Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

A Tool for Layered Analysing and Debugging of Distributed
Programs '

Wanlei Zhou

School of Computing and Mathematics
Deakin University
Geelong, VIC 3217, Australia
wanlei@deakin.edu.au

Abstract

Analysing and debugging distributed programs is
much more difficult than analysing and debugging se-
quential programs. One of the reasons is the commu-
nication among programs (processes) which may hap-
pen: concurrently and nondeterministically. To be able
to analyse such communication events is therefore
an essential task for any distributed program anal-
yser/debugger. This paper describes the design and
implementation of a tool for layered analysing and de-
bugging of distributed programs. In the highest level,
the tool displays the communication relationships be-
tween programs (eg, server and client programs). In
the second level, the communication between processes
is displayed. In the third level, the communication be-
tween events is displayed. The forth level is the lowest
level: it uses a text editor to show the relevant state-
ments that carry out the communication. The tool
has been regularly used in analysing and debugging
student assignments on distributed programming for
three years.

1 Introduction

A distributed program can be viewed as a group
of program parts (PPs, each PP can be a process or
even a program. An example is the client and server
program parts of a distributed program) that work
together 'on a single task, and the concurrency and
communication among these parts are the main rea-
sons that make debugging of distributed programs dif-
ficult [4, 14]. To be able to analyse such concurrent
and communicatiing events is therefore an essential
task for any distributed program debugger/analyser.

This paper describes the design and implemen-
tation of a tool for layered analysing and debug-
ging of distributed programs. The tool has been im-
plemented on networks consisting of DEC/HP/SUN
workstations and it has been regularly used in teach-
ing of courses related to distributed systems since
1993 (mainly used in analysing and debugging stu-
dent assignments on distributed programming). The
tool helps a user to analyse and debug a distributed
program in a top-down fashion. In the top level,

371

the tool displays the communication relationships be-
tween program parts (eg, server and client prograrns).
The top level gives a user the overall function of all
program parts involved in the distributed computing.
In the second level, the communication between pro-
cesses is displayed. Because a program part can split
into several processes and these processes can run con-
currently with processes from other program parts,
the second level therefore gives a user a clear pic-
ture of co-operations among all (or a selected group
of) processes. In the third level, events related to
some particular communication and a partial order-
ing among these events are displayed. The forth level
is the lowest level: it displays the relevant statements
that carry. out some particular communication. The
first three levels help the localisation of bugs and the
forth level helps the analysis/fixing of bugs.

The reminder of this paper is organised as fol-
lows: Section 2 presents an example to illustrate
our layered analysing and debugging of distributed
programs. Section 3 describes the design issues of
the tool. Section 4 describes issues related to the
tool’s implementation. Section 5 presents some re-
lated work, Finally, Section 6 summaries the paper.

2 An Example

We use a simple debugging example to illustrate
the layered analysing and debugging process. When
teaching “Distributed Computing” course, a student
asked me to find out why his exercise program did
not work properly. The program was a “Send-and-
forward” system. The server (named as Server) acted
like a message storage. A user used the client pro-
gram (named as Client).to send a message (with a
receiver’s name) to the server. The server kept the
message until the addressed receiver (also a client pro-
gram) asked the server to forward messages.
~We started the server part of the student program
first. Then a client part was used to send a message
to the server. The normal message exchange should
be as follows:

1. The client sends a request to the server.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

. The server processes the request and sends an
acknowledgement back to the client.

. Upon receiving the acknowledgemient, the client
sends the message to the server.

The server sends an acknowledgement back to the
client after receiving the message.

When the student’s program was executed, both
the server and client program parts were hung up. It
was difficult to guess what was happening inside these
two program parts. We then used our tool to record
the events of the program and obtained the top-level
diagram of Figure 1.

ILevelSel | lDirectSel} lNameSeIJ l Exit i

Client Server

Figure 1: Debugging: The Level 1 Picture

From this diagram we know that the client sent the
request, the server acknowledged and then the client
sent the message. We further used the second level
to locate the processes that were responsible for the
failed communication. Figure 2 is the process level
diagram.

Three processes were involved. For better under-
standing of the communication we asked the tool to
display event tables for all these three processes. Ta-
ble 1, Table 2 and Table 3 are these tables (where
E represents Event Symbol). The second column of
these tables lists the event symbols. The correspon-
dence of these event symbols and their detailed event
names (see Section 3.1) is given in Table 4.

From the event tables we knew that process 6917
(client process) sent a request to the server process
6911. Then process 6911 forked a child process (6922)
to manage the communication with the client. Pro-
cess 6922 then acknowledged to process 6917. :After
that process 6917 sent the message to process 6922.
Tt seemed that process 6911 worked normal. What we
needed to know more was the communication details
between process 6917 and process 6922. So the third
level diagram of Figure 3 was used to show the event
relations of these two processes.

372

[LovelSel | [DirectSel | [Namesel] | Exit
6917 6922 69211
_—

Figure 2: Debugging: The Level 2 Picture

No. | E | Meaning Pred Suce

1 ay | Server begins - -

2 ay | Create a socket - -

3 a3 | Bind to a name - -

4 a4 | Receive request 69174 | -

5 as | Fork a child process | - 6922.1
6 ag | Forced exit - -

Table 1: Event Table of Process 6911

From the level 3 diagram, we knew that the possi-
ble error locations were:

1. The program section between events 6 and 7 of
process 6922 (the final acknowledgement was not
sent properly).

The program section between events 6 and 7 of
process 6917 (the acknowledgement was not re-
ceived properly).

We analysed the program section of possibility 1
using a text editor and found out that inside the mes-
sage storing function, some value of the client socket
address was mistakenly re-assigned. That caused the
sendto() call of the server child process to send the
acknowledgement to an unknown address. After fixed
the inistake, the program worked correctly.

No. | E | Meaning Pred_ | Succ

1 by | Client begins - - :
2 ‘be | Create a socket | - -

3 b3 | Bind to a name | - -

4 by | Send request - 6911.4
5 bs | Receive ACK 6922.5 | -

6 be | Send MSG - 6922.6
7 by | Forced exit - -

Table 2: Event Table of Process 6917

No. | E | Meaning . Pred Succ

1 c1 | Child process begins | 6911.5 | -

2 ¢z | Close parent’s socket | - -

3 cs | Create a socket - -

4 cs | Bind to a name - -

5 ¢s | Send ACK - 6917.5
6 cs | Receive MSG 6917.6 | -

7 ¢7 | Forced exit - -

Table 3: Event Table of Process 6922

Event symbol | Event name _

ay 5£712182b3¢1.00.0282¢c22615000000
az 51712182b3c7.01.0282c22615000000
as 5£712182b3d3.02.0282¢22615000000
a4 5f712182b3e1.03.0282¢22615000000
as 5f712182f1f1.04.0282c22615000000
as 5£7127a223c5.0¢.0282¢22615000000
by 5£7126079344.00.0282c2e0d2000000
bo 5£712607a109.01.0282c2e042000000
b3 5{712607210d.02.0282¢2e0d42000000
by 5£7126072114.03.0282c2¢0d 2000000
bs 5£71260d£164.04.0282c2e0d42000000
be 571260d£13a.05.0282c¢2¢0d2000000
br 571290a9843.06.0282¢2¢042000000
c 5f712188af41.05.0282c22615000000
Ca 51712188b0a7.06.0282¢22615000000
C3 5£712188b322.07.0282¢22615000000
Cq “5f712188b346.08.0282c22615000000
Cs 5f712188b395.09.0282¢22615000000
Cs 5f71218ef563.0a.0282¢22615000000
cr 5f71272201d2.0b.0282¢22615000000

Table 4: Event symbols and event names

3 Design Issues
3.1 Definitions

Before describing the architecture of the tool, we
present several definitions which are important in our
discussion.

In order to monitor events we have to assign each
event a name. Definition 1 is the method which can
uniquely name any event.

Definition 1. The name of an event (event
name) is a “unique ID” (UID), defined as a
string of characters and an optional user at-
tached affix. The format is t.r.h[.affix]
where t is the timestamp, which is stamped
by the local host; r is a sequential number; h
is the host ID; and affix is an optional affix
name (a character string) which is defined
by a user.

If en is an event name, we use en.t to denote the
timestamp, en.r to denote the sequential number, en.h
to denote the host, and en.a to denote the affix of
event name en, respectively. En.hcan be used to iden-
tify on which host the event happened, and en.t de-
notes the occurrence time (relative to the local host)

373

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

LevelSel | IDirectSeI | |NameSel| [Exit

6917 6922
1
2
3
4
1
2
3
4
5. 5
=
7 7

Figure 3: Debugging: The Level 3 Picture

of the event. In the case that n events happened si-
multaneously at the same host, en.r is used to dif-
ferentiate these n events. It is not difficult to insure
that no n (n is a hexadecimal number and n < 255)
adjacent sequential numbers generated are the same.
For example, we can have a sequential number gener-
ator (which is accessed sequentially by the event name
generator) that generates numbers from 0 to 255 each
time it is accessed. If the number reaches 255, it goes
back to 0 and the circle begins again. So all events
of a distributed program can be uniquely identified
by using their event names if the maximum number
of concurrent events in any host is n < 255. The as-
signment and usage of the affix will be described in
Section 4.4.

Definition 2. A preliminary event e is de-
fined as a pair (f, m). Where f is called a
factand m a message. A fact is a thing which
happens during a program’s execution. No-
tice that not all facts of preliminary events
are interesting to a programmer, but they
may happen during the program’s execution.
A fact can be, for example, the creation and
destruction of a process, the issuing of a mes-
sage sending call, or an the issuing of a mes-
sage receiving call, and so on. A message is
the information attached to the fact, such as

the parameter values of a message sending
call.

The basic relation between preliminary events is
the happened before relation introduced by Lamport
[7). This relation can be easily extended to cover
process creation and termination as well as message-
passing events [5]. Definition 3 defines the relation-
ship between preliminary events in our system.

Definition 3. Let E = {e;} be the set
of all events of a distributed program. If

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

event e; causes the occurrence of event ey,
or ez immediately follows the occurrence of
e within the same process, we say that e;
is a predecessor of ez, and ey a successor of
e1. Especially, if e; and ey are in different
processes, we call e; a remote predecessor of
ey and ez a remote successor of e;. This is
denoted as e; < ey. If e; is a predecessor of
ez and ey is a predecessor of eg, then we say
e is also a predecessor of e3.

For example, if e; is the event “issuing a request
sending call” of a client program, and es is the event
“receiving a remote request” of the server program.
If e2 happens because of e;’s happening, then e; is
a predecessor (remote predecessor) of ez and e; is a
successor (remote successor) of e;. If eg is the event
“receiving acknowledgement” of the same client and
happens immediately after e;, then e; is a predecessor
of e3 and ey is a remote predecessor of e3. Also, e3 is
a successor of e; and a remote successor of es. It is
easy to know that (E, <) is a partially ordered set.

Sometimes a user may be interested in the combi-
nation of several events. For example, if a server has
two remote procedures that will access an object, it is
interesting to see if these two procedures are all called
during the execution, or to know the execution order
of them. We give the following definitions.

Definition 4. Let e;, e; : F and e¢; =
(f1,m1), e2 = (f2,m2). By fi * f we mean
that the happening of e follows the happen-
ing of e;, that is, e; < ep holds. By fi+f2 we
mean that we cannot tell which of e; and ey
happened first, that is, there is no predeces-
sor relation exists between these two events.
We can view “*” as sequential and “+” as
concurrent. -By fi; N fo we mean that both
e; and eg occur. By f; U fo we mean that
either or both e; and ey occur (if e; does not
occur, we denote that as —e;). So we have

f1 * f2 if €1 S €2
hNnfa=q foxfi ifex<e
f1+ f2 otherwise

and fiUfy = fiNfs or fi or fo. Similarly, by
myxmsy We mean that message m; is followed
by mg and by m; + mgs we mean that two
messages are independent each other.

Definition 5. If e; = (fi,m;) and ey =
(f2,m2) are events, then

e Neg = (f N f2,ma),
e1Uey = (iU f2,ms),
e1*xey = (f1* fa,my xmy),
er+ex = (fr + f2,m1 + my)

374

Controler

Event Command ‘
Database | | Interpreter
T
| .
Hosti
User

Figure 4: The Monitor Structure

are also events. Where

my *xmy if €1 S €2
Mg = me * My ifeggel
my + my otherwise

and

me ife;Neg
mp = my if €1 and —€2

me if eg and —e;

We call these new events combined events. Com-
bined events are usually defined by programmers.

The priority of the above operators is, from high to
low, N, U, %, +. So the expression e; xesNezUes+e5
is a.ctually (61 *((e2MNe3)Ueq)) +e5. It can be proved
that if E is the set of all (preliminary and combmed)
events of a distributed program, then (¥, <) is still a
partial order set.

3.2 The Structure

The tool consists of a controller and a group of
managing servers. The controller has two main parts:
a user interface (including a command interpreter and
I/O) and a filter, while a managing server (MS) con-
sists of a server and an event database. Each host
which has program parts being analysed/debugged
on it has a managing server. The controller can be
invoked at any host. By communicating with each
related MS, the controller can present the monitored
results to the user. Of course, several controllers can
be invoked by several users simultaneously. Figure 4
illustrates the structure of the tool.

Three steps are taken during analysing and debug-
ging. At the monitoring step, all events that hap-
pened on one host are monitored by the local MS and

recorded into the local event database. All prelim-
inary events including communication-oriented calls,
process forks and exits in both client and server pro-
gram parts are monitored, and a user can also define
some combined events through the Event Definition
File (EDF) and let the monitor to record them. Af-
ter all events are recorded, the programmer uses the
ordering step to order events. At that time, each MS
exchanges remote predecessor / successor information
through the controller and has all remote relationship
ordered. Then, local predecessor / successor relation-
ship is established by each MS over its local event
database respectively. The last step is debugging. By
combining the results on all related event databases,
the filter can present the execution trace of the dis-
tributed program in several levels.

4 Implementation Issues
4.1 Debugging Library

No doubt an effective distributed debugger has to
be deeply embedded into the operating system or even
has the help of dedicated hardware components for
achieving sufficient speed and transparency. Because
of the difficulty of modifying operating systems and
obtaining hardware support, most debugger and mon-
itor researchers use software techniques as a substi-
tute. This makes the implementation much easier,
but the performance is not very good, especially for
real time systems (may be even completely not suit-
able for real time programs). At this stage, we pro-
vided a debugging library which has to be linked with
a program being debugged. This library provides re-
placements for the following BSD4.3 UNIX operating
system calls:

fork() : create a child process
signal() : signal a process

ki11() : signal a process

socket () : create a socket

bind() : bind a name to a socket
listen() : listen for a conmnection
accept() : accept a connection request
connect() : initiate a connect
close() : close a socket

write() : send out a message
read() : receive a message
send() : send out a message
recv() : receive a message
sendto() : send out a message
recvifrom() : receive a message
sendmsg() : send out a message
recvmsg() : receive a message

These replacements first perform some work re-
quired by the tool, such as reporting to the local MS of
the event’s happening, and then do the normal work
of the original calls. After the programmer thinks
the program has been debugged, the program can be
re-linked with ordinary libraries.

- 375

Joint Conf.erence of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

A utility program is used to change all the above
system calls of a program into their corresponding de-
bugging library calls (the replacements). This is done
by converting the name of a call into a string of cap-
ital letters. For example, a fork() call is converted
into a FORK() call, which is a debugging library call.
After the pre-processing, the program can be com-
piled normally and linked with the debugging library.
Another utility program is used to change all the de-
bugging library calls back to normal system calls after
the debugging.

4.2 Managing Server

On each host, there is a managing server (MS)
which consists of a server and an event database. Each
entry of the event database stores an event and in-
cludes the following fields:

name event name. A UID

pid process ID

pgm.name program part name

p-name predecessor event names. A UID array
- S_name successor event names. A UID array
fact.info- fact information

message message part of the event

The fact information of an event is a character
string that provides readable information of the fact.
For preliminary events, if the user does not provide
fact information, such information will be assigned
by the debugging library. For example, they may be
“begin sendto() call” or “fork new process”, etc. Oth-
erwise the user provided character string is used. For
combined events, they are assigned by programmers.
The message part of an event is stored as a string of
bytes and type information. The filter uses the type
information to illustrate the byte string and displays
the result to the user through the command inter-
preter.

An MS has the following functions:

1. Database management. Responsible for the
management of the local event database. The
database is protected by the MS and any access
of it must go through the MS.

2. Event logging. When an event occurs, it is logged
by the local MS into the event database. Because
the events may happen very fast (or even con-
currently), while the logging of an event requires
some amount of time, we use an event queue to
queue up all events waiting to be inserted into
the database. All events are queued into a event
queue after their happening, and the local MS
looks at the queue and puts the events into the
event database.

3. Commuricating with the controller. All commu-

* nications among MSs are conducted by the con-
troller. A lot of commands are issued by the con-
troller and performed by MSs. This is the only
Wway a user can access the event database.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems.

Storing all events of a distributed program execu-
tion may cost too much memory, especially for large
programs. Facilities are provided to allow a user to
select and store events that may be interesting. Also
a user can let the monitor store only the fact parts of
some events and whole information of other events.
4.3 Controller :

The controller consists of a command interpreter
and a filter. The command interpreter accepts and
analyses commands from a user and controls the filter
to perform the required functions.

The filter has three main functions. Firstly, it
maintains the communication between the command
interpreter and MSs. After the command interpreter
accepted and interpreted a command, it is passed
to the filter to have the appropriate MSs to execute
the command. Then the results of the execution are
interpreted and passed to the command interpreter
through the filter. secondly, the filter maintains the
communication between the MSs. In that case the
programming of an MS is much simpler. The last
function of the filter is to interpret the message part

of an event. When the user requests to view the mes- V

sage part during debugging step, the filter will find the
appropriate message and use the type information to
illustrate the byte string, and then pass the result to
the command interpreter.

4.4 Event Definition File

'All preliminary events are automatically logged by
the tool if the program being analysed/debugged is
linked with the debugging library. Sometimes a user
may find it is more convenient to define some new

" events during debugging. The Buvent definition file
(EDF) is used for that purpose. The following is
a very simple EDF which defines a combined event
BothCreated as the intersection of two preliminary
events CreateSockl and CreateSock2. That is, if
both preliminary events happened, then the combined
event also happened. ‘ '

BEGIN
‘preliminary Event:
CreatedSockl, CreatedSock2;

Combined Event:

(BothCreated, ”Both sockets are created”);

BothCreated = CreatedSockl N CreatedSock2;

END ' ‘

Several steps are needed to use an EDF. At first,
the user inserts into the program parts being anal-
ysed/debugged an affiz definition function before each
preliminary event which is to be used in the EDF.
The format of the affix definition function (defined
in the debugging library) is affix_define(affix),
where affix can be any character string. This string
will be appended to the preliminary event name when
the event happens. Secondly, the combined events
are built by using these affix names, and the EDF
is read and evaluated by the controller. When any
of these affixed preliminary events happens, they are
sent to the controller by the local MSs (of course, the

376

local MSs also record them as usual). The controller
then evaluates the combined events expressions and
records them into the event database if any of them
is true. The predecessors of a combined event are all
the events (preliminary and / or combined events) in
the right hand side of the event expression.
4.5 Ordering Events

As we have known, the time system of each host
in an LAN is not synchronised, so we can not use
the timestamp in definition 1 to order all events. But
the timestamp can certainly be used to order events
happened in one process because they always remain
within the same host. That is, events within each
process of a distributed program can be fully ordered.
But it is impossible to fully order events of different
processes. As mentioned earlier, there do exist some
partial ordering relationship among these communi-
cation and process fork events. The following steps
are used to establish the partial ordering among all
events: :

1. Communication related predecessors. When a
communication related event happens. (for exam-
ple, the issuing of a sendto() or recvirom()
call), it will cause the happening of an event
which belongs to another process (and also possi-
bly, on another host). In that case, the first event
is changed (by the debugging library) to carry not
only the original information, but also the event’s
name. On the other hand, the second event is
also changed (by the debugging library) to not
only receive the original information, but also the
first event’s name, and this name is stored by the
local MS as the predecessor of the second event.

2. Process fork related predecessors. When.a pro-
cess fork event happens, it will cause a new pro-
cess to be setup and executed. This event is
changed (by the debugging library) to carry the
name of the event, and the first event of the new
process will use the carried name as its predeces-
sor event.

3. Combined event related predecessors. When an
event with an affix definition happens, it will
cause the controller to evaluate the related com-
bined event expressions. ' So, the name of the

event is sent to the controller and stored as one of

the predecessors of the related combined events.

4. Form all remote successors. In (1), (2), and (3),
all remote predecessors will be established after
the termination (normal or forced) of the pro-
grams being debugged. The remote successors
are built by each involved MS and the controller
at this moment. Each MS checks all events in its
local database. If its event e has a remote prede-
cessor named f, then the MS will be responsible
for storing e as f’s successor. It is easy if e and f
are in the same database (for example, the fork

events). Otherwise f.h is used to locate the MS
it belongs to and f’s successor will be stored by

the communication of these two MSs through the
filter.

. Form all other successors and predecessors. All
the events within a process are ordered by their
timestamps and their predecessors / successors
are stored by using this order. In one process,
the predecessor of event e is event d if d.t is im-
mediately less than e.t. And the successor of e
is event f if f.t is immediately greater than e.z.
This ordering is performed by each MS concur-
rently. '

By using the above method, all communication
events can be partially ordered by predecessor / suc-
cessor relations. For the events within a single pro-
cess, we can fully order them by their timestamps.
Combining these two relations together, we can have
some partial ordering over all events of a distributed
program.

4.6 Layered Debugging

After the monitoring and ordering steps, the user
goes into the third step, the debugging. As we men-
tioned before, the first thing of debugging is to locate
the bugs. A top-down view of the program is a suit-
able way of localising bugs.

At the top level (program level), communication
between program parts is displayed. A distributed
program may have many program parts. The tool
provides a facility to let the user select program parts
for display. Because in each event entry, there is a

field pgm_name specifies the name of the program part

(Section 4.2), we use this information and the event
ordering to draw the communication diagram between
program parts. At this level, no event detail is dis-
played. The user can have a nice top-view of the pro-
grain communication.

From the top level, the user may have some idea
that which part of the program probably has a bug.
So some relevant processes can be selected and the
second level (process level) will display the commu-
nication between these selected processes. If nothing
can be found at the top level, the user can ask the tool
to display all the processes in the second level. We
also use a field (pid, see Section 4.2) in every event
entry and the event ordering to draw the diagram.

Usually from the second level, some processes can
be selected for further investigation. The third level
(detailed level) displays the events and communica-
tions between selected processes (of course, it can also
display all the events relations of the program). In
this level, the event numbers are used and the user
can consult these numbers with the event tables (see
below).

From the third level, the bug locations will be
found and the relevant program segments will be dis-
played using a text editor in the forth level (text level).

377

Joint Conference of 1996 international Computer.Symposium
December 19~21; Kaohsiung, Taiwan, R.0.C.

The user can analyse the program segment and fix the
bug here.

During the displays, the user can view event de-
tails in two levels. At the fable level, the events of
a selected process is displayed in a table form (event
table). Then the user can select an event within an
event table and ask the tool to display its details (de-
tail level).

5 Related Work

A lot. of techniques have been derived for program-
mers to improve the debugging process. There are
two major approaches: debugging with repeated exe-
cution of the program (or cyclic debugging) and de-
bugging with trace of program execution [9]- In cyclic
debugging, a user executes the program in a con-
trolled manner until an error is detected. The pro-
gram can be re-executed to produce the same exe-
cution behaviour. This is a very convenient way for
small programs or programs that have little commu-
nication among their concurrent parts. - But for a
larger distributed program, executing the entire com-
putation several times while repeatedly setting break-
points may be very costly. Also, sometimes the re-
execution of a distributed program may not result in
the same behaviour because of the nondeterministic
characteristics. In debugging with trace, no repro-
ducibly behaviour is needed. The generated trace is
no longer nondeterministic and can be analysed in
any. controlled ways that a programmer prefers. But
the generating of the trace may be very costly in time
and space, and also the events in the trace are still not
fully ordered. Some techniques are needed to analyse
the program trace. In this paper, the latter method
is used. - ‘

Event-Based distributed debugging has been
widely discussed. Bates and Wileden [2] used a -
method called behavioural abstraction to hierarchi-
cally define higher level events in terms of sequences of
primitive events (such as process creation, page fault,
and message exchanges). In his latter work [1], Bates
described a system (EBBA) for debugging on hetero-
geneous distributed systems based on his behaviour
abstraction. ‘

In a distributed system, sometimes the re-
execution of a long program is very costly. Replayisa
technique that allows a user to examine the course of
an erroneous execution without re-executing the pro-
gram [12]. LeBlanc and Robbins [8] provided some
degree of replay in their debugger. After the collec-
tion of all events, the events are displayed sequen-
tially. Both single step and continuous display are
supported.

Debugging a distributed program can be divided
into two phases. At the first phase, called localisation,
we need to locate which part of the program has a bug.
Then at the second phase, called analysis/fizing, we
analyse the code that may cause the bug and fix it.
Unfortunately almost all existing distributed debug-

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

gers only provide communication events occurred in
lower level. They assist in fixing a bug after having
obtained a rough idea about the bug’s localisation.
This only provides information for the second debug-
ging phase. To dig out the possible bug locations
using the existing debuggers is a difficult job as there
are usually many events involved.

A project of high-level debugger for parallel pro-
grams is described by Caerts et al [3]. They use sev-
eral abstraction levels (from the coarse-grain interact-
ing processes or threads to textual representation of
the program) in their debugger. A top-down method
following the abstraction levels is used to locate a pos-
sible bug. But the debugger is limited to message-
passing on shared memory systems.

There have been many efforts in visualising dis-
tributed and parallel program execution to facilitate
the understanding of these programs [13] [11]. How-
ever, most of these tools are too complex to use and
therefore are not useful for novices. These existing
tools usually do not allow easy study and experimen-
tation with programs. Some existing tools provide
graphical pictures of algorithms or data structures in
action [10] [6], but do not display the structures and
source code of programs. -

6 Summary

The design and a preliminary implementation of
a tool for analysing and debugging distributed pro-
grams is described in this paper. The tool has several
managing servers which record the events of program
parts of their hosts into their local event databases.
By using an ordering scheme, all events of a dis-
‘tributed program can be partially ordered, and the
event graphs in different levels and the relevant event
tables can be built. These event graphs and tables are

then used to locate the possible bug positionsin a top- -

down manner. Facilities are also provided to define
combined events and to view the details of the events.
The tool has been regularly used in analysing and de-
bugging student assignments on distributed program-
ming since 1993..

References
[1] P. Bates. Debugging heterogeneous distributed
systems using event-based models of behaviour.
ACM Transactions on Computer Systems, 13(1),
February 1995.

[2] P. Bates and J. Wileden. An approach
to high level debugging of distributed sys-
tems. SIGPLAN Notices, Proceedings of SIG-
SOFT/SIGPLAN Symposium on High Level De-
bugging, 18(8), August 1983.

[3] C. Caerts, R. Lauwereins, and J. A. Peperstraete.
A powerful high-level debugger for parallel pro-
grams. In Lecture Notes in Computer Science,
volume 591, pages 54-64. Springer-Verlag, Ger-
many, 1992,

378

[4] W. H. Cheung, J. P. Black, and E. Manning. A
framework for distributed debugging. IEEF Soft-
ware, pages 106-115, January 1990.

[5] C. Fidge. Logical time in distributed computing
systems. IEEE Computer, 24(8):28—33, August
1991.

[6] M. T. Heath, A. D. Malony, and D. T. Rover.
- The visual display of parallel performarice data.
Computer, 28(11):21-28, November 1995.

[7] L. Lamport. Time, clock, and the ordering of
events in a distributed system. Communications

of the ACM, 21(7):558-565, 1978.

[8] R. LeBlanc and A. Robbins. Event-driven mon-
itor of distributed programs. In IEEE 5th
Distributed Computing Systems, Colorado, May
1985.)

[9] B. P. Miller and J. Choi. A mechanism for ef-
ficient debugging of parallel programs. In Pro-
ceedings of the SIGPLAN ’88 Conference on Pro-
gramming Language Design and Implementation,
Atlanta, Georgia, June 1988.

[10] T. L. Naps. An object-oriented approach to al-
gorithm visulisation — easy, extensible and dy-
namic. SIGCSE Bulletin, 26(1):46-50, March
1994.

[11] R. Samtaney, D. Silver, N. Zabusky, and J. Cao.
Visulisation features and tracking their evolu-
tion. Computer, 27(7):20-27, July 1994.

[12] R. S. Side and G. C. Shoja. A debugger for dis-
tributed programs. Software — Practice and Ez-
perience, 24(5), May 1994..

[13] J. P. Singh, A. Gupta, and M. Levoy. Parallel vi-
sulisation algorithms: Performance and architec-
tural implications. Computer, 27(7):45-55, July
1994.

[14] W. Zhou. Prototyping and debugging remote
procedure call programs. In Proceedings of the
Australian Software Engineering Conference ’90,
pages 333-338, Sydnev, Australia, May 1990.

