiteboard by using simple drawing tools, or
may enter text.

® Chatting Room

It is used as a text notepad. A collaborative session
consists of text chatiing and allows a group of
collaborators synchronously communicate using text.
We adapt the broadcasting and single user message
passing method to talk with other users.

@ Video Conferencing

A plug-in Video component provides frame grabbing,
video display, and the use of various video formais in
DCVE. The video frames are transmitted and
exchanged among collaborative participants to allow a
simple video conferencing.

B-207

3. Performance Metric and Analysis

Performance indices [11] are used to evaluate the
characterization of a program quantitatively and to
locate potential bottlenecks in parallel computation.
Moreover, it can help users to identify pitfalls of their
parallel program in advance. The traditional analysis
of parallel program performance tends to use
statistical inference to trace the performance
projection. They make a conclusion by analyzing a
vast of information. In this section, we describe the
performance indices and inspect these indices from
which it may benefit program performance. We use
performance indices to measure the performance of a
parallel ray-tracing program.

Workstations may have different configuration in
terms of speeds of CPU, memory accesses, and VO
systems. The sequential program doesn’t need to be
executed under the network, hence the performance of
a sequential program is only influenced by two factors
- the rendering algorithm and machine’s power.
Therefore, the elapsed time of a sequential program is
easily to identify and estimate. On the contrary, the
parallel program needs to consider the network’s
bandwidth and the work load in the disiributed
computing environment.

The execution time of a sequential program is defined

as Tyeqs which is different for each machine. The
more power machine will gain a smaller Tseq . The
elapsed time of a parallel program is defined as
Tparatler - When we execute the same program at
several machines at the same time, the elapsed time of
the program will not be the same. Tp,pua depends on
the current state of the cluster computing environment.
We define Ty as follows :

Trartar = Max (Thost_i)

i=l~n

(3.1)

Thost ; is the execution time of node 1 in a distributed
environment. The more hosts we add in the parallel
virtual machine, the smaller Ty ;. due to the less
work load for each host. Therefore, the total Tp.qie

is to find a maximum value of Tyoy ;-

In the master-slave model, a master is responsible for
spawning, initialization, collection and display of
resulis. The master does not response for the

computation. In the following, we define equations for
the master process. '

Tmer = Tcomm + Tdata + Tpvm (3-2)
where Toage 1S the total execution time of the master
process; Teomm 1 the communication time between

the mater process and slave processes; Ty, 1S the
time to pack and unpack the active messages in the

FEREA A LE AR e

active buffer; Ty, is the degradation time caused by

the PVM daemon. The communication time T comm

can be further decomposed into two components —
send and receive blocking. That is

Tcomm = Tsend_slave + Treceive_slave (I‘) (3'3)
Tsend_stave 1ncludes the time to send data to the active
message buffer in the master and to the slave.
Tsend_stave 18 the send blocking time. PVM uses
several methods to receive messages in a task. In a
blocking receive mechanism, a master has to wait for
messages from slave processes. On the contrary, in a
nonblocking mechanism, a master does not have to
wait for the message. The variable r is used to
represent the receive rtoutine, it can be blocking,
nonblocking, and timeout receive routine. For example
Treceive _slave (blocking) represents the elapsed time

that uses the blocking receive routine to receive the
messages from the slave processes.

Taaa 1s the time to pack and unpack the active
message buffer with arrays of data type. T, can be
further decomposed into pack and unpack routines.
Tdata = Tpack + Tunpack (3'4)
The slave programs perform the actual computation.
Their work load are assigned by the master. The
equations from the slave processes are defined as
follows:

Tslave_i =Tcomm"i +Tcomp~i +Tdata,.i + Tpvm (3 3)

where Ty, ; is the total elapsed time of the i-th

3

slave; Toomm ; is the i-th slave’s communication

time; Teomp i is the i-th slave’s computation time;
Taaa i 18 the time to pack and unpack the active

messages of the i-th slave. Tpvm is the degradation

time caused by the PVM .
In order to derive the correct speedup from the

Tparaner and Tyy . We define a relative computing

power for each machine. Generally, we select a
machine to be the based computing power. Then, we
can derive other machines’ relative computing power
by comparing the based computing power. The total

computing power, p_ .. is defined as follows :

n
Pmachine = l% phost_i (3-6)

We use the parallel ray tracing program [12] to
illustrate the use of the indices. The experimental
environment is a non-dedicated heterogeneous
environment, which consisis of four types of Sun
workstations: SPARC 2, SPARC 10, SPARC 20, and
ULTRA SPARC 1. The public domain PVM is used as
the parallel computing platform. Based on the
performance metrics proposed in the previous section,

we measure the total elapsed time, commumnication time,
message manipulation time, and PVM degradation time
from the master process. The unit of the elapsed time
(Z axis) is in microsecond. We compared the
execution time for computation and comrnunication in
Figure 2. As we can see the computation time is much
larger than the communication. Hence the problem is
good for parallel computing,

Communication time vs. Computation time

4000000
3500000
3000000
2500000
2000000
1500000
1000000

500000

OT_comp(*100)

BT_comm

Execution time(ms)

8

3 4 5 46
No. of hosts

7

Figure 2. The comparison with the communication
time and computation time of the slave process. The
execution time for Toom, is scaled down 100 times in

the figure.

Due to limitations of memory size, cache size, and
other hardware components, the power weights
usually change with different workstation types.
Unfortunately, the relative computing power among a
set of heterogeneous work varies with applications.
Hence, one workstation may run an application
program faster than another workstation, but slower
for another application program.

Table 2. The relative power of different machine

platform

latform pI-IP7 psparc psparcl psparc pultra] pmach
P (Ulira

(HP (Sparc|(Sparc [(Sparc| Sparc

71531 2) 10) | 20) 1)

3)
Rebive | 1 |0.442 0.929 1.1.347 | 2.586 []9.369
computing
power
No.of 2 2 3 1 8
hosts

B-208

The computing power of each machine might vary
significantly in the heterogeneous environment. Using
the speed of the dedicated workstation, we can
calculate the speeds of the other workstations in the
clustering environment. In order to quantify the

hEREN\ AR e R

relative computing power among the workstations in a
heterogeneous network system, for each workstation, a
computing power weight with respect to ray-tracing is
delineated in the Table 2.

4. System Overview

The system integrates Java, 3D computer graphics,
parallel computing and WWW technologies o provide
a 3D distributed and collaborative environment [13].
With the PVM software support, the computationally
intensive graphics application can be executed on a set
of machines in the networked environment. The
WWW technology allows our system to be accessed
via the Web from different platforms. The system
consists of five parts: namely, the collaborative
environment, the PVM console, the rendering console,
collaborative toolkit and the display console. We will
briefly describe each part in some details.

The interface of collaborative environment provides a
login subwindow for users to create a new group or
join an existing group. A new user can register into
our system. For example, to have a new nickname,
password, and personal information. In Figure 3, when
a user participates in a group, the interface agent will
display the group information in the applet (GUI
frontend), including group name, group manager name,
group topic, all participants” name and the current
group messages. Therefore, users can type their user id
and password to enter the system.

= =
3D Hule Quaman L Activo seasione:
Usar Mo 1Sebiecd (Chaemcas
- | i
Autivs wrass,
T Horm, i
Clagron 140.117.168.143
Teo 1 HTIRIE [|
% Ciodo o e s

2 Jcin an evntent tovion

I e TR pEms L]
The user interface of collaborative
environment entrance

o G woviii s wsaim e

Figure 3.

The PVM console provides a GUI front-end for users
to add or delete a set of hosts in an interactive manner.
Before adding hosts to the virtual parallel machine, a
user can click the “Initial*’ button to list all available
computing resources in the environment. In addition,
we provide an extra subwindow to show the execution
status of the PVM system.

After configuring their parallel virtual machine, the
user can proceed to the “Rendering” console for ray

B-209

tracing images. In Figure 4, the “Rendering” console

provides options to dynamically control the process of

raytracing, Filename, Camera position, Light source,
Background, Rotation, Zoom, Render, Record, and
Help.

Users can display a static rendered image in the
browser or an animation sequences in an internal
viewer. The interface agent will pop a window as an
internal viewer to display the contiguous images. With
regaid to the image compression format, a static
rendered image is compressed in a JPEG format. Due
to the limitation of the network bandwidth and the
time-consuming computation in raytracing, after
finishing a rendered image, token agent will send a
message to signal interface agent to display the
rendered image. So user can view the animation
sequences frame by frame before finishing the
rendering of an animation sequences.

‘ Figure 4. The ical screen of thea-tracer
5. Conclusion

In this paper, we have described a distributed and
collaborative system by using the Web browser, PVM,
agents, Java and Java socket classes. It provides a
collaborative and distributed computing platform for
users to design, discuss, compute, and visualize the 3D
animation over the Web, We have proposed a
simplified collaborative group definition, collaborative
policies, and agents dynamically manage participants
for the collaborative model. Based on the proposed
mechanismas, the server can efficiently determine the
status of collaboration activities. The system
architecture and some applications are. described.
Some performance meiric and analysis are proposed to
analyze the potential performance of a program to be
parallelized.

Acknowledgment

This research was supported in part by the National

FERENTAFEEHERGS

Science Council of Taiwan, R.O.C., under contracts
NSC-87-2213-E-110-013 and NSC-87-2213-E-006-

012.

References

1.

10.

11.

12.

V. Anupam et al., “Scientific Problem Solving in
a Distributed and Collaborative Environment,”
Journal of Mathematics and Computers in
Simulation, 36, 1994, 433-542,

A. Mani Chandy et al, “A World Wide
Distributed System Using Java and Internet,”
1996.

V. 8. Sunderam, “PVM: A Framework for
Parallel Distributed Computing,” Concurrency:
Practice and Experience, Vol. 2 No. 4, pp. 315-
339, Dec. 1990.

V. Anupam and C. Bajaj, “Shastra An
Architecture for Development of Collaborative
Application for Development of Collaborative
Applications,” International Journal of Intelligent
and Cooperative Information systems(1JICIS), 3,
2, 1994, 155-166.

J. Gosling, F. Yelin, and the Java Team. The Java
Application Programming Interface. Addison-
Wesley Developer Press, Sunsoft Java Series,
1996.

L. Beca, et al. “Tango - a Collaborative
Environment for the World-Wide Web,” in
hitp://trurl npac.syr.edu/tango/papers/tangowp.ht
ml

P. Ciancarini, A. Knoche, R. Tolksdorf, and F.
Vitali, “PageSpace An Architecture to
coordinate Distributed Applications on the Web,”
5" International World Wide Web Conference,
May 6-10, 1996, Paris, France.

M. Franz and T. Kistler, “Introducing Juice,”
of i

University California, in
http://www.ics.uci.edw/~juice/.
V. Anupam and C. Bajaj, “Shastra : An

Architecture for Development of Collaborative
Application for Development of Collaborative
Applications,” International Journal of Intelligent
and Cooperative Information systems(IJICIS), 3,
2, 1994, 155-166.

T.Y. Lee, C.S. Raghavendra and J.B. Nicholas,
“Experimental Evaluation of Load Balancing
Strategies for Ray Tracing on Parallel
Processor,” to appear in: Integrated Computer-
aided Engineering Journal 4 (1997).

G. Casciola, S. Morigi, “Graphics in parallel
computing for rendering 3D modelled scenes,”
Parallel Computing, Vol. 21, pp. 1365-1382,
1995,

C.N. Lee, T.Y. Lee and T.C. Lu, "Comparisons of
Load Balancing Strategies for Ray Tracing on
Network," In: Proc. International Computer

B-210

13.

Symposium (ICS'96), Taiwan, R.0.C., 1996,
CN. Lee, TY. Lee, T.C. Ly, and Y.T. Chen, “A
World-Wide. Web Based Distributed Animation
Environment,” the Journal of Computer
Networks and ISDN Systems, a special issue on
Visualization and Graphics on the WWW, 1997.

