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Abstract:

Most optimization problems for evolutionary tree reconstruction from distance matrix are either

NP-complete or still unknown. In this paper, we present an approximate algorithm under an important

optimization criteria: minimum tree size. Our algorithm runs in O(r’) time and constructs a tree which size is no

more than 3 times of the optimal.
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1. Introduction

Constructing evolutionary trees (phylogenetic
trees) from distance matrix is a classical problem in
cbmputational biology. Given the pairwise
dissimilarities (distances) between species, people
hope to reconstruct a tree to find the evolutionary
relations between species. An evolutionary tree is an
edge-weighted tree with leaves as species. On an
evolutionary tree T, the distance between two species,
denoted by d(T,i,j), is the total weight of the path of
the two leaves. A distance matrix M is a symmetry
square matrix, and M{[i,j] is the dissimilarity between
species i and j. M is said to be additive if there is an

evolutionary tree T realizing it, that is, d(T,1,j)=M[i,j]
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for all i and j. If the distance data are additive, there are

efficient  algorithms for reconstructing the
tree[1,4,6,7], and the uniqueness of the tree had been
shown [7]. But in most of the cases; the ‘distance
matrix is not additive. Scientists try to construct an
optimal tree T under some optimization criteria, and
such that d(T,i,j)=M(i,j] for all i and j . The reason why
the distances should be no less than the given ones is
that the distances obtained by sequences alignment

were believed as low bounds

[2,7). In [7],
expianations of this phenomena were also given.
However, the reconstruction problems under all
popular criteria are either known or conjectured to be
NP-complete {5].

In [2], three criteria were

considered. They are L'-norm, L®-norm, and



minimum ﬁee size (MTS for brief). The problems was
defined to construct tree T such that d(T,i,j)=M[ij] for
all i and j, and such that X;;{d(T,ij)-M[ijl},
max;;{d(T,1,j>-M[i,j1}, or Zeerw(e) is minimized
respectively. Reconstruction of ultrametric tree is also
considefed in the paper. An evolutionary tree is
 ultrametric if every leaf has the same distance from the
root. In [2], an polynomial time algorithm for
constructing ultrametric tree under L*-norm was
developed. However, for the other optimization
problems of tree reconstruction, they are all NP-
complete or still open [2,6]. (see Table 1) For the
minimum size problem of ultrametric tree, it had been
shown that there is a constant €>0 such that no
polynomial time algorithm can approximate the
optimal solution within a ratio of n° unless NP=P. For
the other problems, no approximate algorithm has
been presented.

In this paper, we consider reconstruction problem
under the minimum tree size criterion (M TS problem).

The MTS problem is to reconstruct an evolutionary
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tree T such that 3..rw(e), is minimized. An
approximate algorithm is presented in this paper. The

algorithm can construct an evolutionary tree with size

‘no more than 3 times of the optimal in O(n®) time

complexity.

The remaining paragraphs are organized as
follows: We define some notations in Section 2. In

Section 3, the algorithm for MTS is presented. In

" Section 4, a conclusion is given.

2. Definitions & notations

Definition: [2] A phylogenetic tree (or evolutionary
tree) for a species set S is a rooted tree in which the

leaves are labeled by the species in S.

Definition: [7] A metric tree (unrooted) T is a tree in
which each edge has a nonnegative weight and
each internal node has degree 3. Let i,j be two

nodes of tree T, d(T,i,j) denotes the distance

Table 1,
Desired L'-norm ‘L”-norm minimum
tree tree size
Optimal NPC ©(e+nlogn) not-approx
Ultrametric [2] [2] [2]

Optimal NPC open open

Additive 21 .
Approximate Section 3

additive
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between I and j, that is, the total edge weight of the

unique path betweeniand jon T.

Since any tree with nonnegative weights on edges
can be transformed to a metric tree without changing
the distances between leaves, we shall assume an

evolutionary tree is a metric tree in the remaining

paragraph.

Definition: [2] For a set with n species, a distance
matrix (or dissimilarity matrix) is an nxn matrix_ in
which each element represents the distance
between the two species. Let M be a distance
matrix, it satisfies the following conditions:

() M[5,i]=0, (2) M[1j]=MIj.i}, GM[L,j]>0,

(HOM[1,j]<M[i,k]+MIk,j], for all i,j, and k.

Definition: [7] A distance matrix M of species set V is
said to be additive if there is an evolutionary tree T
with leaf set V realizing M, that is M[i,j]=d(T,i,j)

for all leaves i and j.

Problem MTS:(Minimum Tree Size Problem)
Given a distance matrix M, find a metric tree T,
such that d(T,i,j) 2M[i,j] and the size of T, defined
by SIZE(T)=2..yw(e), is minimized. We shall use

MTS(M) to denote the solution of the problem.

Definition: Let M be an nxn distance matrix, M is

corresponding to a undirected complete graph

74

G=<V,E> where V={v,,v,,...,v,} and we)=M][i,j]
for any edge e=(v;,v;). A Hamiltonian touron G is a
circle starting from any node and visiting each
ﬁode exactly once. TSP(M) denotes the minimum
length of a Hamiltonian tour on G, which is just tﬁe

solution of Traveling Salesperson Problem of G.

3. Minimum tree size problem

We first show a low bound of MTS problem.

Lemma 3.1: Let M be an additive matrix and T be the

tree realizing it, then TSP(M)=2xSIZE(T).

proof: Since M is additive, M[i,j]=d(T,i,j). Starting
from a leaf of T, if we travel on T to visit every leaf
and then back to the starting leaf, we must visit
each edge at least twice. Since such a traveling
sequence corresponds to a tour on M,
TSP(M)22xSIZE(T). It is easy to show that if the
traveling sequence is the Depth-First-Search
sequence then each edge will be visited exactly
twice. Since TSP(M) is the minimum length of
tour, TSP(M)=2xSIZE(T) and completes the
proof.

]

Lemma 3.2: If T=MTS(M) then SIZE(T)>TSP(M)/2.
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Fig.1: A solution ((r,s),4,3) of insertion problem: (r,s) is the attached edge and
splitted into (r,y), (y,s), and a new edge (y,X) is inserted.
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proof: Let A be the corresponding additive matrix of
T, that is, A[i,j]=d(T,i,j). From Lemma 3.1,
TSP(A)=2xSIZE(T). Since A[i,j]>M([i,j] for all 1
and j, TSP(A)=TSP(M). So, TSP(M)SZXSIZE(T).

O

Since a | distance matrix satisfies the triangle
inequality, there is a polynomial time algorithm to find
an approximate solution of the Traveling Salesperson
Problem.

Lemma 3.3: Given a distance matrix, an approximate

solution ATSP(M) can be found in O(n®) time and

ATSP(M)<1.5xTSP(M). [3]

Before presenting the approximate algorithm, we

state a insertion problem and give an algorithm for it.
Definition: Min-Size-Insertion Problem:
Given an evolutionary tree T of leaf set {1..n} and
a vector D,=(a,,ay,....,a,) with a;+d(Ti,j)>a; V i and
Jj, find a way to insert leaf x into T such that

d(T,x,j)2a; Vj and the size of the resulting tree is
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minimized. We shall use MSI(T,x) to denote the

resulting tree.

We now show how to solve this problem. For any
edge e=(r,s) of T, deleting e will result in two subtrees.
We call the subtree with s as T,, and the other as T..
The leaf sets of T.and T, are V:and V;respectively. A
solution of Min-Size-Insertion problem is a triple
<e,h,k>. e=(r,s) is the attached edge and split into (r,y)
and (y,s), k=w(r,y), and h=w(y,x) (Fig. 1). The
algorithm for solving the Min-Size-Insertion problem
is modified from [8], we discuss here briefly. We shall

define some notations first.

Definition: For each edge e=(r,s), B;=d(T,s, i) if leafie
V; and B;=d(T,r,i) if leaf ie V,. C{(T,Dx)=min{h:
<e,h,k> is a solution}. C(T,D,)=min{C.(T,D,): for
all € of T}. pmax(€,8)=max{ai-B;: V ieV}.

Pmax(€.r)=max{a;-B;: V ieV,}.

Lemma 3.4: The solution of Min-Size-Insertion

problem can be found in O(n) time.
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proof: If C(T,Dy) can be found in O(n) time for ail It can be shown that the solution of this linear
edge, the problem can also be solved in O(n) time programming is
by finding the minimum among C(T,Dy). We shall h=max {0,Ppax(€,1)-W(€), Pmax(€,s)-W(€),
first show how to find C.(T,D,) for any edge. (Pmax(€,0)HPmax(€,5)-W(€))/2} . If pmax(e,r) and

Pmax(€,S) are known, the solution can be found in
Observe that any feasible solution <e,h,k> is to
v constant time. In [8], there is an algorithm for .
split e=(s,r) into (s,y), (y,r) and insert an edge
finding pax(€,r) and prax(e,s) for all edges in O(n)
(v.x). (y may coincide with s or r).
time. So, the whole problem can be solved in O(n)

The problem is to select h and k with minimum h time.
subject to w(e)=k>0 , h>0, and d(T,x,i)>a; Vi. : (]
We present the approximate algorithm in Figure 2.
Since ]
Lemma 3.5: SIZE(T;)<SIZE(T;.))+M[i-1,i] V 2<i<n.
h+k+p; ifieV
a’(T,x,1’)={b % £ r.f. v
+ W (e)-k+p; ifieV; proof: Let e=(r,i) be an edge of T where r is an internal
, the conditions can be rewriten as node, we claim that replacing i with r; and inserting
h+k > po (D (r1,i), (r1,i+1) such that w(ry,i-1)=0 and
hw(e)-k 2 pyuy(€:8) w(ry,i)=M[i-1,i] is a feasible solution. To see the
we)2k 20 :
validity, for any j<i-1, d(T,j,i)=w(r,i)+w(r.,j
h20

Algorithm APX_MTS
Input: a distance matrix M and its corresponding complete graph G.

Output: an evolutionary tree T. ‘
Step1: Find the approximate solution ATSP(M) and its corresponding sequence S. We assume
S=<1,2,...,n>
Step2: Set Ty as an empty tree.
For i=1 ton do
Ti=MSI(T;..,i)

Step3: Output T, as an approximate solution of MTS problem.

Fig. 2
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=M[i-1,i]+d(Tj,i-1)>M[i- 1,i]+M[i- 1,j]=2M[i,j].
Since MSI(T,i) takes the minimum am;)ng all
feasible solufions, 50, |
SIZE(T;)<SIZE(T;.)+M[i-1,i] V 2<i<n

O
From Lemma 3.5, it is ease to show the following

corollary.

Corollary 3.1: SIZE(T,)<ATSP(M).

Theorem 1: Algorithm APX_ MTS reconstructs an
evolutionary tree in O(n®) time with size no more

than 3 times of the optimal.

- Proof: Since SIZE(MTS(M))=TSP(M)/2 (Lemma
3.2) and

TSP(M)=ATSP(M)/1.5, (Lemma 3.3)
ATSP(M)<3xSIZE(MTS(M)). From Corollary
3.1, APX_MTS constructs an evolutionary tree
with size no more than ATSP(M). The time
complexity for finding ATSP(M) is O(n), and for
inserting leaves is O(n®). This results time

complexity O(n®) for the whole algorithm.

4. Conclusion

In this paper, we examine the problem for
reconstructing an evolutionary tree from distance

matrix. An approximate algorithm were developed for
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the minimum tree size criterion. The algorithms can
find solution with performance ratio 3 and polynomial
time O(n’). There are still open problems for
evolutionary tree reconstruction. The cpmplexity of
minimum tree size problem is still unknown. Another
important optimization‘criterion‘ is L'-norm. For this
criterion, both the complexity and if there is

approximate algorithm are still open.
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