
GAT: A GENETIC ALGORITHMS TOOLKIT

Ying-Hong Liao Chuen-Tsai Sun

Department of Computer and Information Science,
National Chiao Tung University, Hsinchu, Taiwan 30050, R.O.C.

Email: liao@cindy.cis.nctu.edu.tw, ctsun@cis.nctu.edu.tw

ABSTRACT

During the last thirty years there has been a rapidly
growing interest in a field called Genetic Algorithms
(GAs). The field is at a stage of tremendous growth
as evidenced by the increasing number of conferences,
workshops, and papers concerning it, as well as the
emergence of a central journal for the field. With their
great robustness, GAs have proven to be a promising
technique for many optimization, design, control, and
machine learning applications. A genetic algorithms
toolkit (GAT) has been developed to help researchers
facilitate GAs. With the readily available tool users can
reduce the mechanical programming aspect of simula-
tion and concentrate on principles alone. The toolkit
was established to help users operate and control not
only the structural identification but also the paramet-
ric identification of GAs. It outlines how to design ge-
netic algorithms and how to set parameters of different
kinds of problems. The purpose of making this sys-
tem available is to encourage the experimental use of
genetic algorithms on realistic optimization problems,
and thereby to identify the strengths and weaknesses
of genetic algorithms. This paper describes the toolkit,
shows how it can be used to solve various problems, and
provides details on its implementation.

1 Introduction
Genetic Algorithms (GAs) are emerging as powerful
tools to many real-world applications of diverse nature,
and are increasingly being used in problem domains
which can be defined in terms of search procedures and
subsequent optimization of objective function(s) [1, 2].
With their great robustness, genetic algorithms have
proven to be a promising technique for many optimiza-
tion, design, control, and machine learning application.

Invented in 1975 by John Holland [3] to simulate bi-
ological evolution based on the concept of nature selec-
tion proposed by Darwin theory, GAs are now a rapidly
expanding part of this general simulation trend. John
Holland’s simple GA only provides the abstraction and

core of the GA. One faces numerous choices concerning
how to proceed when one wants to apply the GA to a
particular problem. Mitchell [4] wrote:

”John Holland’s simple GA inspired all
subsequent GAs and provided the basis for
theoretical analysis of GAs. For real prob-
lem solving and modeling, however, it is clear
that the simple GA is limited in its power in
several respects. Not all problems should use
bit-string encoding, fitness-proportionate se-
lection is not always the best method, and
the simple genetic operators are not always
the most effective or appropriate ones.

Herein, we consider developing a simulation tool, Ge-
netic Algorithms Toolkit (GAT), to help researchers
experiment as many experimental cases as possible in
short time. This tool must be simple for the sake of
easy operations. Moreover, the tool must be general
enough to cover as many typical utilities as possible.
By this tool researchers select system identifications
(both structural identification and parametric identifi-
cation) they want to simulate, and start the simulation.
During the simulation the program returns information
about the running status immediately and users learn
in the reaction between they and computer. The tool
presented in this paper has been developed to allow
researchers to practice with a good simulator rapidly.

2 Genetic Algorithm
Fundamentals

Genetic algorithms (GAs), which were inspired by bi-
ological evolution, are efficient domain independent
search methods. That is, these methods could help
us in effectively solving problem in different applica-
tion domain. The goals of Holland’s research [3] have
been twofold: First, to abstract and rigorously explain
the adaptive processes of nature systems. Second, to
design artificial systems software that retains the im-
portant mechanisms of nature system. These methods
are capable of applying in many fields and perform well.
From the viewpoint of AI research, Holland’s method
provides a good mechanism of learning.

Figure 1 represents the GA evolution flow. GAs are
population-based search techniques that maintain pop-
ulations of potential solutions during searches. A string
with a fixed bit-length usually represents a potential
solution. In order to evaluate each potential solution,
GAs need a payoff (or reward, objective) function that
assigns scalar payoff to any particular solution. Once
the representation scheme and evaluation function is
determined, a GA can start searching. Initially, often
at random, A GA creates a certain number, called the
population size, of strings to form the first generation.
Next, the payoff function is used to evaluate each so-
lution in this first generation. Better solutions obtain
higher payoffs. Then, on the basis of these evaluations,
some genetic operations are employed to generate the
next generation. The procedures of evaluation and gen-
eration are iteratively performed until the optimal so-
lution(s) is (are) found or the time allotted for compu-
tation ends [5, 6].

The alteration process uses genetic operators to pro-
duce a new population of individuals (offspring) by
manipulating the ”genetic information,” referred to as
genes, possessed by members (parents) of the current
population. It comprises two operations: crossover and
mutation. Crossover recombinations a population’s ge-
netic material. The selection process associated with
recombination assures that special genetic structures,
called building blocks, are retained for future gener-
ations. The building blocks then represent the most
fitted genetic structures in a population.

The recombination process alone cannot avoid the
loss of promising building blocks in the presence of
other genetic structures, which could lead to local min-
ima. Also, it cannot explore search space sections not
represented in the population’s genetic structure. Here
mutation comes into action. The mutation operator
introduces new genetic structures in the population by
modifying some of its genes, helping the search algo-
rithm escape from local minima’s traps. Since the mod-
ification is not related to any previous genetic structure
of the population, it creates different structures repre-
senting other sections of the search space.

3 Major Procedures

This section describes details and implementations of
important modules in GAT.

3.1 Representation

Usually, only two components of GA are problem de-
pendent: the representation and evaluation functions.
Representation is a key genetic algorithm issue because
genetic algorithms directly manipulate coded represen-
tations of problems. In principle, any character set and
coding scheme can be used.

procedure GA
begin

t ← 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do
begin

t ← t + 1
select P (t) from P (t− 1)
alter P (t)
evaluate P (t)

end
end

Figure 1: Evolution flow of a genetic algorithm

GAT provides four gene encoding methods: binary
coding representations, gray coding representations,
real coding representations, and path coding represen-
tations [6, 7, 8].

3.2 Evaluation Function

Along with the representation scheme, the evaluation
function is problem dependent. GAs are search tech-
niques based on feedback received from their explo-
ration of solutions. The judge of the GA’s exploration
is called an evaluation function. The notion of evalu-
ation and fitness are sometimes used interchangeably.
However, it is important to distinguish between the
evaluation function and the fitness function. While
evaluation functions provide a measure of an individ-
ual’s performance, fitness functions provide a measure
of an individual’s reproduction opportunities. In fact,
evaluation of an individual is independent of other in-
dividuals, while an individual’s fitness is always depen-
dent of other individuals.

To use GAT, the user must provide an evaluation
function, which takes one gene array of a chromosome
as input and returns a double precision value. There
are two methods for user to specify the evaluation func-
tion: hand coded C/C++ function and mathematical
formula. We will discuss how to write evaluation func-
tions in GAT at section 4.

3.3 Initial Population

Choosing an appropriate population size for a genetic
algorithm is a necessary but difficult task for all GA
users. On the one hand, if the population size is too
small, the genetic algorithm will converge too quickly
to find the optimal solution. On the other hand, if
the population size is too large, the computation cost
may be prohibitive. The initial population for a ge-
netic algorithm is usually chosen at random. In GAT
user may choose initial population either generated by
system randomly or provided by user.

3.4 Operators

From a mechanistic point of view, a GA is an iterative
process in which each iteration has two steps, evalua-
tion and generation. In the evaluation step, domain in-
formation is used to evaluate the quality of an individ-
ual. The generation step includes a selection phase and
a recombination phase. In the selection phase, fitness
is used to guide the reproduction of new candidates for
following iterations. The fitness function maps an in-
dividual to a real number that is used to indicate how
many offspring that individual is expected to breed.
High-fitness individuals are given more emphasis in
subsequent generations because they are selected more
often. In the recombination phase, crossover and mu-
tation perform mixing. Crossover reconstructs a pair of
selected individuals to create two new offspring. Mu-
tation is responsible for re-introduction inadvertently
”lost” gene values. Most research has focussed on the
three primary operators: selection, crossover, and mu-
tation. While selection according to fitness is an ex-
ploitative resource, the crossover and mutation opera-
tors are exploratory resources. The GA combines the
exploitation of past results with the exploration of new
areas of the search space. The effectiveness of a GA
depends on an appropriate mix of exploration and ex-
ploitation. The following describe these three operators
in detail.

3.4.1 Selection

The selection phase plays an important role in driv-
ing the search towards better individuals and in main-
taining a high genotypic diversity in the population.
Grefenstette and Back [9] noted that the selection
phase could be divided into the selection algorithm and
the sampling algorithm. The selection algorithm as-
signs each individual x a real number, called the tar-
get sampling rate, tsr(x, t), to indicate the expected
number of offspring x will reproduce by time t. The
sampling algorithm actually reproduces, based on the
target-sampling rate, copies of individuals to form the
intermediate population. In fact, there is some differ-
ence between an individual’s actual sampling proba-
bility and its expected value. This difference is called
bias. There are two types of selection algorithms: ex-
plicit fitness remapping, and implicit fitness remapping
[10]. The first one re-maps the fitness onto a new scale,
which is then used by the sampling algorithm. Pro-
portional selection and fitness ranking belongs to this
category. The second one fills the mating pool without
passing through the intermediate step of remapping.
Tournament selection belongs to this category. Tourna-
ments are often held between pairs of individuals since
using larger tournament has the effect of increasing se-
lective pressure.

There are also several classification criteria, and se-

lection strategies can be classified with respect to the
following [11]:

• Extinctive versus preservative selection: The term
preservative describes a selection scheme that
guarantees a non-zero selection probability for
each individual, i.e.; every individual has a chance
of contributing offspring to the next generation.
On the other hand, in an extinctive selection
scheme some individuals are definitely not allowed
to create any offspring, i.e., they have zero selec-
tion probabilities.

• Left versus right extinctive selection: In case of
extinctive selection there is a major special case
where the worst performing individuals have zero
reproduction rates, i.e. they do not reproduce.
This situation is referred to as right extinctive se-
lection. Similarly, the best individuals are also
prevented from reproducing in order to avoid pre-
mature convergence due to the existence of super-
individuals. This is referred to as left extinctive
selection.

• Elitist versus pure: A selection scheme that en-
forces a lifetime of just one generation on each in-
dividual regardless of its fitness is referred to as
pure selection. In an elitist selection scheme some
parents are allowed to undergo selection with their
offspring [12].

GAT provides seven basic selection methods and five
selection strategies. In GAT, a complete selection op-
erator combines a basic selection and a selection strat-
egy. The basic selection methods provided by GAT
are: linear ranking selection, exponential ranking se-
lection, proportional selection, sigma scaling selection,
tournament selection, random selection and none se-
lection. The four selection strategies provided by GAT
are: left listist strategy, right elitist strategy, left ex-
tinctive strategy, right extinctive strategy, and none
selection strategy.

3.4.2 Crossover

In order to explore other points in the search space,
variation is introduced into the intermediate popula-
tion by means of some idealized genetic recombination
operators. The most important recombination oper-
ator is called crossover. A commonly used method,
called one-point crossover, selects two individuals in the
intermediate population which then exchange portions
of their representation. Take on-point crossover as ex-
ample. Assume that the individuals are represented as
binary strings. In one-point crossover, a point, called
the crossover point, is chosen at random and the seg-
ments to the right of this point are exchanged. For
example, let x=101110 and y=0101100, and suppose
that the crossover point is between bits 4 and 5 (where

the bits are numbered from left to right starting at
1). Then the children are x’=101000 and y’=0101010.
Figure 2 illustrates this example.

Crossover

1 0 1 1 1 0 1 0 1 1 0 0

0 1 0 1 1 00 1 0 1 0 0

X

Y

X'�

Y'�

Figure 2: A one-point crossover example

Crossover serves two complementary search abili-
ties. First, it provides new points for further testing
upon hyperplanes already represented in the popula-
tion. Second, crossover introduces representatives of
new hyperplanes into the population. Crossover is, in
effect, a method for sharing information between two
successful individuals.

GAT provides thirdteen crossover operators:
one-point crossover, two-point crossover, random-
point crossover, uniform crossover, bitwise one-point
crossover, bitwise two-point crossover, bitwise random-
point crossover, bitwise uniform crossover, arithmetic
crossover, partial-mapped crossover (PMX) [13], cycle
crossover (CX) [14], order crossover (OX) [15], and
none crossover. Where bitwise crossover means the
crossover point may be any boundary of bit in a
chromosome, while crossover point of plain crossover
must be boundary of gene so that it can maintain
the complement of genes in a chromosome. Also note
that path coding GAs should use only PMX, CX, OX
crossover methods to maintain the path representation
property.

3.4.3 Mutation

When individuals are represented as bit strings, muta-
tion consists of reversing a randomly chosen bit. For
example, assume that the individuals are represented as
binary strings. In bit complement, once a bit is selected
to mutate that bit will be flipped to be the complement
of the original bit value. For example, let x1=101010
and suppose that the mutational bit is bits 4 (where
the bits are numbered from left to right starting at 1).
Then the child is y1=101110. Figure 3 demonstrates
this example. Another mutation called noising muta-
tion applies only to naive encoding gene. This mutation
adds a white noise to the gene selected for mutation.

Mutate

1 0 1 0 1 0 1 0 1 1 1 0

X X'�

Figure 3: A bit-flip mutation example

If a number is represented by a group of bits in the
string, small changes in the number’s value are unlikely
to follow from such mutation. This prevents the genetic
algorithm from refining solutions to find an optimal
solution after discovering good solutions in its neigh-
borhood. The GA community usually views mutation
as a background operator. Conversely, biologists view
mutation as the main source of evolution.

GAT provides nine mutation methods: bit-flip mu-
tation, random bit-flip mutation, non-uniform range
mutation, uniform range mutation, inversion muta-
tion [16], insertion mutation, displacement mutation,
reciprocal exchange mutation, and none mutation.
Note that path coding GAs should use only inversion,
insertion, displacement, and reciprocal exchange muta-
tion methods to maintain the path representation prop-
erty.

3.5 Parameters

Running a genetic algorithm entails setting a number of
parameter values. However, finding good settings that
work well on one’s problem is not a trivial task. There
are two primary parameters concern the behavior of
genetic algorithms: Crossover Rate (Cr) and Mutation
Rate (Mr). The crossover rate controls the frequency
with which the crossover the crossover operator is ap-
plied. If there are N individuals (population size=N)
in each generation then in each generation N ∗Cr indi-
viduals undergo crossover. The higher crossover rate,
the more quickly new individuals are added to the pop-
ulation. If the crossover is too high, high-performance
individuals are discarded faster than selection can pro-
duce improvements. However, a low crossover rate may
stagnate the search due to loss of exploration power.
Mutation is the operator that maintains diversity in
the population. A genetic algorithm with a too high
mutation rate will become a random search. After
the selection phase, each bit position of each individ-
ual in the intermediate population undergoes a random
change with a probability equal to the mutation rate
Mr. Consequently, approximately Mr × N × L mu-
tations occur per generation, where L is the length of

the chromosome. A genetic algorithm with a too high
mutation rate will become a random search.

GAT includes following parameters: optimization di-
rection, population size, gene number in a chromosome,
data types and formats of genes, crossover rate, muta-
tion rate, simulation stop criteria, simulation logging.
Detail about these parameters could be found in GAT
manual.

4 Evaluation Function

To use GAT, the user must provide an evaluation func-
tion. There are two methods for user to specify the
evaluation function: hand coded C/C++ function and
mathematical formula.
4.1 Hand Coded Objective Function

User should providing objective function takes one gene
array of a chromosome as input and returns a dou-
ble precision value as fitness value of given chromo-
some. The object function object() must be coded in
file <case>.cpp and the function prototype is:
double object(const Gene * const X, const

int n);
where ”X” is gene array representation of the chro-

mosome, ”n” is the number of genes in ”X”. The body
of the evaluation function is of course application de-
pendent. Figure 4 shows a sample evaluation function
that calculates the sum of gene value squares.

/*An example object() calculates the sum of
X[i]*X[i]*/
double object(const Gene * const X, const int n)
{

register int i;
register double Sum = 0.0f;

for (i = 0 ; i < n ; ++i)
{

Sum += X[i].get value double()
X[i].get value double();

}
return (Sum);

}

Figure 4: An objective function for a sphere model

4.1.1 Mathematical Objective Formula

In addition to hand coded objective function, an eval-
uation function can be specified by simply designat-
ing a simple mathematical formula in the GAT. The
mathematical formula must be written in a file named
〈case〉.exp, where 〈case〉 indicates the case name. The
format of the objective function is:

[expression]
<expression>

where 〈expression〉 is the objective evaluation func-
tion. Figure 5 demonstrates how a sample evaluation
function calculates the sum of gene value squares in
a chromosome. The letter ’X’ represents the chromo-
some while X[i] reveals the value of the ith gene of the
current chromosome.

#An example formula calculates
#the sum of X[i]*X[i]
[exp]
sum(i, 1, 10, X[i]^2)

Figure 5: An objective formula for a 10 dimension
sphere model

5 Building GAT

GAT should run on most machines with an ANSI C++
compiler. This version has been complied and run
successfully on UNIX/LINUX (using egcs1.1.x) and
Win32 (using Borland C++ Builder and Microsoft Vi-
sual C++). This section will address about building
the GAT systems. The code has been designed to be
portable, but minor changes may be necessary for other
systems.
5.1 Building for UNIX Systems

The GAT source archive includes a makefile that you
can (and should) use to compile the GAT sources and
build the ”gat” and ”casegen” program files. This
makefile invokes the ANSI C++ compiler (g++) to
produce object code files. If you get warnings or error
messages, this is usually a bad sign. Some compilers
issue warnings just because you ask for ANSI compila-
tion. If you get any other error messages, please let us
know.

5.2 Installation for Win32

You may run ”make -fmakefile.bcb” to build the GAT
by Borland C++ Builder compiler, or run ”nmake -
fmakefile.vc” to build the GAT by Microsoft Visual
C++ compiler.

6 Running the programs

The GAT flowchart presented in Figure 6 demonstrates
the GAT reads two input files to create the simulation
and produces two output files containing the processing
details of the simulated GAs. Details concerning the in-
terface between the user-written function and the GAT
are explained below.

Evolutionary Dump:
<case>.out

Best chromosome of
each generation:

<case>.bst

Statistical
information:
<case>.sta

Initial population

Evaluation

GAs operators:

Reproduction
Crossover
Mutation

mathematical
objective formula:

<case>.exp

Input GAT Output

GA definition:
<case>.in

Figure 6: Flowchart of the Genetic Algorithms Toolkit.

Before running the GAT, execute the ”casegen” pro-
gram, which prompts you for a number of input pa-
rameters. All of this information is stored in a file for
future use, so you may only need to run ”caegen” once.
A <Enter> response to any prompt gets the default
value shown in brackets. The prompts are ”the case
name [”default”]:”. If a string is entered, say ”foo”,
then the files for this case will have names like ”foo.in”,
”foo.in”, ”foo.bst”, etc. Otherwise, the file names are
”default.in”, ”default.in”, ”default.bst”, etc.

6.1 Options

GAT allows a number of options, which control the
kinds of output produced, as well as certain strategies
employed during the search. Each option is associated
with a single character. Responding to the ”options”
prompt with a string containing the appropriate char-
acters indicates the options. If no options are desired,
respond to the prompt by typing <Enter> key. Op-
tions may be indicated in any order. All options may
be invoked independently, except as noted below.

• ”a”: evaluate all structures in each generation.
This may be useful when evaluating a noisy func-
tion, since it allows the GA to sample a given
structure several times. If this option is not se-
lected then structures, which are identical to par-
ents, are not evaluated.

• ”b”: write the best and average value to the stan-
dard output after each generation.

• ”c”: dump cooked bit string to <case>.out file.

• ”d”: dump the last generation to <case>.ini file.

• ”e”: calculate objective expression from file
<case>.exp. This allows the user to restart the
experiment at a later time, using option ”i”.

• ”i”: read chromosomes into the initial popula-
tion. The initial population will be read from the
<case>.ini file. If the file contains fewer chromo-
somes than the population needs, the remaining
chromosomes will be initialized randomly. Note:
it is good practice to allow at least some random-
ness in the initial population.

• ”r”: dump raw bit string to <case>.out file.

6.2 Input and Output Files

• <case>.in - contains input parameters. This file
is required.

• <case>.out - intermediate checkpoint files pro-
duced when the number of saved dumps is
greater than 1 and the dump interval is positive.
<case>.ini is always identical to the latest dump
if option ”d” is set. The number of chromosomes
in <case>.out is indicated by the response to the
”number of dumping chromosomes in each genera-
tion” prompt during casegen. This file is produced
if the number of saved chromosome is not zero.

• <case>.exp - contains the mathematical formula
of the objective function. This file is read and used
only when the option ”e” is set.

• <case>.ini - contains chromosomes to be included
in the initial population. This is useful if you have
heuristics for selecting plausible starting chromo-
somes. This file is read only when the option ”i”
is set. This file can also be produced as a snapshot
of the latest population, if the ”d” option is set.

• <case>.bst - contains the best chromosome in each
generation found by the GAT.

• <case>.sta- contains data describing the perfor-
mance of the GAT. The <case>.sta file contains
the best fitness, the average fitness, the worst fit-
ness, and standard deviation of each population.

6.3 Running GAT under UNIX

The UNIX makefile produces a random archive called
libgat.a that can be linked to the user’s evaluation func-
tion. Suppose the new evaluation function is in file
case1.cpp. Then the command ”make CASE=case1”
will create an executable called ”gat.case1”.

To make things easier, a shell script called ”go” is
provided. This command takes two arguments: the
first is the root name of the source file containing the
evaluation function; the second is an optional file suffix
(as discussed under setup above). The command ”go
case1” will compile the user’s evaluation function, link
it with the GAT random archive, run the program using
the case1.in input files, and produce reports in files

case1.bst, case1,env, and case1.sta. The reporting files
are discussed below.

6.4 Running GAT under Win32

The Win32 version of GAT assumes a more rudimen-
tary make facility. Suppose the new evaluation func-
tion is in file case1.cpp. Then the following command
will create an executable called ”gat.exe”: ”make -
fmakefile.bcb -DCASE=case1”. Once the executable
file is made we can execute the program by running
GAT.EXE with an optional command line argument:
”GAT.EXE <case>”. This approach can also be used
to change other functions in GAT. There is also a batch
file GO.BAT provided that will compile and run the
case as ”go” in UNIX environment.

7 Conclusions and Ongoing
Work

We have provided a general-purpose GAs toolkit,
which serves as a generic utility for applications in-
volving optimization. The toolkit can be used for both
- fast development of prototypes for experimentation
as well for developing applications. The toolkit design
supports the state of the art of genetic optimization
techniques. The proposed model can also be adopted
as a problem-solving scheme.

We are currently investigating two enhancements to
the GAT: adding options to the tool so it will cover
a wider class of problem domains in a more flexible
manner and porting this tool to a platform independent
program suitable for interaction via the standard World
Wide Web interface.

8 Acknowledgment

Research project funded by National Science Council,
Taiwan, NSC 89-2520-S-009-006.

References

[1] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi,
“Optimization by simulated annealing,” Science,
vol. 220, pp. 671–680, 1983.

[2] J. J. Hopfield, “Neural networks and physical sys-
tems with emergent collective computational abil-
ities,” in National Academy of Sciences, 1982, pp.
2554–2558.

[3] John H. Holland, Adaptation in Natural and Arti-
ficial Systems, The University of Michigan Press,
1975.

[4] Melanie Mitchell, An introduction to genetic algo-
rithms, MIT press, 1996.

[5] J. J. Grefenstette, “Optimization of control pa-
rameters for genetic algorithms,” Transactions on
System, Man, and Cybernetics, vol. 16, no. 1, pp.
122–128, 1986.

[6] David E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading,
Massachusetts. Addision-Wesley, 1989.

[7] H.J. Antonisse, “A new interpretation of schema
notation that overturns the binary encoding con-
straint,” in Proceedings of the Third International
Conference on Genetic Algorithms, J. Schaffer,
Ed., San Mateo, CA, 1989, Morgan Kaufmann
Publishers.

[8] Zbigniew Michalewicz, Genetic Algorithms +
Data Structures = Evolution Programs, Springer,
third, revised and extended edition, 1996.

[9] J. J. Grefenstette and J. E. Baker, “How genetic
algorithms work: A critical look at implicit paral-
lelism,” in Proceedings of the Third International
Conference on Genetic Algorithms and Their Ap-
plications, J. D. Schaffer, Ed., 1989, pp. 20–27.

[10] D. R. Bull D. Beasley and R. Martin, “An
overview of genetic algorithms: Part 1, fundamen-
tals,” University Computing, vol. 15, no. 2, pp.
58–69, 1993.

[11] T. Back, F. Hoffmeister, and H. P. Schwefel, “A
survey of evolution strategies,” in Proceedings of
the Fourth International Conference on Genetic
Algorithms and Their Applications, R. K. Belew
and L. B. Booker, Eds., july 1991.

[12] K. A. De Jong, An Analysis of the Behavior of a
Class of Genetic Adaptive Systems, Ph.D. thesis,
University of Michigan, 1975.

[13] D.E. Goldberg and R. Lingle, “Alleles, loci, and
the tsp,” in Proceedings of the First International
Conference on Genetic Algorithms, J.J. Grefen-
stette, Ed., 1985, pp. 154–159.

[14] I. M. Oliver, D. J. Smith, and J.R.C. Holland, “A
study of permutation crossover operators on the
traveling salesman problem,” in Proceedings of the
Second International Conference on Genetic Algo-
rithms, J.J. Grefenstette, Ed., 1987, pp. 224–230.

[15] L. Davis, “Applying adaptive algorithms to
epistatic domains,” in Proceedings of the Interna-
tional Joint conference on Artificial Intelligence,
1985, pp. 162–164.

[16] M. Herdy, “Application of the evolution strategy
to discrete optimization problems,” in Proceed-
ings of the First International Conference on Par-
allel Problem Solving from NAture (PPSN), H.-P.
Schwefel and R. Manner, Eds., 1991, vol. 496.

