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Abstract

The modulated wavelet transform has been developed
which provides the orientation selectivity to improve the
segmentation performance of textured images. The
potential is shown by experimental results.
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1. Introduction

The local changes of signals can be characterized by the
short time Fourier transform where the joint
time/frequency resolution depends on the window
utilized. Gaussian window has the optimum joint
resolution property such that a set of Gabor filters has
been developed for texture analysis and segmentation
[1]-[3]. However, the tuning of the parameters requires a
prior analysis and experimental decision. Unser and
Eden use a series of Gaussian smooth windows with a
half octave scale progression to estimate features in
multiple resolutions for segmenting textures [4].
Bouman and Liu propose a resolution progressive
scheme by segmenting the textured image starting at the
coarsest resolution to guide the successive segmentation
until the finest resolution is reached [5). Krishnamachari
and Chellappa develop a multiresolution Gauss Markov
random  field (GMRF) modeling for texture
segmentation [6) for reducing the computational load
caused by single resolution MRF modeling [7],(8].
Recently, wavelet theory has been developed enabling an
efficient decomposition of signals to provide both
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time/space and frequency localization [9]-[11]. The
(standard) wavelet transform focuses on the successive
decomposition in the low frequency region, however, the
dominant spatial frequencies of textures are usually in
the middle frequency region. A tree structured wavelet
transform  has been developed to extend the
decomposition into the high frequency region [12]. This
approach appears to be similar to the wavelet packet
method which has been applied to texture classification
[13]. Both approaches are limited in the orientation
selectivity since the textures of +6and—6& orientations
can not be discriminated. Hsin and Li develop a
segmentation method featuring orientation selectivity, in
a multiresolution manner, based on a set of numerically
acceptable 2D wavelets constructed by modulating a
valid 2D scaling function in different orientations [14].
In this paper, the exact decomposition and reconstruction
of signals and images using modulated wavelets is
developed and applied to detecting the emergent
frequency of signals and segmenting textured images.

2. 1D Wavelet Transform

There is a wavelet ,  (.x), whose scaled and translated
versions form a basis for the set of finite energy signals,
L* (R) .The detail space W, defined by (v, (O} ez
wherey ()= 271w (27 x=p)is the scaled version

of w(x) at resolution 2/ translated to position 7,

partitions * ( £) in the sense of /2 (R)y= &~

J=—co

N
Wj,
where @ fis the direct sum and over-line is the closure

operator. The subset V' defined by © 4 Wy is called

the approximation space of /°(R) at resolution?” .
One can find a scaling function ¢(x) such that

{1 (4)) ez forms a basis for 1, (¢;, (x) =271
$(2 x—n)). The sequence of {V,} ., provides a

multiresolution analysis (MRA) of /2 (R) in the sense
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of V,. V;(netstructure), and | JV, = Z(R)[9). Tt
-

is noted that, in our definition, a large scale index /
means a coarse resolution. For a signal f(x)eV,

decomposed by
flo= 25, (17 ‘>+ZZD (MWr()

t=J a
where S},(n) and D,(n) are the scaling coefficient and

()

2f

wavelet coefficient at resolution position #n,
respectively and / is the coarsest scale in decomposition.
The scaling coefficients and wavelet coefficients at
coarse resolution can be computed by applying the
standard wavelet transform on the scaling coetfluents at

the next finer resolution as follows,

S, (n) ZS; V(K2R —k)
ZS 2 (k)g(Zn=k)

D, (n)

where h(—n) = h (n) =< ¢(x),¢_,, (x) >and g(-n) = g(n)
=<y (x), ¢, (x})>. The

" transform is then given by
S ) =ZS“ (k)ﬁ(n—ll:) +2D, (k)g(n—2k)
k k

standard inverse wavelet

3

which means that the scaling coefficients at fine
resolution can be exactly reconstructed from the scaling
coefficients and wavelet coefficients at the next coarser
resolution.

3.1 1D Modulated Wavelet Transform

Let us consider a signal of the form f(,t)eju'“ where
f(x)eV, is a smooth signal modulated by U and the
subspace V,, corresponds to a valid scaling function
#(x) . By the decomposition of f(x) (equation (1)), it is
shown that

el =3 (S, e Vg (el U

n

1
+ZE(D&J(”)GIZ U")Wf,,(‘\‘)ejz U2 x—n)

f=] n

“4)

where ¢, (x) eIT U@ 1 g Wi (X) ATV e oy
be considered to be the modulated scaling function and
the modulated wavelet by frequency 2°U at resolution
2", respectively (S,(rz)ejz‘u") and (D, (n) e/ Uy are
the associated scaling coefficients and wavelet
coefficients with respective to the decomposition of the

signal  f(x)e/™. Based on the standard wavelet
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transform of  f(x) S, (n)ejzcun )

and (D, (n)e

(equation (2)),

2 Un ) can be computed directly from the
coefficients (S, (n)ejz'_iu") as follows,
S,(n)e'gz"u” =

Z‘(Sg_l(k)e”'_"”‘ Yh(2n —k)el? U=k
k

& &)
D;'(Il)e!' Un =
Z(Sr_[ (k)el? Uk g (2n—kyel? U=k
k
which is called the modulated wavelet transform.

Similarly, based on equation (3), the modulated inverse
wavelet transform is given by

o e N
S;»_|(R)ef2 Un =ES,'(I\’)€J: Lkh(’l—?k)ejz Uln=26) .
k

ED £ (-k)ejzr Uké'(n —Zk)ejl"‘u<n-2k) ©
k

3.2 Emergent Frequency Detection of 1D Signals

In practice, only the real part s(x) of the signal of the

form f (x)er‘v is available. Under the consideration that

f(x) is smooth whose bandwidth is less than the

JUv

modulation U, the complex signal f(x)e can be

obtained from the real part s(x) through the use of the

hilbert transform ( f (,\:)eﬂ"” =s(x)+ js(x) where s(x)

is the hilbert transform of s(x)). f(x)e’%™ is called the
analytic form of s(x) and is to be used for analyzing the
frequency contents of s(x) by the modulated wavelet

transform. Figure 1(a) shows a 1D test signal of 200
points composed of two emergent frequencies, U =1 in
the first half and U =2 in the last half. The amplitude
response is shown in Figure 1(b). By taking the
modulated wavelet transform of its analytic form with
several modulation frequencies ranging from 0.1 to 7
in two successive levels shown in Figures 1(¢) and 1(d),
respectively where the horizontal axis is the time axis,
the vertical axis is the modulation frequency axis, the
dark means small amplitude value and the bright means
large amplitude value. It is found that, as one can expect,
the amplitudes of the associated wavelet coefficients of
the modulated wavelet transform reach to the minimum
value while the modulation frequency equals to the
emergent frequency of the signal. Figure l(e) shows
the estimate of the emergent frequency based on the

by  U(m)
[min {ID,(rz)efzu"|+\D7(rz)e’3:U”‘}] where D, (n)e ¥V s
v :

proposed  rule  given’ arg

the wavelet coefficient of the modulated wavelet
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transform at resolution 2° modulated by U,and U is
the estimate of the emergent frequency.
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Figure 1(a): 1D testing signal
300 Ll i 1) l I 1 '
200t ' .
100 | JA» J\ J« |
O 1 L L \? I 1 I
-4 -3 -2 -1 0 1 2 3 4

Figure 1(b): the amplitude response of signal 1(a)

Figure 1(c): amphtude-frequency plane of the modulated wavelet
transform of 1(a) in the first-level decomposition

Figure 1(d): amplitude- -frequency plane of the modulated wavelet
transform of 1(a) in the second-level decomposition
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Figure 1(e): detection result of the emergent frequency of 1(a)
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4.1 2D Modulated Wavelet Transform

The 2D wavelet transform obtained by the tensor product
of two 1D wavelet transforms has one scaling function

(@(x,¥)=¢(x)¢(y)) and three wavelets (l//'(x, y)=
GO ()W (6 ) =) g(yand ¥ (% y) =y (o)
w(y)) [9]). For a 2D signal of the form f(x,))

j(U x+U  ¥) .
¢! where  f(x,y)e V, is smooth and can be

decomposed by
f(xv ¥ = z SJ (m*n)¢.lmn ("" }') +

mn

El: i Z D'{'( (m, n)l//'l':mn (x, )

=J k=l mn

S,(m,n) and D{f(/n,n) the
coefficients and wavelet coefficients of f(x,y) at
2", B () = @y ()
$in(y) s Whna =27y Q@ x=-m2 7 y-n); k=

()

~

where are scaling

resolution respectively

1,2,3and J is the coarsest scale in decomposition. The

2D wavelet transform and the 2D inverse wavelet
transform of f(x,y) are given by

S, (mn) = ZS,-_,(p.q)h(Zm— PYh(2n—q)
\ Yy ) (8)
Dy (m,n) = 25”" (p.q)g" 2m—-p2n—-q)
14
and
Si.'—l (nl,n) = ZS},(p, q)izv(m—lp)il'(n—Zq)-i'
Py (9)

3
ZZD{«( (P8 (m=2p,n-2q)

k=l py

, respectively where gl(m, n)=h(myg(ny, gz(m, ny=
g(mh(n), g3 m)y=g(mgn), S,(mn)=<f(x,y),
B8 ) > Df (m,n) = < £, ), Ym0, 3)>
g5 (mn) =gk (~m—n) and h(n) =h(-n); k=123.

Based on equation (7), one can decompose such the 2D
signal as follows,

Fa e/ Ysstthd o

j2? (U m+U
> (S tmymye’ Gy

mn

2 (27 xem) iU (27 y-m)
¢Jnm (.\T, .V)ej * e '

i j 2 (Df(m.n)ef'-’"U:nHU),,))

f=J k=l mn

+

j2'U,(2"x~nx)eJZ'U,(2"',\'-n'

Ve (¥, )¢ (10)
which is called the 2D modulated wavelet decomposition
by using the modulated scaling function ¢, (x,¥)

U (T = j2¢U (27" y=
VU xmm) L JZU TN o0 g the modulated wavelets
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22U (27 x-m) v

Mgk =1,2,3, with

k .

V/imn (.\’, }) € €

the associated : scaling  coefficients S, (m,n)
j2' (U U, - 3

e’ WemtUim) and  wavelet  coefficients D,f(m,n)
2 (U U ) . o
eI W™ which represent the approximation

information and detail information of  f(x, )
(U x+U ¥ . .

e/ VetUsY ot resolution 2", respectively. Based on

equations (8) and (9), the 2D modulated wavelet
transform and the 2D modulated inverse wavelet

JU x+U v

transform of f(x, y)e “"are given by

j2 U U ) j2 U prU )
S, (mnye’™ T =Z Sealpge’™ T R2m- p)
Py

¢ 27 2mep 27U (2n—g)

h2n—q)e

3 (U U ) AN U )
DE(m,n)e =Z Se(p.gle P
"

27 amep) 12U (20
g @m=p2n-ge”* Lz 2700 and

277U (m+U )
S, (mmye’™ T <

P2l
Z Si(p.qle h(m-2p)
Py ‘
qf=l Ay U (n=2
YTV gyl T

3 -
33 Dipge” T g -2p.n-29)

k=l pg
27 (me2p) G2 2 ,
QT UM T (1) respectively.

4.2 Experimental Results in Texture Segmentation

The original textured image data are taken as the scaling
coefficients Sy (m,n) for the standard wavelet transform
the

and -taken as coefficients

SO (m, It)ej<Ukm+an)

transform with the modulation frequency (U,,V,),

scaling

for the modulated_ wavelet

both coefficients are at the finest resolution 2°.
Daubechies scaling function D8 and the corresponding
h— and g — filters are used. The absolute values of the
wavelet coefficients associated with the standard wavelet
transform and those associated with the modulated
wavelet transform are used as features by K-means
clustering algorithm, in an unsupervised mode, to
segment textured images. Figure 2(a) shows an image
composed of four textures in different orientations
(0”,90",45”and—45"). The segmentation result
(Figure 2(b)) based on the standard wavelet transform
shows that the textures of 45° and - 45° orientations
can not be discriminated. The orientation characteristics
of textures can be taken into account by including the
wavelet coefficients associated with the modulated
wavelet transform with the modulation frequency
(7 /2,-n /2). The improvement in segmenting such type
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of textured images is shown in Figure 2(c), and the
boundary between segmented regions with small errors
of from 1 to 3 pixels is shown in Figure 2(d). Figure 3(a)
is another test image consisting of five different textures.
Figure 3(b) is the segmentation result based only on the
standard wavelet transform resulting in two textures are
unable to be segmented. By including the orientation
selectivity provided by the modulated wavelet transform
with the modulation frequency (7#/2,-7/2), the
segmentation is improved (Figure 3(c)) and the
boundaries among the segmented regions is shown in
Figure 3(d). The last experiment is performed on a cloud
image shown in Figure 4(a) which is a part of a remotely
sensed image of clouds over North Sea. The spread of
the cold air appears on the left and the cloud streets of a
cyclone on the right. Segmentation is done by clustering
the amplitudes of the wavelet coefficients of the standard
wavelet transform and those of the modulated wavelet
transform with the modulation frequency (7 /2, -z /2) in
two-level decomposition. The segmentation result is
shown in Figure 4(b) and the texture border of the cold
air area is quite well localized as shown in Figure 4(c).
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Figure 2: test image (a); the segmentation result by

using the standard wavelet transform (b); the
segmentation result by including the modulated
wavelet transform (c); boundary of the segmented

regions in figure (¢) (d).
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Figure 3: test image (a); the segmentation result by
using the standard wavelet transform (b); the
segmentation result by including the modulated
wavelet transform (c); boundary of the segmented

regions in figure (c) (d).

(a)
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Figure 4: the cloud image (a); the segmentation
by

transform (b); boundary of the segmented regions

result including the modulated wavelet

in figure (b) (¢).
5. Conclusions

Signals which are globally nonstationary but locally
coherent in terms of the frequency characteristics can be
modeled by modulating a smooth function with a slow-
varying modulation frequency. The modulated wavelet
transform for such signals provides a time-frequency-
like analysis. The textured images modeled by
modulating a smooth function, representing the slow-
varying illumination, with a significant modulation
frequency determined by the surface characteristics of
textures are considered. It is shown that the segmentation
of textures is improved by including the orientation
selectivity through use of the modulated wavelet
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transform.
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