Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

The Dynamic Dictionary Matching Problem Revisited

T.W. Lam and K.K. To*

Department of Computer Science
University of Hong Kong
Pokfulam, Hong Kong
{twlam,kkto}@cs.hku.hk

Abstract

The dynamic dictionary matching problem asks for
o data structure to represent a set of pattern strings
A = {21,%9, -, %k}, which can be updated efficiently
when a pattern is inserted into or deleted from A, and
which can support efficient searching of a text string
to report all occurrences of the patterns of A. The
work of Amir et al. [3, 2] has produced an elegant

solution supporting the update of A for a pattern x in °

O(|z|logn) time and the search of a teztt in O((|t]+
tocc)logn) time, where n denotes the total length of
the patterns in A and tocc denotes the total number
of occurrences of the patterns in t. Recently, the time
complezity of both operations has been improved, with
the factor of logn replaced by logn/loglogn [4].

This paper presents a new solution in which an up-
date takes O(|z| + logk) time and a search O((|t| +
tocc)log k) time. Moreover, we can further improve
the search time to O((|t| +tocc)£{5°’;—k), but the up-
date time increases to O(|z|logk/loglogk).

1 Introduction

This paper is concerned with a string match-
ing problem, called the dynamic dictionary match-
ing problem. We are given a set of pattern strings
A = {1,723, +-,T1}, also referred to as the dictio-
nary, which can change over time with new patterns
added in and old ones removed. We assume that char-
acters in these strings are chosen from a fixed alphabet
Y of bounded size. The dictionary matching problem
asks for a data structure to represent A such that any
changes of A can be processed efficiently and, given
any text string ¢, the occurrences of the patterns of A
in ¢t can be reported efficiently.

For the static case in which no insertion or deletion
is supported, optimal solutions already exist [1, 5].
These solutions each can build a data structure rep-
resenting' A in O(n) time and search a text t in

*Research supported in part by Hong Kong RGC Grant
338/065/0027 : )

O(Jt] + tocc) time, where n denotes the total length
of patterns in A and tocc is the total number of oc-
currences of the patterns in the given text.

Amir, Farach, Galil, Giancarlo, and Park [2, 3]
were the first to obtain non-trivial solutions to the
dynamic dictionary matching problem. Assume the
alphabet is of bounded size. The solution of [3]
supports an insertion or deletion of a pattern z in
O(|z|logn) time and a search of a text t in O((|t| +
tocc)logn) time. Idury and Schiffer [9] later ob-
tained a solution which can trade the update time
for the search time; for any constant ¢, their scheme
achieves O((|t]+tocc)c) search time with update time
of O(cjz|n'/¢). Recently, Amir, Farach, Idury, La
Poutré, and Schéffer [4] improved the time bounds in
[3], giving a solution with update time O(|x| - 2E2-)

loglog n
and search time O((J¢] + tocc)l-ol—g"fafg'—;).

At present, it is still open whether the factor of
logn can be removed completely from the time com-
plexity of both update and search, producing a so-
lution with the same time complexity as the static
case. Perhaps this is too ambitious in view of the dy-
namic nature of the problem. A less ambitious open
problem is whether there is a solution with time com-
plexity depending on the total number of patterns
instead of the total length of the patterns. This is
a realistic direction as the problem do not require
any query about the substrings inside the patterns,
and we always consider each individual pattern as a
single entity. This paper presents a positive result
along these directions. More specifically, we improve
the update time to O(|z| + logk) and search time to
O((Jt] + tocc)log k), where k denotes the number of
patterns currently in the dictionary. It is noteworthy
that the update time complexity involves a sum rather
than a product of |z| and logk. Also, the dictionary
can be built in O(n + klogk) time by inserting the
patterns one by one. ’

Like the previous work [2, 3, 4], the solution pre-

169



Proceedings of International Conference
on Algorithms

sented in this paper is based on the suffix tree [10].
Our improvement roots at very efficient data struc-
tures to manage the locations of the patterns on the
suffix tree. Using other recent results on.integer
searching [7], we can further improve the search time
to O((|t] +tocc)log k/ loglog k), but the update time
increases to O(|z|log k/ loglog k).

The remainder of this paper is organized as follows:
Section 2 describes some off-the-shelf data structures
our solution makes use of. Section 3 gives a brief
review of the suffix tree and the way it is used to solve
the dynamic dictionary matching problem. Section 4
discusses the new data structures which can augment
the searching process on the suffix tree, and which
can be updated efficiently. - Sections 5 and 6 give the
details of the searching and updating algorithms. In
the last section, we highlight the techniques involved
in trading the update time for the search time.

2 Tools from the literature

Our new solution to the dynamic dictionary match-
ing problem makes use of two off-the-shelf data struc-
tures. The first one is Dietz and Sleator’s data struc-
ture [6] for maintaining the order in a list. We call
this data structure a DS-list. It requires only linear
space, supporting in constant time each of the follow-
ing operations:

1. Order(p,q): Given two elements p,q of the list
(more precisely, p, g are pointers to elements), de-
termine whether p precedes g;

2. Insert(p,q): Insert a new element p into the list
at the position immediately before an existing
element ¢;

3. Delete(q): Delete the element g from the list.

The second data structure is for maintaining the
nesting structure of a sequence of balanced parenthe-
ses . It is intended to support the following opera-
tions:

1. Nep(p): Given a parenthesis p of ¢ (more pre-
cisely, p is a pointer to a parenthesis), find the
nearest pair of parentheses enclosing p;

Insert(p,q): Insert a matching pair of parenthe-
ses into ¢ such that the left one is just after an
existing parenthesis p and the right one is just be-
fore another existing parenthesis ¢. It is required
that the resultant sequence must be balanced.
(To insert a left parenthesis at the beginning of
@, we set p = —oo; similarly, to insert a right
parenthesis at the end of ¢, we set ¢ = +00.)

. Delete(p, q): Given a matching pair of parenthe-
ses p and ¢, remove them from (.

170

It is indeed not difficult to figure out a data struc-
ture that can support each of the above operation in
O(logl) time, where ! denotes the current length of
the sequence. Giiting and Wood [8] suggested an im-
plementation that requires linear space. To achieve
better time complexity is possible but not trivial.
Amir et ol. [4] have given a fairly complicated solution
improving the time complexity to O(log!/loglog!).

3 Background

In this section we review Amir et. al.’s suffix-tree-
based solution [3} to the dynamic dictionary matching
problem. Our new solution basically follows a similar
approach.

(b)

Figure 1: (a) A trie for a string “abcab”;
corresponding suffix tree.

(b) The

Let z be a string of n characters over a bounded
alphabet X. Suppose $ is a special symbol not match-
ing any character in ¥, including itself. Let I be a trie
comprising all the suffixes of  appended with $, i.e.
z[1:n}$, z[2:n]$, ---, z[n : n]$. Every edge of I
is labeled with a character in'z or $. I has exactly
n leaves, each corresponding to a unique suffix of z.
A suffix tree R for z is a compacted version of I, in
which the out-degree of an internal node (except the
root) is at least two and every edge is labeled with a
nonempty substring of 8. The number of nodes in R
is at most 2n. Figure 1 depicts an example.

For each node u, the path label of u (also denoted
by path-label(u)) is defined to be the concatenation
of the labels along the path from the root to u. The
path label of a leaf is equal to a unique suffix of =
appended with $. We denote by wq the leaf with
path label equal to 8. Using McCreight’s algorithm
[10], it takes only O(n) time to build the suffix tree
R, as well as storing a useful pointer called the suffiz
link in each internal node v. If path-label(v) = ax
for some a € ¥ and = € ¥*, there is always another
internal node v’ with path-label(v') = z. The suffix



link of v is defined to be a pointer to v'.

Using R, we can find the occurrences of z in any
text string ¢ of length m in time O(m). The idea is to
search R to match every suffix of £ as many characters
as possible; if a suffix ¢[i:m] can match the path-label
of wy (i.e. the leaf representing z$) except the last §
symbol then z appears in ¢ starting from the position
i. It is obviously too slow to match each suffix of ¢
character by character starting from the root of R.
Fortunately, based on the suffix links, we can actually
determine in constant amortized time how far a suffix

of ¢ can match R [10, 3|, thus giving an O(m) time

algorithm for reporting the occurrences of z in ¢.

Figure 2: A suffix tree for the strings “abcabd”, ‘bacab”
and “bca”. Marked nodes are filled.

To represent a set of strings A = {z1,22,--, 2k},

we extend McCregiht’s algorithm [10, 3] to construct
a suffix tree R comprising all the suffixes of strings in
A appended with $. The construction requires O(n)
time, where n denotes Y5, |z;|]. Note that R has
exactly n leaves. To ease the job of text searching,
we put a mark on R for each string z; of A: If there
is an internal node v whose path label is exactly z;,
“ v is marked; otherwise, the mark is put on a leaf w
with path label equal to z;$ (see Figure 2). To effi-
ciently report the occurrences of strings of A in a text
t, we again make use of the suffix links. For each suf-
fix t[i:m], we first locate the endpoint of the longest
path in R that t[i: m] matches. If the longest possi-
ble match of ¢[i:m] ends at exactly a marked internal
node or is one $ symbol from a marked leaf, we report
the occurrence of the corresponding string. Moreover,
every marked node on the path that ¢[¢:m] matches
also defines an occurrence of a string of A. Thus, we
would like to traverse backward to the root of R to re-
cover all the marked nodes. Yet brute-force traversal
is very time consuming (though locating the endpoint
of the path requires only O(1) amortized time). We
need more efficient methods to report those marked
nodes.

Suppose the dictionary A is fixed. We can simply
store a special pointer in every node of R keeping
track of the nearest marked ancestor. This allows us

171

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

to report an occurrence of a string in constant time.
Thus, finding all occurrences of strings of A in a text
t takes O(|t| + tocc) time.

The above technique does not work for the dynamic
dictionary matching problem. When a string z is in-
serted into or deleted from A, we can modify Mec-
Creight’s algorithm [10] to update the suffix tree R
in O(|z|) time, but excluding the special pointers. In
fact, deleting even a short string may possibly cause
the special pointers of many nodes of R to get up-
dated. Amir et. al. [3] abandoned the idea of special
pointers and used a dynamic data structure called dy-
namic trees [11] to organize the marked nodes. The
dynamic trees can be updated using O(|z|logn) time
when a string z is inserted or deleted, where n is the
total length of the strings currently in A; however,
the time for searching the nearest marked ancestor
increases to O(logn), and searching a text t requires
O((|t| + tocc)logn) time. '

In the rest of this paper, we present new data struc-
tures to organize the marked nodes such that a query
of the nearest marked ancestor can be answered in
O(log k) time, where k is the number of patterns cur-
rently in A. The time for text searching can thus
be reduced to O((|t| + tocc)logk). Surprisingly, we
do not sacrifice the time for processing an insertion
or deletion. In fact, the update time is reduced even
more drastically to O(|z| + log k).

4 Bookkeeping of marked nodes-

In this section we show new data structures to or-
ganize the marked nodes of a suffix tree, which can
speed up the updating and searching process. The
space required is in the same order as that of the
suffix tree. The data structures are based on the fol-
lowing linear representation of a suffix tree. (Amir et.
al. [4] have studied another linear representation of
a suffix tree, based on which they derived a different
approach to solve the dynamic dictionary matching
problem, improving the time bound in [3] by a factor
of loglogn.)

Let R be a suffix tree with n nodes. Suppose
k < n nodes of R are marked. We define a
sequence of balanced parentheses, called o,
to capture the structure of R. If R contains
a single node, the sequence is simply “()”.
This pair of parentheses is associated with
the only node of R. If the root of R has one
or more children, the sequence of R is ob-
tained by concatenating the sequences of the
subtrees rooted at the children of the root of
R, and then enclosing the resultant sequence
by a pair of left and right parentheses. The



Proceedings of International Conference
on Algorithms

outermost pair of parentheses is associated
with the root.

The sequence  contains exactly n pairs of parenthe-
ses, each associated with a node of R. Note that the
parentheses associated with a node u is enclosed by
the pair of parentheses associated with any ancestor
of u. That means, to find the nearest marked ances-
tor of a node u, we can examine the left (or right)
parenthesis associated with » and find the nearest en-
closing pair of parentheses which are associated with
a marked node. Below, we define three data struc-
tures for representing the parentheses in ¢, which can
also be regarded as an implicit representation of the
marked nodes. These data structures, other than al-
lowing efficient updating, are aimed at supporting the
operation of finding, for any parenthesis in ¢, the
nearest enclosing pair of parentheses which are asso-
ciated with a marked node of R as fast as in O(log k)
time.

1 a DS-list L: We represent ¢ as a DS-list L, which
contains exactly 2n elements. We assume that
each node in R stores two pointers to its left and
right parentheses on L, and vice versa. The DS-
list L allows us to compare in constant time, for
any two nodes a,3 of R, whether the left (or
right) parenthesis of o precedes that of 3.

2. a parentheses-maintenance data structure M:
The parentheses associated with the marked
nodes of R define a subsequence of ¢. This
subsequence is represented by a parentheses-
maintenance data structure M. If R has k
marked nodes, M contains 2k parentheses. Also,
we assume each marked node and its associated
parentheses in M are linked by two-way pointers.

3. an AVL tree A: We build an AVL tree A consist-
ing of 2k nodes, each corresponding to a paren-
thesis associated with, one of the marked nodes
of R. The ordering among the nodes of A is de-

termined by the precedence relationship given by
L.

Let us look at the details of finding, for any paren-
thesis a in ¢, the nearest pair of enclosing parentheses
which are associated with a marked node. W.lo.g.,
assume o is a left parenthesis. If « itself is associated
with a marked node, then a simple query to M suf-
fices. Otherwise, we search A to find the rightmost
parenthesis preceding a. Denote this parenthesis by
B. By definition of A, 3 is associated with a marked
node. If 8 is a left parenthesis then 8 and its right
counterpart enclose a and are the answer for a. If

172

B is a right parenthesis, we consult M again to find,
among the parentheses associated with the marked
nodes, the nearest pair enclosing 3, which are also
the nearest pair enclosing a.

5 Text searching

In Section 3 we observed that the dynamic dictio-
nary matching problem can be solved using a suffix
tree R augmented with data structures for organizing
the marked nodes. Thus, based on the data structures
L, M, and A described in the previous section, we can
find the occurrences of the patterns represented by R
in a text ¢ as follows:

Input: A text t of length m >0
1: for i=1tom do
2: p « the longest prefix of t[i : m] matching a
prefix of any suffixes stored in R
3: w « the highest node in R which path label
includes p as a prefix
4:  if w is marked and path-label(w) is either p

or p$ then

5: report occurence

6: w « the nearest marked ancester of w {See
Section 4}

7. while w # not-found do
report occurence
w « the nearest marked ancester of w

Time complexity: In the above algorithm, lines 2
and 3 are done concurrently using the standard suffix
tree algorithm [3, 10]. Using suffix links they can be
done in amortized constant time over the outermost
for-loop. Lines 4 and 5 can be dorie in constant time.
In lines 6 to 9, we invoke the algorithm in Section 4
for occ + 1 times, where occ denotes the number of
occurences we report in the current iteration. Each
such invocation needs O(logk) time. Summing over
the |¢| iterations, we spend O(|t|) time for matching
the suffixes of ¢ in R and O((]t] + tocc) logk) time
for finding nearest marked enclosing parentheses in
. The latter clearly dominates.

6 Dictionary update

We complete our algorithms by explaining in de-
tail how the data structures are modified upon inser-
tions and deletions of patterns. The time complexity
is O(|z| + logk) where z denotes the pattern to be
inserted or deleted.

The suffix tree R: We update the suffix tree R
using the algorithm of Amir et al. [3] with slight mod-
ification. According to their algorithm, when a new
pattern z is inserted into the dictionary A, we insert
all suffixes of = into R in a decreasing order of their
length. Each insertion causes a new leaf to be created



under a possibly freshly created internal node. The
deletion of pattern is processed similarly, with all suf-
fixes of =z deleted from R. Each deletion causes a

leaf and possibly its parent to be deleted. By making"

use of the previously installed suffix links, inserting
or deleting a suffix can be done in amortized constant
time over the insertion or deletion of a pattern. Thus,
the update of R due to a pattern z costs only O(|z|)
time.

Joint Conference of 1996 International Gomputer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

avoid updating the data structures M and A. Simi-
larly, we can modify the algorithm for deleting a suffix

~ to avoid moving the marks on the nodes representing

@ °, ®)°, ©°,
® [ ] ®
ca
ca$ v ca
$/ \bd$
w w w
$/ \bd$
o
Figure 3: (a) w is a marked leaf representing a pat-._

tern in A, say, “abca”. (b) Inserting a suffix “abcabd$”

would create an internal node v. (c) A leaf w' is cre-
ated instead of an internal node v.

Interestingly, in the course of inserting a suffix, a
straightforward implementation of the algorithm of
Amir et al. [3] may cause a mark put previously on R
(representing an existing pattern in A) to move from
a leaf to an internal node. More specifically, suppose
A contains a pattern z; with the associated mark cur-
rently on a leaf w of R, and we want to insert a suffix
o into R, which contains z; as a prefix. The inser-
tion would then create an internal node v with path
label equal to z;, which have two children, namely
w and a new leaf representing o (see Figure 3 a and
b). By our definition of marked nodes, the mark for
z; should be moved from w to v. Of course, moving
a mark on R takes only constant time, yet this in-
duces an additional update on the data structures M
and A, which would require O(log k) time. Similarly,
mark movement can also happen during the deletion
of a suffix.

To obviate the need to move a mark, we modify
the algorithm slightly. Whenever an internal node v
is to be inserted as the new parent of a marked leaf
w in such a way that the mark should be moved to v
afterwards, we avoid this insertion. Instead we insert
a new leaf w' under w, thereby making w an internal
node, which will play the role of v. The labels of the
edges pointing towards w and w' are modified so as
to emulate the effect of inserting v (Figure 3¢). As a
result, the association between a previously inserted
pattern and its marked node on R is left intact, and we

173

other existing patterns.

The DS-list L: As mentioned before, inserting a
suffix into the suffix tree R creates a leaf and possibly
an internal node. The conceptual linear representa-
tion ¢ changes as follows: Firstly, suppose a new in-
ternal node v is inserted as the parent of an existing
node u. A new pair of parentheses, associated with v,
should be inserted immediately outside the parenthe-
ses associated with u. Secondly, when a new leaf w is
inserted below an internal node v already in R, a pair
of parentheses, associated with w, emerges within the
parentheses associated with v. The new pair encloses
no other parentheses, and is located just to the left
of the closing parenthesis associated with v. In both
cases, L can be modified to reflect the change of ¢
using only constant time. Similarly, when a suffix is
deleted from R, a leaf and possibly an internal node
are deleted. The associated pairs of parentheses in ¢
should disappear, which can easily be reflected in L by
deleting the corresponding parentheses in L. Again,
this requires only constant time.

The data structures M and A: After all the
suffixes of a new pattern z are inserted into R,
we put on R a mark associated with z. By the
definition of mark, it should be put on a node u
where path-label(u) = z if such a node exists, or
path-label(u) = z$ otherwise. Since the marking
status of the nodes is represented implicitly in the
parentheses maintenance structure M and the AVL
tree A, we must insert a pair the parentheses asso-
ciated with » in both data structures. Insertion in
A is trivial. Afterwards, we find the predecessor and
successor in A of the left and right parentheses just in-
serted, which give the correct location in M for insert-
ing the pair of parentheses associated with u. When
a pattern is deleted, we unmark a node in R. Thus,
we delete the parentheses in A, as well as in M, asso-
ciated with the deleted nodes in R.

Time complexity: In summary, to insert or
delete a pattern z, |z| suffixes are inserted into or
deleted from the suffix tree R, each taking O(1) time
amortized over the insertion or deletion of the pat-
tern. With respect to the DS-list L, at most |z| pairs
of parentheses are inserted into or deleted, using a
total of O(|z|) time. On the other hand, the update
of = requires us to mark or unmark only one node of
R, incurring O(log k) time for updating A and M. In
total, an update of A due to = costs O(|z| + logk)
time.



Proceedings of International Conference
on Algorithms

7 Trading for search efficiency

We have mentioned in Section 3 that Amir et al.
[3] devised a parentheses maintenance data struc-
ture so that the update and query operations in
O(logl/loglogl) time, where [ denotes the num-
ber of pairs of parentheses in the structure. Obvi-
ously, incorporating this data structure into our algo-

rithm would improve the search time to O(|t|logk +
toccm_

N(ig&% lg Z bottleneck of our algorithm lies on the
AVL tree A. If we have a faster data structure
which can support the insert, delete, search, prede-
cessor and successor operations as an AVL tree, the
search time of our algorithm improves. Intuitively,
we would like to replace the AVL tree with a fusion
tree [7], which can perform the AVL-tree operations
in O(log !/ loglog!) time, where ! denotes the number
of elements stored. However, a fusion tree cannot be
used in our case in a straightforward manner since it
operates only on integers. Recall that the elements
of A are elements of the DS-list L instead of integers.
In fact, every time we compare two elements of A
we have to issue an Order query to the DS-list. Our
new solution integrates the DS-list structure with the
fusion tree to replace both L and A. That is, the com-
bined data structure is still conceptually in the form of
a list keeping track of all elements stored in L, as well
as their marking status captured by A. It supports
each of the following operation in O(logl/loglog!)
time, where ! denotes the number of marked elements
(or equivalently, the number of elements that would
have been stored in A).

1. Insert(p,q): Insert a new element p into the list
at the position immediately before an existing
element ¢; p is assumed to be unmarked;

2. Delete(q): Delete an unmarked element g from
the list.

3. Mark(g): Mark an element ¢ in the list.
4. Unmark(q): Unmark an element ¢ in the list.

5. FindMark(q): Find the marked predecessor near-
est to g in the list.

As a result, the operation of searching for the near-
est enclosing parentheses associated with a marked
node in the suffix tree (as describe in Section 4)
requires only O(logk/loglogk) time rather than
O(log k) time. However, the update of the combined
data structure due to an insertion and deletion of a
suffix in the suffix tree R will require the same amount
of time instead of O(1) time. Thus, the update com-
plexity becomes O(|z|log k/ log log k) while the search

complexity improves to O((|t| + tocc)ﬁﬁ)ﬁ).

174

The details of the combined data structure is left
to the full paper.

References
[1] A.V. Aho and M.J. Corasick. Efficient string
matching. Communications of the ACM, 18:333—

340, 1975.

[2] Amihood Amir and Martin Farach. Adaptive
dictionary matching. In Proceedings of the 32nd
Annual Symposium on Foundations of Computer
Science, pages 760-766, San Juan, Puerto Rico,
1-4 October 1991.

[3] Amihood Amir, Martin Farach, Zvi Galil, Raf-
faele Giancarlo, and Kunsoo Park. Dynamic dic-
tionary matching. Journal of Computer and Sys-
tem Sciences, 49(2):208-222, October 1994.

[4] Amihood Amir, Martin Farach, Ramana M.
Idury, Johannes A. La Poutré, and Alejandro A.
Schiffer. Improved dynamic dictionary match-
ing. Information and Computation, 119(2):258-
282, June 1995.

[5] B. Commentz-Walter. A string matching al-
gorithm fast on the average. In Proceedings
of the Sizth International Colloguium on Au-
tomatae Languages and Programming, pages 118-
132, 1979.

[6] Paul F. Dietz and Daniel D. Sleator. Two algo-
rithms for maintaining order in a list. In Proceed-
ings of the Nineteenth Annual ACM Symposium
on Theory of Computing, pages 365-372, New
York City, 25-27 May 1987.

[7] Michael L. Fredman and Dan E. Willard. Sur-
passing the information theoretic bound with fu-

sion trees. Journal of Computer and System Sci-
ences, 47(3):424-436, December 1993.

[8] R. H. Giiting and D. Wood. The parenthesis tree.
Information Sciences, 27:151-162, 1982.

[9] Ramana M. Idury and Alejandro A. Schiffer. Dy-
namic dictionary matching with failure functions.
Theoretical Computer Science, 131(2):295-310,
12 September 1994. ‘

[10] Edward M. McCreight. A space-economical suffix
tree construction algorithm. Journal of the ACM,
23(2):262-272, April 1976.

[11] Daniel D. Sleator and Robert Endre Tarjan. A
data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362-391,
June 1983.



