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Abstract
To identify the functionality of a program fragment
is to determine the effect to program behavior caused
by removing the fragment. When given a concurrent
program with the proof of all desired properties, we are
assured the correctness. Left unsaid are often the pur-
poses of various fragments in the program text. A sce-
nario approack to answering questions such as What
is the purpose of this variable?, What is the purpose
of this busy-waiting loop?, What is the purposeé of
this assignment?,and so forth, is proposed. By an-
swering such guestions, one gains a component-wise
understanding of the program. The task of determin-
ing functionality of fragments is shown to be less de-
manding than the original proof of the complete pro-
gram. The gain is a further understanding not pro-
vided by proofs. Several classical solutions to the n-
process critical section problem are used for illustra-

tion. .

1 Introduction

The set of possible computation sequences for a
concurrent program can be so vast that an exhaustive
behavioral reasoning for program correctness is diffi-
culty to conduct, and is often regarded as unreliable[5,
p.5]. However, behavioral reasoning is an effective
way to refute a claim of program property over an ar-
bitrarily large set of possible computation sequences:
it suffices to provide one refuting sequence. =By
proposing appropriate claims about a program(or a
slightly modified version) and refuting the claims with
counter examples, we seek to understand the program
incrementally. We call such kind of reasoning a sce-
nario approach. Although correctness proof also in-
duces understanding, its primary purpose is to estab-
lish logical truth that the program as a whole behaves

as specified. It does not explicitly identify function-

ality of program fragments. Scenario approach is to
ask questions such as What is the purpose of this vari-
able?, What is the purpose of this busy-waiting loop?,
What is the purpose of this assignment?,and so forth.
By answering such questions, one gains a component-
wise understanding of the program. Refutations of
claims and correctness proofs should be viewed as
complementary approaches for program understand-
ing.

*This work was supported by National Science Council, Re-
public of China, under Grant NSC85-2221-E-009-039 '
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The approach is informal in the sense that it can be
immediately applied to all concurrent programs with-
out requiring rigorous training in axiomatic reasoning
or formal proof systems. It encourages behavioral ob-
servation on the target program that most program-
mers found comfortable with. Axiomatic reasoning
or formal methods requires a language of mathemat-
ics that is not widely known or easily used even among
interested groups[16]. One demanding task in our ap-
proach still remains: it requires ingenuity in observing
program behavior in order to come up with appro-
priate claims and find the refuting sequences. One
should be reminded that there are theoretical reasons
to believe that the problem of proving an arbitrary
program correct is Turing-undecidable [6, p.118]. And
there are doubts about the usefulness of the verifi-
cation tools based on formal methods[15]. For pro-
gram correctness, one should not rely solely on tools.
For program understanding, one should take an even
more active role and be ready to apply ingenuity when
called for. ‘

Ascertaining global invariants for concurrent pro-
grams, which is the core of a proof, poses another
difficulty that is often beyond the ability of most pro-
grammers: it requires a proof of non-interference(5,
p.67]. One must take all actions in all other processes
into account before an invariant can be established.
In contrast, scenario reasoning is more intuitive and
poses less difficulties because refutation requires only
one computation sequence with a ‘more focused claim
in mind. The scope of concern covers a smaller set of
possible computation sequences, and the language of
reasoning is that of program behavior. By encourag-
ing small steps in exploring the target, the program-
mer can take charge of the reasoning task at his(or
her) own pace. In contrast, correctness proof encour-

ages a global attack at the very beginning. Its first

step is often critical but difficult. Scenario approach
encourages a local attack step by step, so that a pro-
grammer accumulates knowledge about the program
behavior incrementally.

Scenario approach encourages question-and-answer
activity. To get a rough idea about the purpose of a
program fragment such as a variable, we simply re-
move all assignment statements to that variable and
all expressions involving the variable. The behavior

.of the crippled version must have deficiency of some

sort, as a result. One task here is to find a com-



putation sequence, called refuting sequence, of the
crippled version leading to a violation of some desired
(and proved) property. A backward flow analysis is
provided to assist this task. Once we find a sequence
showing the violation of a property for the crippled
program, we can demonstrate how the fragment in the
original program works in guarding the property by
replaying the same sequence we just found. The effect
is a vivid display of how the fragment is working in
a positive way. Several versions of bakery algorithms
are shown to have respective fragment guarding the
same refuting sequence threatening mutual exclusion
property. The fact that all these versions contain a
design to deal with the refuting sequence leads us to
believe the sequence should be documented explicitly
as a sound software engineering practice. In contrast,
such level of understanding regarding program frag-
ments(or design) is difficult to achieve in a typical
correctness proof. :

Organization of the paper follows. Section 2 sets up
the criteria for determining functionality of program
fragments. Section 3, 5 and 6 each presents a detailed
example of scenario reasoning, each for a non-trivial
solution for the critical section problem. Section 4 il-
lustrates a backward flow analysis to assist the search
for refuting sequences. Section 7 compares scenario
reasoning to related works and finally, section 8 is the
conclusion.

2 Criteria for detérmining functional-
ity of a fragment o

A problem is usually represented by a set of desired
properties of the programs(solutions). For example,
mutual exclusion problem([10] is formulated as requir-
ing the following properties:

1. mutual exclusion
2. deadlock freedom
3. fairness

The first two are well understood and are the mini-
mum requirements. Fairness is.sometime optional and
demands further explanations. It means that an up-
per bound on the number of “overtaking” for a trying
process is guaranteed. A process is said to be over-
taken when another process enters critical section de-
spite of the intention to enter made by itself. If the
number of overtaking is bounded by the number of
processes, the fairness is linear waiting. If the order
of entering critical section is the same as the order
of making the intention to enter known, the fairness
is First-come-first-served(FCFS). Note that fairness
is independent of deadlock freedom: An execution se-
quence of deadlock contains no process having entered
critical section, therefore no process is overtaking any
other. Therefore, we say that the three properties
are orthogonal to each other. There exist properties
that are not orthogonal to the three, though. Starva-
tion freedom,.which guarantees eventual entrance to
critical section for a trying process, is shown[10] to
hold if both deadlock freedom and FCFS hold. For
simplicity,” we consider only orthogonal properties of
a program.
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The functionality of a program fragment can in-
volve one or more properties. Criteria for determin-
ing the functionality P, defined as a subset of the
orthogonal properties, are given as follows.

1. Without the fragment, there exists at least one
refuting sequence for each of the properties in P.
We say that the fragment is vital for P.

2. Without the fragment, all properties not in P
are preserved. We say that the fragment is irrel-
evant to properties not in 'P. o

3. If the fragment is vital for P and irrelevant for
properties not in P, we say that its functionality
is for P.

A variable(or fragment) can be vital for more than one
properties. For example, number in the bakery algo-
rithm is vital for all three properties. In such cases,
the variable(or fragment) is usually the kernel of the
whole design and often attracts sufficient explanation
in the original document and proof. What is often left
untold is the kind of design that is not the core but is
necessary for correctness of the whole algorithm. An
example is the choosing variable in the bakery algo-
rithm. Our approach is particularly useful to those
who need to understand the whole algorithm.

3 Functionality of choosing in the bak-

ery algorithm
The following is the bakery algorithm as an N-
process solution to the critical section problem. The
common data structures are:

var choosing : array[0..n-1] of boolean;
number  : array[0..n-1] of integer;

Initially, these data structures are initialized to
false and 0, respectively. For convenience, we define
the following notations:

* (a,b) <(c,d)ifa <corif (a=candb< d).

e maz(ag,...,an_1) is a number, k, such that k >
a; for 1 =0,1,...,n — 1, and is computed as fol-
lows.

function max( af0], afi], ...
var j, temp: integer;
begin
temp := 0;
for j := 0 to n-1 do
if temp < a[j] then temp := aljl;
return( temp );
end.

, aln-1] );

Process P; uses the following algorithm.

/% */

/% The bakery algorithm */

/* */

1 repeat .

2 choosing[i] := true;"

3 number [i] := max(number [0],number[1],...,
number [n-1]) + 1 ; P
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choosing[i] := false;
for j := 0 to n-1
do begin
. while choosing[j] do no-op;
while number[j] <> 0
and (number[jl,j) < (number([i],i)
do no-op;

O W NGO ;e

10 end;

11 {Critical Section}
12  number[il := 0;

13 {Remainder Section}
14 until false;

Numerous docuinents contain explanations about how
this algorithm works(2, 3, 5, 7, 8, 9, 12].  However,
none of them provides a clear answer to the question:
what is the purpose of the array choosing? By sce-
nario reasoning, we would first remove line 2, 4 and
7. The resulting program text is such that choosing
does not exist any more.

/* */
/* The crippled bakery algorithm */
/* */

1- repeat

3 number[i] := max(aumber [0],number([i],...,

. number [n-11) + 1;
for j := 0 to n-1

5

6 do begin ¢

8 while number(j]l <> 0

9 and (number{jl,j) < (number[il,i)
do no-op;

10 end;

11 {Critical Section}
12  number(i] := 0;

13 {Remainder Section}
14 until false;

By finding a sequence of this crippled version from
the initial state to one that two processes are in'the

critical section simultaneously, we provide an evidence

that choosing is vital for at least mutual exclusion.
\

/* S1: */
/* a refuting sequence showing a */
/* violation of mutual exclusion for the */
/* crippled bakery algorithm */
/* */
pO at line 3 : check max = 0

pl at line 3 : check max = 0

pi at line 3 : number([i] := 1

pl at line 8 : check number[0] = O

pl at line 11: enter critical section

p0 at line 3 : number[0] := 1

pO at line 8 : check number[1] =1

po at line 9 : check (number[1},1) <

(number [0],0) is false !
pO at line 11: enter critical section

By using S1 again to drive the execution of the origi-
nal bakery algorithm, we see how choosing is used to
avoid the kind of race condition as in the sequence.
Process pl will be forced to spin at line 7 since pro-
cess p0 have not finished the assignment of line 4, yet.
By the time pl is free to go, p0 must have already
been given a new value of number. Process pl would
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not have seen that number[0] equals 0, and would be
forcéd to compare the number-id pair with that of p0.
Mutual exclusion cannot be violated in this sequence.

The race condition in the sequence is not accidental
in nature, but is intrinsic in the sense that all similar
algorithms using the number-id pair must deal with
it. The following algorithm, Bakery-2[9, 20, 5], helps
illustrate this point.

/% */
/* Bakery-2 */
/* */
1 repeat
2 number [i] := 1;
= max (number [0] ,number[1],.. .,

3 number [i] :
: number [n-1]) + 1;

5 for j := 0 to n-1

6 do begin :

8 while number([j] <> 0

9 and (number(jl,j) < (number[il,i)
: do no-op;

10 end;

11 {Critical Section}
12  number[i] := 0;

13 {Remainder Section}
14 until false;

Bakery-2 avoids the race condition by using an ex-
tra assignment statement to number in line 2. That
assignment serves the same purpose as choosing, how-
ever different the appéarances of the fragments may
be. Such level of understanding is obscure in the as-
sertional proofs[20] or behavioral proofs(9]. It can eas-
ily be revealed by scenario reasoning, starting from
the removal of the seemingly extraneous assignment:
line 2. The rest of the disclosure is similar to that for
the bakery algorihtm.

According to the criteria for functionality identifi-
cation, we need to show that the crippled bakery al-
gorithm satisfies deadlock freedom and fairness. For
deadlock freedom, assume all contending processes are
deterred indefinitely at the entry protocol. There is a
time after which no process has a zero ticket number,
except those that are idle. Then among these pro-
cesses, there must be one whose number-id pair is less
than those of all other contending processes. That
process can proceed to enter critical section. The
proof here is indeed less complicated than that for.
the completé program, since there is no need to con-
sider the role of choosing. For fairness, we show tha)
the crippled bakery algorithm satisfies first-come-first-\
served ordering. The assignment in line 3 is regarded
as the action making the intention known. Observe
that the processes will enter critical section in an order
consistent with their number-id pair. Thus, fairness is
preserved. The functionality of choosing is for mutual
exclusion. ‘

4 Finding a refuting sequence

Although finding a sequence to refute a claim re-
quires ingenuity, we-can use some knowledge about
the target program and some simple techniques in
guiding the search. For example, sequence S1 for the
crippled bakery algorithm in section 3 can be found
by a backward flow analysis to exclude impossible



alternatives in early stages. The finite sequence S to
be found is formulated as:

S= 51,61,31,62532,---an

where S is the initial state, S; the state of the vio-
lation. Assume two processes Iga and Py, with a < b,
are both in critical section. There are four mutually
exclusive and exhaustive cases. to be considered. -

1. P, read number[b] = 0 (line 8) before entering
CS; P, read number[a] = 0 (line 8) before entering
CS.

2.. P, read number(b] # 0 (line 8) and (number|b],b)
# (number(a),a) (line 9) before entering CS; P,
read number(a] # 0 (line 8) and (number(a],a) ¢
(number[b],b

3. P, read number[b] = 0 (line 8) before entering
CS; P, read number(a] # 0 (line 8) and (num-
ber[a),a) £ (number[b],b) (line 9) before entering
CS.

(line 9) before entering CS.

4. F, read number[b] # 0 (line 8) and (number|[b],b)
% (number(a),a) (line 9) before entering CS; P,
read number[a] = 0 (line 8) before entering CS.

For each case, we try to obtain contradiction by
some simple temporal reasoning.

1. Reject it. P, reached line 8 before P, finished
line 3; P, reached line 8 before P, finished line 3.
A contradiction.

2. Reject it. In sequence S, number[a] and num-
ber[b] are non-decreasing. In state Sy, P, expects
that (number(a],a) < (number[b],b) holds. But
Py expects that (number[b] ,IK <
also holds in the same state. A contradiction.

8. Reject it. P, reached line 8 before P, fin-
ished Tline 3. Therefore, P, expects that

number[b]>number(a] holds in state S;. How-

ever, P, expects that (number[b],b) < (num-
ber(a],a) also holds in the same state. Since we
assume a < b, that is not possible.

4. Undecided.

The remaining alternative, case 4, tells a lot about
what the possible sequence should look like.

e P, reached line 8 before P, finished line 3 since it
read numberfa] = 0 (line 8) before entering CS.
Therefore, number[a] > number|b] holds when P,
finished line 3. ‘

e P, read number(b] 3 0 (line 8) and (number([b],b)
% (number[a],a) (line 9) before entering CS.
Therefore, it must have found that number[a] =
number(b] at that time. (Since a < b and num-
ber[a] > number([b] at that time)

It becomes trivial then to obtain sequence S1 in
section 3.
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5 Functionality of while-loops in EM

algorithm.

Eisenburg-McGuire’s n-process algorithm( EM al-
gorithm) is another earlier one[18] but well-known|2,
p-211][19, p.30]. It is a good example to show how sce-
nario reasoning helps us understand programs. The
shared variables are follows.

var flag: array[0..n-1] of (idle, want_in, in_cs);
turn: 0..n-1;

All the elements of flag are initially idle, the initia]
value of turn is immaterial (between 0 and n-1). The
structure of process P; is:

/% */
/* EM algorithm x/
/* */
0 var j: 0..n;
1 repeat
2 repeat
A: 3 flagli] := want_in;
A: 4 Jj = turn;
A: 5 while j <> i -
A: 6 do if flagljl <> idle then j := turn
A 7 else j := ( j +1 ) mod n;
B: 8 flaglil := in_cs;
B: 9 j = 0;
B: 10 while (j < n) and (j = i or flag[jl <> in_cs)
B: 11 do j :=j + 1;

12 until (j >= n) and (turn = i or flag[turn] = idle);
13 turn := i;

14 {critical section}

16 j := (turn + 1) mod n;

16 while (flaglj] = idle) do (j := j + 1) mod n;

17 turn := j; )

18 flagli] := idle;

19 { remainder section }

20 until false;

No assertional proof can be found in literature for
this algorithm. The only documented proof[18] is be-
havioral. In it, however, no explanation. is given as
regard to the purpose of fragment A from line 3 to
line 7. The question arises since apparently there are
two while loops a process must go through before en-
tering its critical section. The first while loop in frag-
ment A is not meant to guarantee mutual exclusion,
for there exists the second while loop in fragment B
whose purpose is understood to guarantee mutual ex-
clusion. What is the purpose of the first while loop,
then?

To confirm that the first while loop is not for mu-
tual exclusion, we need to come up with a sequence.

/* 82: */
/*  sequence for EM algorithm to show simultaneous */
/*  execution of line 8. Initially, turn = O, */
/*  flag[0l=idle, flag[i]l=idle. */
/* */
pl at 3: flagl1] := want_in

pl at 4: j :=0

pl at 5: check j <> 1, must do line 6

¢ check flag[jl=idle, must do line 7
plat 7: j:= 1
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pl at 5: check j = 1, can go to line 8

p0 at 3: flagl0] := want_in

po at 4: j :=0

p0 at 5: check j = 0, can go to line 8

/* p0 and pl executes line 8 simultaneously */

The resulting state is that process p0 and process pl
can execute fragment B simultaneously.

The purpose of fragment B is clearly for mutual
exclusion: before entering line 12, a process must scan
the entire flag to make sure that no other process is
in_cs. We suspect that the purpose of fragment A
is for deadlock freedom. To confirm it, first we need
to provide a sequence leading to a deadlock for the
crippled EM algorithm which lacks fragment A.

/* */
/* crippled EM algorithm : */
/* EM with fragment A removed. */
/* c*/
0 var j: 0..n;
1 repeat
2 repeat )
B: 8 flaglil := in_cs;
B: 9 j = 0;
B: 10 while (j < n) and (j = i or flag[jl <> in_cs)
B: 11 i do j :=j +.1;

12 until (j >= n) and (turn = i or flaglturn] = idle);

13 turn := i;

14 {critical section}

15 j := (turn + 1) mod n;

16 while (flaglj] = idle).do (j := j + 1) mod n;
17 turn := j;

18 flagli] := idle;

19 { remainder section }

20 until false;

The following sequence shows that the crippled-EM

7u{fers from deadlock.

/* S3: ' */
/* sequence for the crippled-EM */
/* . */
po at 8: flagl0] := in_cs

pl at 8: flag[1] - := in_cs .

pO at 9,10,11,12: cannot enter line 13

since j is less than n.
pl at 9,10,11,12: cannot enter line 13
. since j is less than n.
poO at 8: flagl[0] := in_cs
pl at 8: flagf1] := in_cs
/* p0 and pl is in deadlock */

To illustrate how the original algorithm with frag-
ment A guarantees deadlock freedom, we learn from
sequence S2 and sequence S3 in forming S4 in which
deadlock would not happen.

/* S4: */
/* sequence for EM algorithm to illustrate */
/* deadlock freedom. Initially, turn = O, */
/% flag[0]l=idle, flagl[i]=idle */
/% */
pl at 3: flagll] := want_in

pl at 4: j :=0
pl at 5: check j <> 1, must do line 6
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pl at 6:. check flag[jl=idle, must do line 7
pl at 7: j := 1

pl at 5: check j = 1, can go to line 8

p0 at 3: flag[0] := want_in

p0 at 4: j :=0

pO at 5: check j = 0, can go to line 8

/* p0 and pl executes line 8 simultaneously */
p0-at 8: flag[0] := in_cs
pl.at 8: flag(1] := in_cs
p0 at 9,10,11,12: cannot enter line 13
- since j is less than n.
pl at 9,10,11,12:  cannot enter line 13
since j is less than n.

pl at 3: flagl[i] := want_in ~

pl at 4: j :=0

pl at 5: check j <> 1, must do line 6

pl at 6: check flag[jl=in_cs, therefore j := 0

pl at 5: check j = 0, must spin until pO
finishes line 18

po at 3: flag[0] := want_in

pO at 4: j :=0 ‘

p0 at 5: check j = 0, can go to line 8

/* Deadlock cannot happen since pl will be */
/* spinning at the first while loop. */

We see from the replay of the sequence that, this time,
only process p0'can enter fragment B. Therefore, the
deadlock pattern can no longer continue. Process p0
can go on to enter critical section since process pl is
kept spinning at the first while loop.

According to the criteria for functionality identifi-
cation, we need to prove that the crippled-EM satisfies -
both mutual exclusion and fairness. Mutual exclusion
for the crippled-EM is trivial and is omitted. We will
prove that a contending processes cannot be overtaken
for more than n—1 times once it declared its intention
to enter critical section. This is assured since turn is
changed only by a process having access to critical sec-
tion: at line 13 and at line 17. The value assigned to
turn is always in the cyclic order of current (turn+1,
turn+2, ..., n-1, 0, 1, ..., turn). The crippled-EM
may suffer from deadlock, but a contending process
cannot be overtaken by more than n — 1 processes
since its intention to enter critical section will be de-
tected by a releasing process at line 16. Fairness is
preserved. The functionality of fraginent A is dead-
lock freedom.

5.1 Scenario and assertional reasoning
for deadlock freedom of EM

We show how scenario and assertional reasoning

can work together for proving.deadlock freedom of

EM. The argument in the original paper[18], basically

an assertional one, is presented as follows. If none of

-the contending processes has yet passes line 12(the

last controlling point before critical section), then af-
ter a point in time, the value of turn will be con-
stant(since no statement before line 12 assigns value
to turn). Such hypothetical scenario cannot hold up
because the first contending process in the cyclic
ordering (turn, turn+1,...,n-1,0, 1, ..., turn-1) will
meet no resistance in enter critical section.

From the argument, we are confirmed deadlock
freedom. But there is no explicit indication as to
what fragments that are responsible for holding up



the property. Furthermore, the last sentence in its
argument requires a trace of the repeat-until loop be-
fore one can conclude that indeed the first contend-
ing process will meet no resistance. In fact, to really
understand that sentence, we need to know the pos-
sibility of simultaneously entering line 8, and the fact
that fragment A can prevent further mutual blocking
in the second run of the repeat-until loop. For we
still need to explain why the first contending process
will pass line 10 with no other process in_cs.. So, in
the end, the same sequence(S4) needs to be consulted
before an understanding. is achieved.

To enhance the original proof of EM, we continue
the assertional proof of deadlock freedom as follows.
Note that we still need behavioral arguments occa-
sionally, and we benefit from the result of scenario
reasoning.

/* EM algorithm with auxiliary variables */
/* for Owicki~Gries’ style of reasoning */
/* Initially, run = 0. . */
/* ) */
0 var j: O..n;
1 repeat
2 repeat
A: 3 flag[i] := want_in;
Aok run{i] := run(i] + 1; /*auxiliary action*/
A: 4 j i= turn; ’
A: 5 while j <> i
A:'6 ~ do if flaglj]l <> idle then j := turn
A 7 : else j := ( j +1 ) mod n;
B: 8 ‘flag[i] := in_cs;
B: 9 joi= 0
B: 10  while (j < n) and (j = i or flag[jl <> in_cs)
B: 11 do j :=3j + 1;

12 until (j >= n) and (turn = i or flaglturn] = idle);

*x runfi] := 0;
13 turn := i;
14 {critical section}
15 j := (turn + 1) mod n;
16 while (flaglj]l = idle) do (j := j + 1) mod n;
17 turn := j;
. 18 flagl[i] := idle;
19 { remainder section }
20 until false;

/*auxiliary action*/

The following invariant holds for process P; in frag-
ment B.

Vk#4i = (i—turn)mod n < (kK —turn)mod n A
runfi] > 2 A
run(k] > 2

= flagk] = want_in_

. To prove it, we need to establish: (1) it holds when
P, steps in fragment B, and (2) as long as process P;
stays in fragment B, no actions in any other process
can change the invariant from truth to falsity. From
scenario reasoning as in S4, we know claim (1) is true.
The only action that modifies flagk] are those at line
8 and line 18. But, according to our scenario reason-
ing, no process can pass the first while loop (which
lies before line 8) except the first contending process.
All those elements flag[k], as the invariant states, will
Temain want_in.
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We then use the invariant to argue that, in the hy-
pothetical deadlock that all the contending processes
are forced to loop indefinitely in the repeat-until loop,
the first contending process will find the invariant true .
at line 10. It will meet no resistance in letting j to
reach n since all other process will be either idle or
want_in. A process which is closer to turn may turn
from idle to want_in. That process begomes the first
contending process, by definition. And the same ar-
gument still holds for it. The first contending process -
will eventually pass the second while loop. It will meet
no resistance in pass line 12 since by definition of first
contending process, either P; is turn or process Piyp,
is ¢dle. In either case, P; will pass line 12. Deadlock
freedom is proved.

6 ' Functionality of turn in- Peterson’s

algorithm.

Like many n-process solutions to the critical section
problem, the first step in understanding Peterson’s
is critical and difficult. Existing decuments([21, 22]
provides reasoning for understanding this algorithm
in particular. Scenario reasoning provides the first
step in understanding all similar algorithms in gen-
eral, however humble the step may be.

The shared variables are follows.

var qli..n]
turn[1l..n~1] :

array of integer; /* initially O
array of integer; /* initially 0

The structure for process P; is follows.

/% */

/% Peterson’s algorithm */

/* */

line 1 vrepeat

line 2 for j :=1 to n-1 do

line 3 begin

line 4 qlil := j;

line 5 turnljl := i; .

line 6 for k := 1 to i~1, i+l to n do

line 7 if ( (q[k]l >= j) and (turn[jl=i) )
go to line 6;

line 8 " end;

line 9 critical section

line 10 q[i] := 0;
line 11 until false;

We speculate from experience that array q is for
at least mutual exclusion since it is set before it is
scanned in the entry protocol. One complication is
that array ¢ is set and scanned in many stages. The
other is that array ¢ is not boolean but integer. It
is not a good choice for removal since the remaining
would be too terse to reason about. We will remove
turn instead to start the scenario reasoning.

- When a process is executing lines 2-8 at iteration
J, we say it is in the jth-stage. A crippled version is
obtained by removing turn and a sequence is given to
show that turn is vital for deadlock freedom.

/% */
/* Crippled Perterson’s algorithm */
/* L
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line 1 repeat

line 2 for j :=1 to n-1 do

line 3 begin

line 4 qlil := j;

line 5

line 6 for k := 1 to i-1, i+l to n do
line 7 if (qlk] >= j) go to line 6;
line 8 end;

line 9 critical section

line 10 qlil := 0;

line 11 until false;

/* 85: /*
/* sequence for crippled Peterson’s algorithm /*
/* /*.
P1 at line 2: j:=1

P2 at line 2: j=1

Pi at line 4: ql1] :=1

P2 at line 4: ql2] :=1

P1 at line 6: check k=2 )

P1 at line 7: ql2] >= j, go.to line 6

P2 at line 6: check k=1

P2 at line 7: ql1] >= j, go to line 6

/* P1 and P2 are in deadlock */

We show that the crippled version satisfies mutual
exclusion. Assume P, and P, are both in critical sec-
tion. Consider the cases when each of them reached
the (n — 1)-th stage respectively. When P, reached
that stage, it found that g[b] < n — 1 was true. We
say P, finished line 4 for that stage (event A) hap-
pened before P, finished line 4 for that stage( event
B). Likewise, when P, reached that stage, it found
that gla] < n — 1 was true. We say P, finished line 4
for that stage (event B) happened before P, finished
line 4 for that stage( event A). A contradiction. |

We show that the crippled version satisfies linear
waiting. Assume a process is eager in executing line
4 at every stage. After line 4 is executed, all other
processes at lowet stages are deterred until the process
executes line 10. The maximum number of processes
at higher stages at that time must be less than n — 1
for which the process must wait. Linear waiting is
proved.

The functionality of turn is for deadlock freedom.

7 Related works

It has been no secret that concurrent algorithms
can be very subtle and error prone. Almost all of
the algorithms have a proof of some sort in the first
place. Simply put, we don’t understand concurrent al-
gorithms well. To foster better understand, function-
ality of important program fragments should be iden-
tified and documented. As our illustration showed,
there exist many neglected opportunities for better
understanding. To the best of our knowledge, no pre-
vious studies in concurrent algorithms both address
this issue and illustrate it so vividly without requir-
ing painstaking formalism. This is not to say that no
- previous studies attempt to explain the purpose. of a
particular component of a program, only that either
the purpose is suggested with only words or one has
to extract relevant assertions mentioned somewhere
in the proof. The closest study to ours is the com-
positional approach proposed in[10, 13, 14]. However,

they emphasize on composing independent programs
into a larger one that satisfies all properties of the con-

- stituents.” It is-by no means a straightforward task.
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Our approach seems to be working on the opposite
direction:- to find out the functionality of program
fragments.

The criteria of functionality for program fragments
is a new formulation. Semantics of program con-
structs, like while loops and assignments, have been
studied intensively([5, 1, 4]. The interpretation is at
the level of precondition and postcondition on pro--
gram state transition. Our formulation is more intu-
itive in that it links the fragment directly with the de-
sired property set. The cause and effect is displayed
at behavioral level, not at the state transition level
which requires higher degree of mathematical preci-
sion.

In scenario reasoning, the refuting sequence is an
evidence to turn down the claims: it will withstand
rigorous examinations of any level since an error is
always an error. Therefore, vitality of a fragment,
which is based solely on refutation, is not subject to
any doubt. Irrelevance of a fragment, however, is sub-
ject to future scrutiny if the original proof of the whole
program is later found doubtful. This is because irrel-
evance is established by the same proof techniques as
used in the original proof. Unfortunately, a proof is
not always a good proof, as well illustrated by Lam-
port [12] regarding his earlier proof{7] for the bakery
algorithm. To summarize, vitality of a fragment to
a property is for sure. Irrelevance of a fragment to
a property is only as good as the original proof, on
which this paper does not aim to improve.

8 Conclusion.

Scenario reasoning is an approach for a posteriori
understanding of concurrent programs at the compo-
nent level. It is not meant to replace proofs for un-
derstanding programs, but to provide the first step in
hope that programmers would gain more and more in-
sight to the original design, starting from identifying
functionality of fragments. In contrast, a proof re-
quires a critical global observation that is too difficult
for most programmers. The proofs of the presented
examples have been widely studied but are’ still re-
garded as difficult for most. When scenario reasoning
was used to explain the algorithms to programmers
in a classroom setting, the enthusiasm enticed can be
felt. Its preliminary success is mostly due to the intu-
itive nature of the question-and-answer endeavor. We
understand at least the cause and effect with fragment .
removal/installation being the cause, and the change
of program behavior being the effect.
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