TRACING MULTITHREADED WINDOWS APPLICATIONS

Hsien-Hsiang Lin

Chung-Ta King

Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan, R.O.C.
king@cs.nthu.edu.tw

Abstract

Performance evaluation is critical in developing
computer systems. 10 evaluate the performance and to study
the characteristics of program execution, program tracing
and monitoring sofiware have been used widely. However, in
the Windows/x86 platform, it is very difficult to build such a
software tool, because the Windows system and its many
applications are distributed without source code. In addition,
the x86 CPU has a complicated instruction set architecture
and is difficult to analyze. In this paper, we report a
program tracing tool for the Windows NT/x86 platform,
which aims at tracing multithreaded Windows applications
without source code available. We have applied our tracing
system to a number of benchmark programs. Their execution
characteristics obtained from out tool are presented.

1. INTRODUCTION

The personal computers (PCs) are the mainstream
computing machines nowadays. Most PCs are equipped
with x86-compatible processors, running the Microsoft
Windows operating system. When people write programs on
such platforms, they wusually want to know the
characteristics of their programs and how they perform.
With this information, performance of the programs can be
better tuned. Similarly, when a hardware designer is faced
with various design tradeoffs, he also wants to know how
target applications run on the hardware. Unfortunately, there
are very few tools to analyze the program characteristics on
Windows systems. The difficulty stems from the facts that
the Windows operating system is distributed without source
code, with many internal activitiecs undocumented. The
complicated instruction set of the x86 processor also posts a
great barrier to develop such a tool.

Various techniques have been proposed to analyze
program behavior and study their execution characteristics
[1,2,7,10,12]. One important class of techniques is to insert
pieces of codes into the source program through compilers,
assemblers, or linkers [6,7]. When the instrumented program
is executed, execution statistics or traces are output and
collected. Unfortunately, these techniques can only work on
applications with source code. More aggressive
instrumentation techniques call for the modification of the
binary executables, called binary rewriting or
instrumentation [7,8,15].

In this paper, we introduce a program tracing tool on

the Windows system, assuming the source code of the
applications is unavailable. Our tracing system is able to
capture the trace of an application just from its executable
files or run-time states. Since Windows 95/98/NT supports
system-aware threads, our tool is also able to distinguish the
behavior of different threads and trace them individually.

The rest of this paper is structured as follows. Section
2 surveys program tracing software developed by other
resecarch groups or commercial corporations. Section 3
introduces the methods used to build our program tracing
system. The OS and CPU related issues are discussed.
Section 4 shows the experimental results of applying our
tracing tool to benchmark programs. We analyze their
instruction mix, basic blocks, call graphs, and many other
important features. Section 5 gives our conclusions and
points out several possible future works.

2. RELATED WORKS

Many academic and commercial research groups have
devoted many efforts to application characteristics analysis.
Dozens of software tools have already been developed for
tracing and profiling programs on different platforms and
different operating systems [1,3,5,6,8,15]. Some of them can
even trace system level activities, such as Vrune [5] by Intel
and PatchWrx [1] by Digital. The ultimate goal of these
software is to capture the behavior of a running application,
e.g., instruction mix, basic block size, branch and call graph,
etc. By analyzing these informations, software programmers
may optimize algorithms used in their applications and
hardware designers may improve the system organization to
get more performance.

These tools have adopted many advanced techniques,
for instance, instrumentation [8], binary rewriting [1,15],
and run-time sampling [5]. Some hardware-based methods
are also used, such as the performance monitoring counters
in x86 processors [2,5,10] and PALcode of Alpha processors
[1]. The ptrace() system call in UNIX provides tracing and
debugging capability at the operating system level.

3. THE PROGRAM TRACING TOOL

This section describes our program tracing tool on the
Windows NT/x86 platform. The ultimate goal is to collect
complete traces of all threads created by a running
application. Since most Windows applications are
distributed in executables without source code available, we

restrict our program tracing software to collect traces only
from the executable images and the run-time states. This
allows us to work with most Windows applications. We will
focus on Windows NT, and discuss in the following some
important issues related to hardware and operating system,
when building such a program tracing tool.

3.1. Issues Related to Operating System

Since all programs are executed on top of the
operating system, the first thing we have to know is how
Windows NT creates an environment within which program
runs. The Windows NT has a microkernel-like and layered
kernel [16]. It is implemented with several protected
subsystems, ¢.g., Win32 and POSIX subsystems, which run
in the user mode and are responsible for the interaction
between the user programs and the kernel. Windows NT
also provides a large number of APIs for application
programs to call and to accomplish system-related
operations, such as creating a new thread or allocating a
memory location.

When a program is put into run, Windows NT first
creates a new address space and some kernel objects for this
new process. Then, it uses a mechanism, named memory-
mapped file, to map the module images, including the
executable file and the dynamic linked libraries (DLLS) used,
into the process' address space. The most important system
DLLs are Ntdil.dll and Kernel32.dll. Kernel32.dll contains
APIs for creating and destroying processes and threads,
managing memory, accessing files, and synchronizing
threads, etc. These APIs in turn call those exported from
Ntdll.dll for minor functions or for trapping into the NT
kernel. After these system activities complete, NT turns
control to the first thread of the newly created process and
the application gets the first chance to run. Because the NT
threads are system-aware, the system makes a context
switch between threads no matter whether they are in the
same process or not.

Windows NT also provides a set of DEBUG APIs [14].
By using these DEBUG APIs, a programmer can create a
process for debugging (CreateProcess), wait for some debug
events to happen (WaitForDebugEvent), read or replace the
thread context (GetThreadContext and SetThreadContext),
and read or replace the content of remote processes' address
space (ReadProcessMemory and WriteProcessMemory).
Our program tracing tool heavily uses these APIs for
snooping the thread contexts of a debuggee process and for
capturing the machine instruction that a remote thread is
executing. The following sections will discuss more details
about the implementation.

When creating a process for debugging, we can call
the appropriate APIs to get the content of the foreign
address space. Thus, understanding how the executable files
or modules are organized is also a necessary. The Win32
executable file is named the Portable Executable (PE) file
[13]. The PE file format contains an old-style MSDOS
header, a PE file header, a PE optional header, and a set of
section headers and section bodies.

Those headers are composed of several fields, some of
which keeps information about that PE file, ¢.g., magic
number, entry point, code size, etc., and some keeps a
relative virtual address (RVA) to another field or section.

Sections included in a PE file are classified into different
types and usages. The .fext section contains machine
instructions, .data and .BSS are used for carrying initialized
and uninitialized data, respectively. The .idata section keeps
the information about all imported APIs and DLLs.
The .edata section contains export information of this PE
file, usually appearing when it is a DLL or has to export
some functions.

3.2 Issues Related to Hardware

Since our goal is to catch every instruction in the
execution path of cvery running thread, we nced a
disassembler to translate the x86 machine instructions into a
readable format. Thus we need to understand how x86
instructions are decoded.

The x86 architecture has very complicated instruction
format and addressing modes [4]. In a x86 instruction, only
the opcode field, cither one or two bytes, must exist, the
others are optional. The AModR/M field is composed of three
subfields: Mod, Reg/Opcode, and R/AM. It is used to
determine the operands, the addressing mode, and whether
the next three fields exist. In some cases, the Reg/Opcode
subfield is used as an extension of the opcode. If the SIB
field exists, it specifies the base register, index register, and
scaling factor of the index. There are also situations that an
instruction contains an opcode with implicit operands, ¢.g.,
opcode /6h represents the instruction "push SS™, where SS
is the stack segment register. It is also possible that the
opcode will be immediately followed by a Displacement or
Immediate field.

The x86 architecture provides a mechanism called soff
interrupt or exception to trigger the processor to handle
specific events. This is accomplished with instructions such
as INT n, where n is an interrupt vector number.

When tracing a running application, we use a large
number of breakpoints and single-step exceptions to stop the
process and record the thread states. While a thread is
stopped by a breakpoint or a single-step exception, the
address of the next instruction is reported instead of the
instruction causing this exception.

When developing our tracing program, we use the
instruction INT 3 (0xCC) to trigger the breakpoint exception
and set the 7F flag in the EFLAGS register to trigger the
single-step trap. The processor clears the TF flag before
calling the exception handler. For protection purpose, the
operating system checks the privilege level after any single-
step trap to sce if single stepping could be continued at the
current privilege level. It follows that a user-level code
cannot single-step into the system-level code.

3.3. Trace Generation

Our basic idea of generating trace is to set each thread
into the single-step mode as it runs. When completing an
instruction, the thread will be stopped and we have the
chance to record the state of the thread context and generate
a trace record. After these actions are done, we let this
thread go to the next instruction and we continue tracing it.
Although this method is time-consuming, it really works
very well to get the full trace of an application.

In this subsection, we present the principal data

ot

Process List Procesz Node

Y

F 3

Proces: Node Proces: Node

Figure 1: Abstraction of process management

abstractions used in our tracing program for managing the
processes and threads created by a running application. The
main algorithms in our tracing program and optimization
methods are then described.

3.3.1 Data abstractions

A running application may create one or more
processes, cach of which may spawn several threads and
map required DLLs into its address space. The data
structures to represent these entities are described below.

Process, Thread, DLL

In most cases, an application may spawn several
threads and even several processes. So, we use a doubly
linked list to chain the processes created by the same
running application and a global variable to hold the head
node of that process list. The threads spawned by the same
process and DLLs loaded by the process are chained
respectively by two additional doubly linked lists, linked
from that process node. The abstractions for process and
thread management are shown in Figures 1 and 2.

Each data structure must keep some related
information. A process node has to store the process id, the
process entry point, the module image header, a flag to
denote whether it is alive, a HANDLE to the process, and,
most importantly, a TRACE INFO record. A handle is a
special data type to keep the connection to a kernel object in
the Windows system. The TRACE INFO record keeps

Process Node

ProcessId
MainT hreadId
S5tartA ddress
flzActive
T racelnfo
ImageHeader
ProceszDebuglnfo
T hreadList
DList

Thread List

information about basic blocks and instructions, which will
be described below. Similarly, a thread node keeps the
thread id, thread handle, a flag for live/dic status, the
number of instructions the thread has executed, and a thread
trace record, which is used to store each thread state. A DLL
node should keep the DLL name, DLL module header, base
of the DLL address, etc.

Basic Block and Instruction

The TRACE INFO structure in a process node
contains two hash tables: a basic block hash and an
instruction hash. They are used to deposit basic block
records and instruction records respectively. We catch the
basic block and the instruction information at run time as the
program control goes through the code section of the
executable file images or the dynamic linked libraries.

As a program is running, there is a very high
probability that instructions or basic blocks are reexecuted.
When an instruction or a basic block is first met, it is
disassembled, analyzed, and then stored in the hash tables
for reuse. Next time when they are met, the disassembling or
analysis time can be reduced. Their information may be
obtained by searching these hash tables.

Every basic block record must hold the start and end
addresses, the number of instructions inside the basic block,
the number of times it is exccuted, and the number of
instructions with a repeat prefix. As mentioned before, a x86
instruction may exist with a prepended prefix field. There
are several prefix codes, and one of them is the repeat prefix.
The repeat prefix means that an instruction must be executed

T hread Nude T hread Nnde
DuNudE D]].Nude

Figure 2: Thread and DLL lists within a process node

repeatedly until some condition is satisfied. We distinguish
this kind of instructions from others, because they may be
executed for an undetermined number of times. This may
affect the instruction count in a basic block at run time. We
count this kind of instructions just once in each basic block.

An instruction record holds the start and end addresses
of this instruction, the machine code and its assembly
equivalence, and an instruction type record. The purpose of
the instruction type structure is to store the opcode and the
type of this instruction, ¢.g., data movement or control
transfer. We define the instruction types according to the
classification in [4].

3.3.2. WIN32 debug events

In section 3.1, we mentioned that a debugger process
could call some debug APIs to wait for the debuggee
process to reply some debug events specified by the
debugger. In general, the debuggee process will generate a
debug event when one of the following conditions occurs:

1. An exception is generated.

2. A process is created or exits.

3. A thread is created or exits.

4. A DLL is loaded or unloaded into the address space.

While a debuggee process returns a debug event, all
threads running in the current process will be blocked and
the control will be transferred to the debugger, i.c., our
tracing program. Unless the debugger returns the control and
notifies the debuggee to continue, the debuggee will be
blocked forever. Thus, debug events must be carefully
handled.

We also implement several event handlers, and each of
them handles one debug cvent. For example, a create
process/thread event handler must allocate a process/thread
node, fill its fields with its state, and insert it into the
process/thread list. The breakpoint or single-step exception
handlers have to snoop and record the current state of the
thread which caused the exception, generate a trace record
belonging to this thread and then set it to the single-step
mode again. A debug loop will be presented in the next
section to show how to repeatedly debug the debuggee
process.

3.3.3. Debug loop

To trace a Windows application, we have to create a
process to execute the application. That process is treated as
a debuggee process and our tracing program enters a loop to
wait and handle all the debug events from that process until
the application finishes. Most actions are taken care of
within the debug loop, ¢.g., to construct the process list and
to generate trace records. As shown in Figure 3, this debug
loop does nothing but dispatch each debug event to its
corresponding handler.

In the debug loop, all cvent handlers except
HandleException() are used to maintain process and thread
lists. Inside the exception handler, we only intercept the
breakpoint and single-step traps. When one of these traps is
caught, our debugger program reads the remote process
memory and thread context, makes a decision to

FrecenCemnni = 0
while { TRUE j
WalhlFerlrebmgEventd eveny |
ww tich | avemi J§ [
e EXCEPTION REVERT
HandleExe#grion] avent j)
bromh:
cge CREATE PROCESSE EYENT 1

FrotessTauni=+|
HandleC resielrecsss] pveni §;
hreak

e EXIT_FROCESE_EVENT
HondleE xitFrocecs] sveni |;

Prosessl " aune

il [FrecezsC amnt L
Ereak;
wlaw

ContmeelisbugEvym il debupges procesx |

Figure 3: The debug loop in the tracing program

disassemble the instruction at the current address or get its
information from hash tables, stores a trace record, and sets
the thread to the single-step mode again.

Every time when a create process event is received,
the process count in the process list must be increased. An
exit process event decreases the process count. If the process
count equals to zero, it means all processes created by the
running application are terminated. In this case the tracing is
completed. We then dump all the trace results collected.

3.3.4. Optimization

When handling the exceptions, there are some
considerations for optimization. First, every time when the
exceptions handler is invoked, we only need to read a few
bytes from the memory of the debuggee process. The cost to
read from another process'’ memory is very high. To
optimize memory reads, we implement a buffer, which
behaves like a cache, and we call it the soft cache. Using
soft cache, we can read more bytes once (like a cache line),
and store them for the next use. This should reduce the
number of times to read from another process' memory,
because in most cases a stream of instructions is executed
sequentially before the program control branches off. The
cache line size is adjustable, and is set to 64 bytes by now.

Second, we can defer instruction disassembling and
resume the threads as soon as possible. This will reduce the
debuggee process' hanging time, and improve the tracing
speed, especially when running on multi-processor machines.
So, we also implement a large FIFO buffer called the
address trace buffer (ATB). When an exception is reported,
the handler just stores the process id, thread id, and
exception address into one ATB entry. When the number of
ATB entries reaches a threshold value, an ATB consumer
thread is invoked to flush the address records sequentially.
After it finishes processing all the ATB entries, it is put into
sleep again.

st i bs
Totul instroctions
Tetul hasic hlocks
Instruction hausic hlods
Skatic instrocticns
Sidie heae hlacks
Muximum iestr. in o hosie hlodk
Mazirmmn vasps of & hasse hlock
Modils hasa
Iostr, sxecizbed mesis 8 mosdu s
MI.I. I-d. ll.l'l.?dl.' I‘il—HLH ﬂlﬂj{!ﬂ H I.IHJ:II-lH
Static irstroctiors inside o modele
Slnthe heise Mlosks imsda & madala
Thread matruction counts
Thrwie APl calls
Thrsuad Call En..ph
Insdrucions fmix
Moo of asch eontrol trunsfar types
HNo. of wuch prefx typis
Tep N imstroctions

Dlssem bonbiaors

Moditls

T e

lnstroetion

Table 1: Results reported by the tracing tool

3.4. Program Analysis

When applying our tracing program to a Windows
application, the complete trace will be output. But the trace
is not readable yet, because the trace format is designed to
reduce the disk space and keeps only the necessary
information. We also provide an analyzer program to
reconstruct the execution. The results output from the
analyzer are classified into four categories, which are listed
in Table 1.

4. EXPERIMENT RESULTS

In this section, we present the results of applying our
tracing system to the Windows benchmarks. The
experiments were conducted on a personal computer with
dual Intel 450-MHz Pentium III processors, 512-KB L2
cache, and 256-MB of RAM. The system ran the Windows
NT 4.0 build 1381 patched with service pack 4. The
benchmark programs include console and GUI programs.
We distinguish these two kinds of applications, because they

neced more DLL modules and create more cooperative
threads, but have a smaller average basic block size.

4.1 Console Applications

This section discusses the characteristics of console
applications running in the Windows NT. The console
programs used in our experiments are multimedia
applications based on the MediaBench suite [9]. The
MediaBench suite was chosen, because a large number of
applications running on the Windows systems are
multimedia applications, doing image processing and speech
compression, etc.

We apply our tracing system to four components of
the MediaBench suite: JPEG, MPEG, EPIC, and ADPCM,
each has its compression and decompression parts. The
source code of these software was downloaded from the
Internet [11] and compiled by the Microsoft Visual C++ 5.0.
The programs and their input data used in the experiments
are described below:

1. JPEG: JPEG is a lossy compression method for full-
color and gray-scale images. This package contains two
program cjpeg and djpeg. In our experiments, the input to
cjpeg was a 101-KB PPM file and the input to djpeg was
a 6-KB JPEG file. These two files contain the same
picture but are encoded in different graphic formats.

2. MPEG: MPEG is a standard for digital video
transmission. We used mepglenc to encode a 4-frame
video, and mpeg2dec to decode it.

3. EPIC: EPIC is an experimental image compression
utility. We used epic to encode a 256x256 gray scale
image, and unepic to reverse it.

4. ADPCM: ADPCM is a utility for speech compression
and decompression. It takes 16-bit linear PCM samples
and converts them to 4-bit samples, yielding a
compression rate of 4:1.

Table 2 shows the general information of these
console applications collected by our tracing system. In the
table, the row denoted **Total Instructions" lists the number
of total dynamic instructions executed and the row denoted
“"Total Basic Blocks" lists the number of dynamic basic

have different characteristics. In general, GUI applications blocks executed. The row of “Instr/B.B." shows the

aipeg lipeg e gL e mnpe g e epic unepic | ravwocasdio | ravwdansdio

Il'ni.ll Instructinns 23 BA0AG0 | 70060 007 | 2457 654,506 | 135,630,762 | 56,153 306 |7 433 745 | 14 309560 | 15,400,176
Ir{ﬂ-nl Bagic Blocks 4, 1 NLS0 SOCLEND | 325 5800500 | 2T T 006 | QETD D | 1 35323604 | 2732952 | 5193 554
[imatr. . B. Ratio 556 1400 7.55 T 5.71 5.58 5.24 432
IEmks Incrtruecticms 2553 22,268 2OHETH |7 080 17637 18678 12,237 12,2010
ll51atic Basic Blocks 4363 [4,132 5,074 3,606 3495 | 3,600 2518 2,514
I:im Trste. /BB, Featio 5.17 536 5% 174 508 506 456 485
% Inste /.0, 160 (11 154 L % fi i))
IHM UsageT B ITA%6 | 330972 GLXET00 | 4328076 [2343360 [65.95% 148,638 T AN
([P1ohates 3 3 3 3 3 3 3 3
([T et | | | | | | I I

Table 2: General information of the console applications

gpag dips2 e e g2 e 0 e o tawdsaho
It fon Tyge: 2. Cownlz | Fatio [Cowntt | Rakio Coundt Faio | Cowstt | Raw | Cousr | Raio | Cowas | Rslic | Cowss | Rabio [Cowu: | Rasbo
i Mewement 1SR R0 | S0 420270 | @400 LTG0 | 51.90%| /RG] 3180 | 15015680 | 54| 212,506 | 28 53%| SATSA50 [45290 SM2 7| 41.34%
Bimwy Aot 4T019) | HA06) 1379458 | 196800 SOSKHIET | M0 45, 505502 | 2615 | 1968 | 35 0K6] 2135007 | 26 FMb) 3060 R | 2635) 4130359 | HEAME
Ciecimal Anthmetic] e] 0] GOk] e] GOk] GOk] Ok] e
Largical PEII] 1) JEAT| J04] MODEIN | 05| PTTAR| M) MRS 106 MAM ([0% 930068 55| 1M9014] &3
Sk fi and Renwe STSAT] 2o0dh] MRRAMR) G4 3RMIOR| 101%] 1AM O 1413 Ol 2| 0% SRAN | L6 M0R3] 20EE
Bit Al By 99,559 Cash| SR9ES) GYRR RSMON | GO D7ERSET) GO&E) NGSTT) LA 20054 AN 0007 | 2iek| GRES| 3946
min] T fer LIELN5| 10A4e) METM| SA%N) DBI345706) 0.65%| 26765084 | 13830 SO0B032 [146%) LIGTIEG | 157K 209,585 [15.00%| 27505 | 17836
farim, ion L] OR8] 00% 57001 GOk Eeh] GG 1571 | GOkel 2413 | GOR% 5] G0k i I
Irgon el Corpat 0] K 4] COEe 0] GOk 0] (HHES 0 COke G GOk g] LG
Bty aee Lowve apf ooow| &) ool cepw) ol snmol toow) esatt| Gl M| oms o) comel a3 ot
[EFlagrs o ooow| s 000w 15| 00 s6] 000 o oo as) oowel a¢] ooeel 35| ooos
[Segment egier 122] KR 18] KR M| e 73] e 19| GOk 28| GOk J5| GOk 54| (ke
el Ity SETMG| a6) 110a04] 1SEe) BRAEST) G| QIEMI| Gade| 1MSAT 300 BESRT(110% FRER| (A%) 0REG3| 10
ing-Pint 4] 00 4] 00| SSAGM0ER | 200%| AO219) 2155 SEURATT| 120ME| TRITE | 10.52% G| 0K (] (KRS
yiiem 0] (MK 4] CHER 0] G0k 0] (HHES 0 Ok 0 0K O] G
il tamed i Exention (] (s (] CHE 0] GO (] G O] 00K 0] 0K (] O (] (K
fix 12207 054 2650 008 SAMIRYS| G 2AMB4] 123 AN | OSWE| JEES | A4Ke 1M GO RS0 2%
Table 3: Statistics of instruction types for the console applications

average ratio of instructions per basic block for each
application. The rows on static statistics list the information
on static instructions and basic blocks. Table 2 also presents
the maximum number of instructions in a basic block, the
number of times the most executed basic block runs, and the
number of modules used and threads created.

The results in Table 2 show that the compression
programs execute more instructions than the corresponding
decompression programs, except the ADPCM package. All
of these applications create only one thread and use three
modules (the program file itself, ntdll.dll, and kernel32.d1l).
We observe that the Instr./B.B" is slightly larger than the
“Static Instr/B.B.". This tells that while executing, these
programs tend to spend more time in larger basic blocks.
Among them, djpeg has a relatively higher average
instruction per basic block ratio (14).

Table 3 presents the statistics of instruction types,
which are classified according to [4]. An instruction may
belong to more than one type. For example, pushfd and
popfd belong to both data movement and eflags types. From
this table, we can sece that the most executed types of
instructions in these multimedia programs are data
movement, binary arithmetic, and control transfer. These
three types of instructions constitute 71.83% at least
(mpeg2dec) and 93.61% at most (cjpeg) of the total
instructions executed. Not all of these applications use
floating-point instructions heavily. Instructions in the 1I/O
and system types are privilege instructions, so none of these
instructions can be captured. Some instructions, such as /ea,

cpuid, and nop, ctc., are hard to be classified and are
collected to the Miscellancous type [4]. Finally, we can sce
that these applications do not take the advantage of the
MMX technology of the Intel processors. In fact, the VC++
5.0 compiler only supports the MMX instructions in inline
assembly code. Thus, a programmer who wants to make use
of the MMX instructions has to write the pieces of code in
assembly.

Our tracing system also has the ability to collect per-
module or per-thread statistics. That is, we can show how
many instructions are executed by a thread or inside a
module. Besides, we can intercept the API calls made by a
thread, and construct the call graph of the thread. Here, we
use the MPEG package to demonstrate the capability, and
only show the per-thread results in Table 4. The Module
Switches field in Table 4 indicates how many times the
thread jumps across module boundaries. This usually occurs
when the thread calls an API or DLL-exported function, and
returns from them. Thus, the number of module switches
must be smaller than or equal to twice the number of API
calls, which we do not distinguish between the system APIs
and the functions exported from application DLLs. The
more the number of module switches implies the more
difficult we could improve the instruction locality.

4.2 Windows GUI Applications

We also apply our tracing system to several Windows
GUI applications. The GUI applications usually use more
modules and create more than one thread. We selected five

Application | Thread Id | Instruction Count | API Calls | Module Switches
mpaglanc in 2,407 654,686 1,047 1,661
mpeg 2dec 386 185,631,762 [E5] 1,327

Table 4: Per-thread statistics of the MPEG package

Il WordViewer] XL Viewer | FPViewer pedinPlaverd WinAmp

ol Instructions 195, 1M 435 191,109 113 |47 515883 | 30000 20T | 187 753, 794
ol Basie Blocks FE 136 00 | 2S00 006 | D405 28T | SEATEETY | 34064 a0
nxir.H.H. Fago 312 4.1 A 442 551

i Instructions. 22 857 | 246,47 o 57 43,875 79,797
e Fiatic Rilocks 6, 2 25378 4653 46 538 17 Sls
[smric Tnmr B R, Rariol 432 422 459 433 4.9
[Tnstr LT, 66 |30 107 £4 £51
% UsageB R 7a0493] 230377 wa2w | 1oeassa| ge) 47
ubes 7 1% i, ELH la
P & 3 2 4

Table 5: General information of the GUI applications

GUI programs and traced their execution, three of which are
document viewers for Microsoft Office Suite (Word, Excel,
and Powerpoint), and the other two are MediaPlayer2 and
Winamp v2.10. The programs and their input data are
described below:

1. WordViewer: This is an application for displaying Word
97 documents. We used this viewer to open a 243-KB, 9-
page Word document, paged down to the last page, and
then closed it.

2. XLViewer: This program is for displaying Excel 97
documents. We used it to show a 163-KB, 8-sheet Excel
document. The program displayed all its content, and
then closed it.

3. PPViewer: This is a Powerpoint97 document viewer. We
used it to play a 131-KB 29-page PowerPoint document
with an interval of 2 seconds between adjacent pages.

4. MediaPlayer2: This is a video player program, which
play many multimedia files of various formats. We traced
this application by playing a 6-second MPEG video file.
We observe from the traced output that MediaPlayer2
uses a huge amount of MMX instructions.

5. Winamp: Winamp is a MPEG layer 3 decoder and player.
We used it to play a 5-second mp3 file, and traced the
total execution.

The general information of these GUI applications is
shown in Table 5. We see that GUI applications use more
modules and create more threads. The average instructions
per basic block ratio is smaller relative to the console
programs. This means that the GUI applications have shorter
basic blocks in average. We found that all these GUI
applications have a similar pattern of a peak ratio occurring
at three instructions per basic block. They seldom have basic
blocks with more than seven instructions.

Statistics of instruction types for the GUI applications
are shown in Table 6. Frequently used instruction types are
data movement, control transfer, and binary arithmetic. That
is slightly different from those in the console applications.
These GUI applications wuse more control transfer
instructions, perhaps because they have shorter basic blocks.
We also can see that Winamp uses a huge amount of
floating-point instructions, and MediaPlayer2 uses a lot of
MMX instructions. MediaPlayer2 is the only application
that takes the advantage of Intel MMX technology among
those benchmarks we traced.

We also choose one GUI applications, MediaPlayer2,
to show per thread statistics in Table 7. In the table, the
threads are listed according to the sequence of their creation.
We observe that most execution time spent in a few threads,
and others just take a little part of the total work.

FFYiewer Mmdial

| Bgin | Cownp |
TS I3RAL %00 |45 20| 61900 1

T2 41640 |14 0 3% |15
ik ol i o

L15% 07 | L0 417528
| Whi% L1618 | AN TIMIE] 3E

4

]

0% 1116040 | 4108 1LE Y] 6
[1
1

(14 60061 | DIV8] 31376
ke o | (s

b LS LSRG | 4%
AN

d L% G095 | 020

) 216% R1IGGE 2688

| 052 13165 | M]3
] 0 Qs
0ok 1310060 | 300

Table 6: Statistics of instruction types for the GUI applications

Thread Id | Instrocoom O o] AL Calls Flodhule Swiichnes
TES R] T T e ‘.-.E‘-'ﬁ,-ﬂh
280 109,091 1,055 6,111
7333 | 10, 34565, 208 50,651 EE 673
T3 3.3451 L 11
13 219.473 |64 3,932
288 21,174,253 15,623 24,757
319 27,B1E,620 S5 R4 20,415
167 1,352 655 8726 2061
343 1228 19 34

Table 7: Per-thread statistics of MediaPlaver2

S. CONCLUSIONS

In this paper, we introduce a workable method to
capture the full user-level trace of multithreaded Windows
applications. Such an effort is very difficult, because most
Windows applications and the Windows NT itself are only
available without source code and the x86 instructions are
hard to decode and analyze. Our program tracing tool may
help users to observe the execution characteristics of
applications running on Windows NT/x86-compatible
platforms. We have also applies our tool to several real
applications and study their execution characteristics. This
demonstrates the usefulness of the tool.

Our tracing system also has some limitations.
Techniques such as binary instrumentation and run-time
sampling may be integrated into our tracing system to
overcome or to reduce the existing restrictions. Run-time
sampling may reduce the disk space for the collected trace
and the time spent in getting the trace. But it may lower the
accuracy of the results and affect the correctness in
analyzing the program behavior. Its effect requires further
investigation. Binary instrumentation, on the other hand,
takes more cfforts to analyze the binary files, e.g., the
Win32 PE files, and to rearrange the machine instructions. It
remains to see if this technique can be adopted for Windows
NT.

BIBLIOGRAPHY

[1] J.P. Casmira, D.P. Hunter, and D.R. Kaeli. Tracing and
Characterization of Windows NT-based System
Workload. Digital Technical Journal, 10(1), December
1998.

[2] J.B. Chen, Y. Endo, K. Chan, D. Mazieres, A. Dias, M.
Seltzer, and M. D. Smith. The Measured Performance of
Personal Computer Operating System. ACM Transaction
of Computer Systems, February 1996.

[3] RF. Cemlik and D. Keppel. Shade: A Fast Instruction-
Set Simulator for Execution Profiling. Technical report,
Sun Microsystems Lab., 1993.

[4] Intel Co. Intel Architecture Software Developer’s

Manual. Vol. 2: Instruction Set Reference.

[5] Intel Corporation. Intel Vtune™ Performance Analyzer.
http://www.mmx.com/vtune/analyzer/.

[6] J. Fenlason, R. Stallman. GNU Documentation — The
GNU Profiler.
http: lori 1 inutils/gprof |
1

[7]1 JR. Larus and T. Ball. Rewriting Executable Files to
Measure Program Behavior. Software Practice and
Experience, 24(2): 197-218, Feb. 1994,

[8] JR. Larus and E. Schnarr. EEL: Machine-
Independent Executable Editing. Proc. of 1995 ACM
SIGPLAN Conf. on Programming Language Design and
Implementation, 291-300, June 1995.

[9] C. Lee, M. Potkonjak, and W.H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communication Systems. Proc. 30"
Int'l Symp. on Microarchitecture, 1997.

[10] D. Lee, P. Crowley, J.Baer, T. Anderson, and B.
Bershad. Execution Characteristics of Desktop
Applications on Windows NT. Proc. 25" Int'l Symp. on
Computer Architecture, 27-38, 1998.

[11] W.H. Mangione-Smith. MediaBench Suite.
http: icsl.ucl ~billm

[12] S.E. Perl and R.L. Sites. Studies of Windows NT
Performance using Dynamic Execution Traces. Proc. of
2nd USENIX Symp. on Operating System Design and
Implementation, October 1996.

[13] M. Pietrek. Windows 95 System Programming Secrets.
IDG Books, 1995.

[14] J. Richter. Advanced Windows. Microsoft Press, 3™
edition, 1997.

[15] T. Romer, F. Voelker, D. Lee, A. Wolman, W. Wong,
H. Levy, and B. Bershad. Instrumentation and
Optimization of Win32/Intel Executables Using Etch.
Proc. of the USENIX Windows NT Workshop, August
1997.

[16] D.A. Solomon. Inside Windows NT:. The official
guide to the architecture and internals of Microsoft
Premier operating system. Microsoft Press, 2™ edition,
1998.

htm

