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Abstract

In the neural image compression field, many algo-
rithms have been proposed [2, 3, 1]. However, these
neural image compression techniques have some
drawbacks. In this paper, we propose a neural ap-
proach to image compression, based on the adaptive
resonance theory (ARY) neural networks [5, 4]. Our
architecture is a hybrid neural network consisting of
one ART neural network and one outstar neural net-
work, incorporated with a hybrid training algorithm
of an ART training algorithm and a counter propa-
gation (CP) training algorithm [6].

Keywords: Image compression, neural network,
adaptive resonance theory (ART).

1 Introduction

Image compression is an important technique in
many applications such as image storage, telecom-
munication and multi-media. The image compres-
sion techniques are to eliminate the redundancy of
image so that the size of storage required to pre-
serve the origin image can be reduced with accept-
able degradation. For the existing image compres-
sion techniques, we can classify them into three main
categories: the dimensionality reduction technique,
the categorization technique and the hybrid image
compression technique of the above two. Recently,
researches on image compression using neural net-

works have been fruitful [2, 3, 1].

Currently, the image compression techniques us-
ing neural networks include: auto-associative multi-
layer perceptron (AMLP) [2], self-organizing feature
map (SOFM) [3], and hybrid neural networks of
AMLP and SOFM [1]. However, AMLP, SOFM and
the hybrid neural networks of AMLP and SOFM still
have some drawbacks: (1) When building a multi-
layer neural network for solving a problem, we are
confronted with the determination of the number
of hidden layers and the number of nodes in each
hidden layer. Traditionally, we can use a trial-and-
error method to search for a good network structure.
However, it may be impractical in the real world.
(2) For AMLP and the hybrid neural networks con-
taining AMLP, we must use the back propagation
algorithm to train the multi-layer perceptron. Our
experience shows that it is very time consuming to
train a neural network using back propagation al-
gorithm. (3) There are too many parameters that
would influence the performance of these neural im-
age compressions such as the learning rate, the mo-
mentum rate, the stop criterion, the neighbor size
of Kohonen training algorithm, and so on. To over-
come the above drawbacks of the existing neural im-
age compression techniques, a fast algorithm which
is able to automatically construct a neural network
is desired. The adaptive resonance theory (ART) is
a good choice to meet these requirements.

In this paper, we propose a neural approach to
improve the shortcomings of AMLP, SOFM and the
hybrid neural networks of AMLP and SOFM. Our
neural approach is based on the ART algorithm. The
training algorithm is a two-step hybrid training algo-
rithm. The details will be presented in the following
sections.

2 Compression Background

In this section, we introduce basic image compres-
sion technigues and how to evaluate the performance
of an image compression technique. The diagram-
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matical drawing of image compression technique is
-shown in Figure 1.

Generally, the image compression- techniques ate
always performed by compressing small subimages
instead of compressing a full image directly. There-

fore, we first divide an image X equally inlgo'P’small'

Hup * Vsup rectangular subimages as shown in Fig-
ure 1. Hgyy and Vyyp denote the numbers of pixels
in each horizontal and vertical line, respectively. We
can define the image X and the subimage X? as

X = (XY .., XP ., XD, I<p<P,
XP = (X0 XD p XD, )

where the pixel Xﬁ ; has a gray scale from 0 to 255,
for i=0,...,V,up and j=0,...,H,yp. Then these subim-
ages XF are input to the encoding end one by one.
The outputs at the encoding end represent the com-
pressed image.

To reconstruct an image, we can transmit its com-
pressed subimages to the decoding end one by one.
The outputs of the decoding end are the decom-
pressed image. We assume the reconstructed subim-
age of the original subimage X? is denoted as Y?.
Then we have

YP = (lepyl""’yrf»Hnub’ ""Y‘esub,Hsub)’ 1 Sp S P’

In order to evaluate the performance of an image
compression technique, we must calculate the com-
pression ratio and the distortion between the original
image and the decoded image. We adopt the mean
square error (MSE) to sum the distortion between
the original subimage X? and the decoded subimage
Y? forp=0,.., P:

1 P Veuy Heyp
AJSE: mzz Z I;Yfl,‘

p=1i=1 j=1

In image compression, the signal-to-noise ratio
(SNR) or peak signal-to-noise ratio (PSNR) is used
to evaluate its performance. The signal-to-noise ra-

tio (SNR) is defined as

SNR = 1010910M
MSE

1 P Viup Heup
’rP.'Z:—— J"P.z
BIXE ) = s 2 2 2 X

p=li=1 j=1

, (2)

The peak signal-to-noise ratio (PSNR) is defined as

.2 ‘
PSNR = 10log1oZ%  peak = 255. (3)

MSE
The compression ratio (CR) is defined as
CR=——L (4)

b
PxHoyp* Vogp

Y52 (1)
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Figure 2: Our neural architecture.

where T is the number of bits required to encode a
compressed image. It may include the bits of the
compressed codes of all subimages and a codebook.

3 Our Neural Approach

The framework of our neural approach is based
on ARTI1 [5] and fuzzy ARTMAP [4]. It is a hy-
brid neural network combined by one ART neural
network and one outstar neural network in a serial
way. Our training algorithm is also a hybrid training
algorithm.

From the viewpoint of image compression, our
neural approach is a categorization image compres-
sion technique. Our approach uses vector quantiza-
tion to generate a codebook of prototype images.
This behavior is similar to SOFM. However, our
approach can automatically construct a neural net-
work.

3.1 Our Neural Architecture

Our neural architecture is a three-layer hybrid
neural network consisting of one input layer, one pro-
totype pattern layer, and one outstar layer as shown
in Figure 2. The input layer and the prototype pat-
tern layer form an ART neural network. The outstar
layer is an outstar neural network.

In the input layer, the input nodes receive input
patterns and fan out them directly to all prototype
pattern nodes in the prototype pattern layer.

The prototype pattern layer is responsible for
storing the prototype patterns that are extracted
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from training patterns.- Moreover, it is also respon-
sible for monitoring the classification of input pat-
terns. Because only one of these nodes will be ac-
tivated by each input pattern, we-can regard this
layer as’a MAXNET: This layer is the output-end
of the ART neural network. Each prototype pattern
node preserves a prototype pattern and represents
one category. This preserved prototype pattern is
the mean of all training patterns that are classified
to this category. Thus, we can use this prototype
pattern to represent these similar input patterns.

Each prototype pattern node has a set of category
weights WJ‘ between it and the input layer. The cat-
egory weights are used to monitor the classification
of input patterns. They have a geometric interpre-
tation as a category hypercube. If an input pattern
locates inside the category hypercube of a prototype
pattern node, then this input pattern may be classi-
fied to the category with a high probability. Further-
more, there is a vigilance controller p in the proto-
type pattern layer to monitor the training process.
The magnitude of a vigilance controller represents
the cover range of a pattern node. The larger it is,
the larger cover range it has. In other words, the
larger, the more general. If the above input pattern
also passes the test of this vigilance controller then
we say that this input pattern can be combined to
the category of this prototype pattern node.

To calculate the size of a network, we define a pro-
totype subnet as the set of input nodes, one prototype
pattern node, and the links between the above two
as shown in Figure 2.

The outstar layer is an encoding layer. This layer
is responsible for encoding the index of the activated
prototype pattern node to a corresponding binary
code. This binary code is stored in the code weights
between this activated prototype pattern node and
the outstar layer. Moreover, each prototype pattern
node has a different binary code. The binary code is
the compressed image of an input image.

3.2 The Training/Encoding Algorithm

From the above description, it is easily seen that
our neural architecture is similar to the counter prop-
agation network (CPN) [6]. Naturally, our training
algorithm is a two-step hybrid training algorithm.
In the first step, an unsupervised ART training al-
gorithm is used to train the first and second layers.
In the second step, we train the outstar layer by us-
ing the counter propagation training algorithm.

In fact, the unsupervised ART training algorithm
is a variation of the fuzzy ARTMAP and ART1. It is
an incremental training algorithm and can automat-
ically construct a neural network step by step. In
the beginning, the architecture of the network to be
trained only has input nodes in the input layer. Af-
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ter trained, the architecture of this network is similar
to that shown in Figure 2.

To encode an image X, we divide the image X
equally into P small rectangular subimages as shown
in Figure ' 1. The image X can be denoted as

X = (X1, X2, ., XP, ., XP).

For each subimage X?, we assume the numbers of
pixels in each horizontal and vertical line are H,yp
and Vys, respectively. Then, the subimage XF can
be denoted as

P (XP P P
XP = (X7 1, XD Hy o XV, un Hous )

where pixel X{" ; has gray levels from 0 to 255, for
1=0,...,Voup and j=0,...,Hsyp. Then, the subimage
XP? is input to the network one by one.

Before the training/encoding phase, we perform
an image preprocess for the subimage X? to get the
minimal gray level A7 . and the residual image A”.
This image preprocess is defined as follows.

A = MIN(XE),
Alim1)xHyuti = XEj = Ains
In this paper, we call this image preprocess mini-
mum/residual process. The minimal gray level A? .
will be used to reconstruct an image in the decoding
end. We only use the residual image vector A? to
train the network. Then, the residual image vector
flows through a complement coder which normalizes
and expands the original vector into an expanding
image vector. The residual image vector AP and ex-
panding image vector I are defined as

AP = (allj’agi 4..,CL§), d = H.up X Vius,
I = (4,(47)°),

- P P » P
= (af,d},...,d5,1—dl,1-d},..,1—ab),

Then, the expanding input flows through the input
layer and directly propagates to all the existing pro-
totype pattern nodes.

When the expanding image vector presents to the
prototype pattern layer, all the prototype pattern
nodes become active to some degree. The activation
function for the prototype pattern node V; is defined
as

|T AW

RalALiAd 1<i<N,
a+ W] =7=

(1) =
where W7 is the category weights of the prototype
pattern node V7, and « is a small constant close to
0. The symbol “A” is the fuzzy AN D operator. This
operator is defined as

AAB=min(A,B), 0< A,B< 255 (7)

1<p<L P

1<i < How, (5)
1 3.7 S V.mb‘ (6)

- (I13]27"‘7Id:-[d+11-[d+21“~1IN)) N =2d.
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Then we pick out a winner from the prototype pat-
tern layer with the maximum activation.

F, = max(T}),

1<j< M.
arg(j)

This action ensures that the category weight vector
of the winning prototype pattern node is most simi-
lar to the expanding image vector.

Next, the matching function is used to decide if
learning should occur for this winning hidden node.
The matching function for the winning prototype
pattern node F, is defined as

Fy
Mp,(I) = AW (8)
H]
In fuzzy logic, the matching function computes the
degree that the expanding image vector I is a fuzzy
subset of W¥». By the complement coding, we have
|I} = d (dimension of residual image vector). There-
fore, we can simplify the matching function to

Next, we perform the vigilance test between this
matching degree and the vigilance control p to de-
cide if this expanding image vector is good enough
to match the winning prototype pattern node. If
the match degree is smaller than the vigilance pa-
rameter, the network is in a state of “mismatch re-
set”. This state indicates that the hidden node is not
good enough to encode this expanding input pattern.
Therefore, the winning hidden node is suppressed.
Then the next winning hidden node is selected and
the vigilance test is repeated.

If the match degree is greater than the vigilance
parameter, the network is in a state of resonance.
Resonance state means that the winning prototype
pattern node is good enough to encode this expand-
ing image vector. Then the winning pattern node
adjusts its category weights to learn this expanding
image vector and the training of this pattern vector
is completed. The adjustment of category weights is
defined as

Mp, (I) =

W (new) = A(I A W™ (0ld)) + (1 = B)W™ (old),
V[/;F"’ (new) = W}F‘”(old) AT,

The adjustment of prototype pattern and the storing
counter are defined as

PPFe(new) = PPFW(old) + I,
PCFe(new) = PCFe(old)+1.

1<i<N,

In case of no winning node passed the vigilance
tests, fuzzy ARTMAP creates a new prototype pat-
tern node for this expanding image vector. When

8=1.(10)

this case occurs, it means that all the existing pro-
totype pattern nodes in the network are not good
enough to represent this training pattern. There-
fore, it is necessary to create a new hidden node for
it. The initialization of this new prototype pattern
node is

wree = T, 1<i< N,
P]pinew - Ii1
PC™e = 1. (11)

Then the system ends the training epoch of this in-
put pattern and begins that of the next input pat-
tern. The ART training algorithm will train the neu-
ral network iteratively until the training neural net-
work is stable.

Finally, we use the counter propagation training
algorithm to train the outstar neural network.

When the neural network has been trained by an
image X, the compression of this image is also com-
pleted. For each subimage XP?, its compressed code
consists of the minimal gray level X” . and the bi-
nary code OP in outstar layer. The prototype pat-
terns that store in the prototype pattern layer will
also be preserved with those compressed codes. The
prototype patterns are defined as
f—}Z 1<i<N
PCJ’ - =
where M is the number of prototype pattern nodes.
In the decoding phase, we must transmit the pro-
totype patterns and those compressed codes to the
decoding end.

3.3 The Recalling/Decoding Algorifhm

To reconstruct a compressed image X, three kinds
of information are critical: the minimal gray level
X% in, the compressed index OF of all subimages X7,
and the codebook of prototype patterns. In fact,
our decoding algorithm just uses a table mapping
function and a simple vector adder.

Here, we assume that we are reconstructing the
subimage AP. In the first step, we use the com-
pressed index OF to look up a prototype pattern in
the codebook. The letter “Z” is used to denote this
activated prototype pattern. However, “Z” is the
décompressed residual image of AP. Therefore, all
elements of this activated prototype pattern plus the
minimal gray level A? . form the decompressed im-
age Y. We define the above behavior as follows.

PP!(final) = 1<j<M,(12)
2

Z = (le Zz, ...Zd), d= Hup % 1[:zuby
Y =(Z214+ A, 2o+ AL sy Za+ AR ). (13)

min? min?

The vector Y is the decoded subimage of the subim-
age AP.
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SNR(dB) | CR(bits per pixel)
SOFM 29.02 1.75
AMLP 28.40 1.0
PHNN 29.22 1.03
SHNN 31.10 1.75

Table 1: Performance comparison among SOFM,
AMLP, parallel hybrid neural network (PHNN), and
serial hybrid neural network (SHNN).

Figure 3: The benchmark images (a) “Lena”; (b)
“Baboon”; (¢) “Jet”; (d) “Pepper”.

4 Experiments

In this section, the performances of the SOFM,
AMLP, parallel hybrid neural network, serial hybrid
neural network, and our neural approach are eval-
uated. We use four 256-graylevel, 512512 sized,
benchmark images to evaluate performances. For
each subimage, the numbers of pixels in each hor-
izontal and vertical line are 4 and 4, respectively.
The four benchmark images are “Lena”, “Baboon”,
“Jet”, and “Pepper” as shown in Figure 3. We use
peak signal-to-noise ratio (PSNR) and compression
ratio (CR) to evaluate performances. PSNR is com-
puted by Equation (1). CR is computed by Equation
(3).

Performances on the benchmark image “Lena”
for SOFM, AMLP, parallel hybrid neural network
(PHNN), and serial hybrid neural network (SHNN)
are shown in Table 4. The information can be re-
ferred to the paper [1]. In the referred paper, how-
ever, the computation of CR is not adequate. In
the computation of CR, it only takes the number of
bits of a compressed image into account. It fails to
consider the size of a codebook or a set of decod-
ing weights. Therefore, the values of CR in Table
4 are smaller than the correct ones. In our experi-
ments, we adopt the correct CR to evaluate our per-
formance.

In our neural approach, the vigilance controller p
is the only parameter that influences the image com-
pression performance. Therefore, our experiments
focus on the relationship between the vigilance con-
troller and image compression performance. The
image performance of our neural approach on the

Vigilance p | No. of subnets SNR(dB) CR( bits per pixel)
0.300 37 25.60 0.65
0.325 89 35.88 0.73
0.350 145 26.67 0.82
0.375 2235 27.07 0.85
0.400 357 28.10 0.98
0.423 645 28.76 1.18
0.450 1278 30.94 1.56

Table 2: Image compression performance of our neu-
ral approach to the benchmark “Lena”.

“Lena”, “Baboon”, “Jet” and “Pepper” are shown
in Tables 2, 3, 4 and 5, respectively. Figures 4, 5, 6,
and 7 show the decoded images and the distortion
images of the benchmark images “Lena”, “Baboon”,
“Jet”, and “Pepper”, respectively. To show the dis-
tortion images more brightly, we add 128 to the gray
level of each pixel in the corresponding figure.

From the results of our experiments, we conclude
that the larger the vigilance controller is, the more
the subnets are created. Furthermore, it also makes
the PSNR better. However, it results in the num-
ber of bits per pixel to be larger. Therefore, we can
adjust the vigilance controller to meet our require-
ments to image compression.

Our neural approach is a fast encoding algorithm.
It only needs two or three training iterations to en-
code an image. However, AMLP and the hybrid neu-
ral networks containing of AMLP need much more
training iterations to meet the stop criterion. More-
over, our approach does not need predecide its net-
work structure by human beings. Therefore, our ap-
proach is good for image compression.
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