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Automatic Diagnosis System of Venous Beading in Retinal Images
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Abstract

In this paper, we proposed a bell-shaped matched
filter for extracting blood vessel, and an automatic
diagnosis system of venous beading in retinal image. The
automated detecting algorithm is performed in several
steps. The vein is first extracted from the background by
bell-shaped matched filter to generate a rough shape.
Morphological closing algorithm is used to erase the noise
in the background and to close any holes arising from
noise. Morphological thinning is then applied to the
binary image for finding the forks of the blood vessels. The
Jorks must be deducted for creating the pattern of the veins
without branch. Finally, a Shape Cognitron is applied to
extract the feature of the vascular shape. According to the
Jeature of the veins, the neural network technique is used
to analyze the difference between venous beading veins
and normal veins and to classify those veins into to
categories, normal and venous beading.

1.Introduction

The venous beading is a powerful predictor of

diabetic retinopathy, comparing to other types of retinal
abnormality [1]. Accurate assessment of the degree of
venous beading is particularly important so that the
opportunity for treatment is not missed.
Veins exhibiting beading have . diameters that do not
decrease monotonically with distance from the macula.
Beaded veins exhibit periodic changes in diameter along
their lengths, somewhat like a string of sausages. Fig. 1
shows the typical shapes of a normal vein and a vein
exhibiting beading [2,3].

Previous works on analyzing retinal images have
oncentrated mainly on  detecting vessels and
microaneurysms. Adaptive thresholding followed by
binary thinning [4] has been used for detecting vessels. A
set of convolution masks [5] obtained by rotating a linear

feature detector of a Gaussian cross-section was used for
extracting blood vessels in retinal images. A
morphological transformation of the positive image [6]
was used for detection of microaneurysms, and with
counting microaneurysms being used as a method for
grading the severity of diabetic retinopathy. As for other
techniques in retinal image processing, - automated
registration of retinal images [7] enables accurate
comparisons between images taken at different time and
provides the ability to automate the calculation of changes
for both lesions and normal anatomic structure.
Fluorescein angiography [8] has been an established
clinical technique, which helps in the differentiation of
retinal disease and can determine if laser treatment of the
retina is warranted. Detection of non-prefused zone [9] in
retinal image has been used for detecting and monitoring

‘the early stages of diabetic retinopathy.

(b)
Fig. 1 Vein example. (a) A normal vein. (b) A vein
exhibiting beading.

B-117



FERE A EREH RS

In this paper, we devote our aitention to the study of
automated diagnosis of the retinal disease of diabetic
retinopathy. Diabetic retinopathy has great influence to the
adults in the developed countries. The most serious
damage to the retina may be blindness, and therefore, the
prevention and tracing of diabetic retinopathy is extremely
important. A specific pathology called venous beading has
been known to be a good indicator for the degree of
diabetic retinopathy [1]. Our goal here is thus to build an
automated diagnosis system for the venous beading. Our
work consists of two main parts:

1) Extracting blood vessels of retinal image:
Blood vessels in retinal images show enormous
information about venous beading, for the disease
exhibits an irregular shape of the vein like a string of
sausage. The detection of blood vessels plays an
important step in the automatic diagnosis process of
venous beading. Here, we develop a both effective and
efficient method for extracting blood vessels of retinal
images. The method is based on the concept of match
filter, and improves upon an existing method [5] in
terms of efficiency.
2)  Automated detection of venous beading:

To design a fully automated detection and diagnosis
process for venous beading, we combine blood vessels
extraction procedure of the previous part with the
second part, which uses the extracted blood vessels as
inputs to distinguish beaded veins from normal veins.
The second part is done by Shape Cognitron neural
network approach. Loosely speaking, the shape of the
veins is first analyzed by the Shape Cognitron feature
extracting process, and a neural network method is then
applied to recognize beaded shape. The approach is
new for retinal disease diagnosis, and the results show
high effectiveness and reliability of the approach.

2. Extracting blood vessel by Bell-shaped
matched filter

It was observed in [5] that these vessels almost never
have ideal step edges. Although the intensity profile varies
in every vessel, it may be approximated by a Gaussian
curve:

S, y)= A{1 + Kexp(-d’ / 26*)} m

Where d is the perpendicular distance between the
point (x, y) and the straight line passing through the center
of the blood vessel in a direction along its length, o
defines the spread intensity profile, A is the gray-level
intensity of local background, and K is a measure of
reflectance of the blood vessel relative to its
neighborhood. ‘

The ideal behind the design of bell-shaped matched
filter here is to have one single convolution mask (instead
of 12) that can cover the Gaussian shape in every direction.
The kernel K(x, y) is

K(x,y)=-exp(=(x* + y?)/267) @
We truncate the tail at +/2 +v> = 3. With m being mean
value of kernel inside the disk of the radius of 30, and

convolution mask of new matched filter is simply give by

K'(x,y)=K(x,y)-m 3
Note that the new kernel has the Gaussian shape along
every direction, thus making it bell- shape. To implement
the bell-shaped filter, the coefficients of the kernel are
each multiplied by a scale factor of 10 and truncated to
their nearest integer. In Fig. 2, we show a typical bell-
shaped kemel using 6=2.
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Fig. 2 A Bell Shape Mask using 6=2.

ig. 3 The original image.

Fig. 4 After a bell-shaped filter and automated
thresholding apply on Fig. 3.

It is used to roughly extract the vein shape from the
background. To further extract veins from the background,
some global automated thresholding schemes are used on
the image. Fig. 3 shows the original retinal vein pattern,
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and after applying the bell-shaped maiched filter and
automated thresholding scheme to the original image, the
result is shown in Fig. 4.

Delete noise and morphological closing

The bell-shaped matched filter can be viewed as a
combined and simplified form of Gaussian match filters.
Although the results generated by the bell-shaped filter are
close to those by Gaussian match filters, more noise will
be generated by the bell-shaped method.

To erase the noise, a simple process is adopted in
that the noise is deleted whenever its size is under 30
pixels (the threshold number may depend on the average
of the noise size). )

Morphological closing is used to fill any holes and
smooth the edges in the binary silhouette of the veins. The
morphological closing consists of a dilation followed by
an erosion. Both operations are performed with the same
structuring element. The size and shape of an appropriate
structuring element are dependent of the image resolution,
the size and shape of image feature (veins), and the size
and shape of the holes to be filled. The structuring element
of closing operation is shown in Fig. 5.

Fig. 5 Structuring element

Fig. 6 shows the result of Fig. 4 after noise delete and use
of morphological closing.

Fig. 6 Afier deletes noise and apply morphological closing
on Fig. 4.

Elimination of branch

Because of irregular blood stream pressure, the
veins’ shape near the branch will be irregular which is not
caused by the diabetic retinopathy. Due to this irregularity,
the automated diagnostic process may mistakenly view the
normal veins as the venous beading. The nonbranch vein
segments are the regions to be discriminated by diagnostic

systems and thus the bifurcation should be erased before
the pattern can be recognized. First, we are thinning the
pattern of the blood vessels with morphological thinning

-algorithm [10].

The thinning algorithm employed here uses a 3x3
pixel neighborhood centered on the pixel of interest in the
morphologically closed binary image. Let C denote the
gray level of the pixel of interest, eX denote the value of X
direction returned from the edge function [10] which
decides whether the pixel is on the edge if they have two
to six neighbors, vX denotes the value of X direction,
where Xe{E, S, W, N, SE, SW, NE, NW, C}. In general, the
thinning strategy set C=FALSE if C is determined to be on
a vein edge. More specifically, a pixel survives an iteration
of the thinning algorithm if
vCe(eC+(eEevNevS)+(eSeviV e vE) + (eE e eSE e eS))
is true, where e and + denote logical AND and OR,
respectively.

After pixels have been removed using the algorithm
above, it is necessary to repeat the operation using
southward bias expression, which is the same except that
north and south are interchanged. After elimination of the
edge element, unnecessary skeleton elements may remain
which can not be removed using the algorithm above. A
final clean-up phase is necessary to eliminate staircase as
described in [10].

A
. 7 The original vascular pattern.

Fig. 8 After the process of eliminating branch of Fig. 7.
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The thinning algorithm gives the skeleton image,
from which, we can find out fork points with more than 3
neighbors as branch points. Treating each branch point as
the origin and drawing a square, we can erase vascular
pixels in the square. The size of the square depends on the
ratio of the vascular pixels occupying in the square. After
erasing the bifurcation, some small unbranch segments
which may have influence on discriminating process may
be created. We throw away these segments by noise delete
process. The following two illustrations, Fig. 7 and Fig. 8,
show the results from the above procedures.

3.Extracting the Shape Feature by Shape
Cognitron

The unbranch pattern will be the input to the Shape
Cognitron neural network, and the angle of every pixel in
the pattern is analyzed. In the output of shape cognitron
neural network [11], there are <22.5°, 45°, 90°, 135°, 180°,
225°,270° and 360° being represented by 2, 3,4, 5,7,9, b
(11) and ¢ (12), respectively. In Fig. 9, we illustrate the
graphs of the boundary points with varying degrees of
shape curvatures. In the 3-D figure map which is the
output from the Shape Cognitron, every pixel is
represented by a hexadecimal numbers from 2 to C.
According to the irregular shape in venous beading, we
can distinguish between venous beading and normal vein
pattern by recognizing the 3-D figure map. We can then
apply backpropagation neural network [12,13] in the
discriminating phase.

D Background

Fig. 9 The boundary points with varying degrees of shape
curvatres.

Shape Cognitron Neural Network

The structure of the Shape Cognitron neural network
is shown in Fig. 10.

The input layer (U0 layer) receives the pattern by a
20%20 cell plane Here we use the 20x20 input pattern as
an example shown in Fig. 11 for illustration.

Uo S1 1 3D 52 2

Fig. 10 The structure of the Shape Cognitron neural
network.

Fig. 11 Input Pattern (20x20)

Fig. 12 A 3-D figure of the pattern in Fig. 11

Shape Curvature Number
<45° 2
45° 3
90° 4
135° 5
180° 6,7
225° 8,9
270° a,b
360° c
Table 1 Shape curvature generated by Shape Cognitron
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The S1 layer responds to the U0 layer by 20 20x20
cell planes. The C1 layer creates 8 20x20 cell planes by
merging the 20 20x20 cell planes of the S1 layer.

In 3-D figure layer, there is only one 20x20 cell
plane call 3-D figure map, which is generated by summing
~ all the cell planes in C1 layer. The pixels of the summed
cell plane will take a value ranging from 0 to 12 (C). The
3-D figure map of the pattern in Fig. 11 is shown in Fig.
12. Table 1 shows the numeric representations obtained
from the 3-D figure for § various shape curvatures.

After generating the 3-D figure map, the S2 layer and
C2 layer are responsible for recognizing venous beading.
In the 52 layer we calculate the probabilities of some
numerical symbols appearing in the 3-D figure map as the
feature values (Table 2).

grayscale retinal images, including 32 beaded images and
29 normal images, which were provided by Hsin-Chu
Public Hospital. The beaded part and normal part of the
images were signed by the doctor and segmented as
180x180 image patterns. Among the image patterns, we
randomly take 20 patterns as training patterns, with 10
patterns of them being beaded and the other being normal.

We choose from the feature values of Table 2 to
form a feature vector for recognizing venous beading.
Three such vectors are formed, each of which will be
individually applied for the neural network for both
training and discriminating. Table 3 shows the three
vectors and their correspond feature values.

Vector Set No. Element of vector

Feature Name Description
Vector Set No. 1 4,5,6,8,9,10,12
1 |vein number the number of the vascular
branch
ranenes Vector SetNo.2 | 4,3,7,8,9, 11,13
2
total perimeter sum (2, 3,4,5,7,9)
Table 3 Three feature vectors extracting from S2 layer.
3 the total length of all vascular :
total length b . .
ranches In the experiment, we use the 3-layer BNN structure.
4, \ . In input layer, input node number is the number of
irregularity degree  [sum(2, 3, 4) / total perimeter elements in the feature vector generated from the S2 layer.
3 Table 4 shows the results of 41 test patterns recognized by
radian degree sum(4, 5, 9) / total perimeter BNN.
6 . Beaded veins patterns Normal veins
smooth degree I sum(7) / total perimeter 22) patterns (19)
7 smooth degree 11 §um(7 with two or more Recognized | Beading | Normal | Beading | Normal
neighbor=7 ) total perimeter result
8 lavg. imregularity sum(2, 3, 4) / vein numbers Vector Set 19 3 4 15
degree
No. 1
9
avg. radian degree  [sum(4, 5, 9) / vein numbers Vector Set 17 5 1 18
T No. 2
avg. smooth degree I |sum(7) / vein numbers Table 4 The recognized result by BNN
11 sum(7 with two or more From Table 4, we can calculate recognized rates
. smooth \ : ’ g
avg. smooth degree I1 neighbor=7) total perimeter base on the three feature vectors for BNN, and the results
12 |“b’ ratio without sum( b without neighbor=7) /| € shown in Table 5.
neighbor ‘7’ sum(b) . .
; - - Recognized rate
13 |the ratio of ‘b’ and  |sum( b without neighbor=7) /, i
perimeter total perimeter Hit rate Error rate
Table 2 The feature values and it’s description Vector Set No. 83% 17%
1
The feature values will be inputted to the C2 layer v S ~ -
for training and discriminating. The back propagation ector 5 et No. 85% 15%
neural network BNN are used in the C2 layer for our

diagnosis process,

4. Experiment Results

For experiment results, we use 61 512x512

Table 5 Three feature vectors’ recognized rate on BNN.

From Table 5, we observe that vector set No. 2 have
a higher hit rate than the other one feature vector. Thus,
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vector set No. 2 is more reliable than the other one feature
vector for recognizing beaded veins. Both neural network
methods perform almost equally well for the diagnosis of
venous beading.

5. Conclusion and Future Research

In this paper, we have developed a technique for
automated detection of venous beading in retinal images.
In the preprocessing part, we have proposed a novel
operator, called bell-shaped matched filter, for extracting
blood vessels from retinal image. The new filter has
significant improvement in computation time over a
previous Gaussian matched filters, and in term of the
quality of the extracted image, the bell-shaped matched
filter performs almost equally well as Gaussian matched
filters. The bell-shaped matched filter is an efficient and
effective method for blood vessels extraction in retinal
images. In the part of detecting venous beading, we apply
Shape Cognitron neural networks for learning and
discriminating beaded veins form normal veins. The
experiment results show great reliability and promise of
the approach.

There exist many interesting and challenging issues
and topics for future research. For example, in the
preprocessing part, since bead veins arise in only some
parts (not all) of the retinal image, it may be helpful to
automatic locate exactly ROI (regions of interesting). On
the other hand, we have observed that the bell-shaped
method may generate noise. It is thus interesting to find
out some thresholding techniques [14,15,16] to extract
veins more completely, when those thechniques combine
with bell-shaped method. In the diagnosis part, we may
consider more features for the Shape Cognitron neural
network and study the impact. We can Also use the neural
network method to classify venous beading into more
categories such as “normal”, “questionable”, “define” and
“advanced”; this way we can help the doctor more. Finally,
in addition to Shape Cognitron neural network we may
add the diameter variation of blood vessels to possibly
enhance the reliability of the diagnosis process.
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