Proceedings of International Conference
on Algorithms

On the Complexity of the Perfect Edge Domination

Problem

Chin Lung Lu

- Chuan Yi Tang

Department of Computer Science -

National Tsing Hua University
{c1lu, cytang}@cs.nthu.edu.tw

Abstract

A perfect edge dominating set of G = (V, E) is a sub-
set D of E such that every edge not in D is dominated
by ezactly one edge in D. The perfect edge domina-
tion problem is to find a perfect edge dominating set
with the minimum cardinality in G. In this paper, we
show that the perfect edge domination problem is NP-
complete ‘on bipartite graphs. Moreover, we present
linear-time algorithms for solving the perfect edge dom-
ination problem on trees and series-parallel graphs.

1. Introduction

Let G = (V,E) be a simple graph, i.e., finite, undi-
rected, and loopless graph without multiple edge. De-
note n and m to be the number of vertices and edges,
respectively. An edge (u,v) € E is said to dominate
itself and any edge that has v or v as a vertex. A
perfect edge dominating set of G is a subset D C E
such that every edge not in D is dominated by ex-
actly one edge in D. A perfect edge dominating set
D is independent if no two edges in D are adjacent.
The (independent) perfect edge domination problem is
to find an arbitrary (independent) perfect edge dom-
inating set with the minimum cardinality in G. This
minimum cardinality is called the (independent) per-
fect edge domination number of G. Denote 0(G) to be
the perfect edge domination number of G.

Perfect edge domination problem is a variant of
the edge domination problem, which has been exten-
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sively studied [12, 16, 8, 6, 4, 14], and has many in-
teresting applications. The resource allocation prob-
lem in parallel processing system can be modeled as
the independent perfect (vertex) domination problem
[9, 15, 17, 18]. For example, a parallel processing sys-
tem can be modeled by a graph G = (V, E), where each
vertex u € V represents a processing element and each
edge (u,v) € E represents a direct communication link
between the processing elements corresponding to u
and v. Suppose that there are limited resources such
as power sources, disks, I/O connections or software
modules. It is desirable to allocate a minimum num-
ber of these resource units at the processing elements
in such a way that every processing element has at
most one resource unit and is within a distance one of
exactly one resource unit. The solution of this problem
represents an optimal situation in which there is nei-
ther duplication nor overlap. This problem can be also
modeled as an (independent) perfect edge dominating
problem.

Another -application is related to the problem of
finding a minimum set S of 1’s in M such that any
other 1 of M is in the same row or column with exactly
an element of S, where M is a p x ¢ (0, 1)-matrix (i.e.,
each entry of M is either 0 or 1). Let us construct a bi-
partite graph G = (A, B, E) by corresponding to every
row a vertex in A, to every column a vertex in B and
connecting a vertex in A to a vertex in B by an edge
if and only if M has a one at the intersection of the
corresponding row and column. It is easy to see that a
minimum set S of 1’s in M corresponds to a minimum



perfect edge dominating set of G = (4, B, E) and vice
versa.

The concept of independent perfect edge domination
in this paper is the same concept as efficient edge dom-
ination, defined by Grinstead et al. [3]. Grinstead et al.
[3] proved that the efficient edge domination problem is
NP-complete for general graphs and presented linear-
time algorithms for computing the maximum number
of edges that can be efficiently dominated on trees and
series-parallel graphs. Pal [13] et al. proposed a linear-
time algorithm for calculating an edge-packing with
the maximum weight on interval graphs. Lu et al.
showed that the efficient edge domination problem is
NP-complete on bipartite graphs [10] and later gave
an O(n+ Am) time algorithm for solving the weighted
efficient edge domination problem on bipartite permu-
tation graphs [11], where A is the maximum degree of
vertex in G.

In this paper, we show that the perfect edge domi-
nation problem is NP-complete on bipartite graphs in
Section 2. Meanwhile, we also prove that the perfect
(vertex) domination problem is NP-complete when G
is restricted to the class of the line graphs of bipartite
graphs, or, equivalently, the perfect claw-free graphs.
In Sections 3 and 4, we present linear-time algorithms,
which are optimal, for solving the perfect edge domi-
nation problem on trees and series-parallel graphs, re-
spectively. '

2. NP-completeness for bipar-
tite graphs

In this section, we shall reduce the exact cover prob-
lem, which is known to be NP-complete [2], to the
problem of determining whether there exists a perfect
edge dominating set on a bipartite graph.

Exact Cover Problem

Instance: A family of sets F' = {S1,S5s,...,5,}.
Question: Does F contain an exact cover, i.e., a sub-
family of pairwise disjoint sets whose union is equal to
X, where X =, ¢;<,, Si?

Theorem 2.1 The problem of determining whether
there exists a perfect edge dominating set on a bipartite
graph is NP-complete.
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Proof: Obviously, this problem is in NP. In the fol-
lowing, we show that the exact cover problem is poly-
nomially reducible to this problem. Given an instance
F of the exact cover problem, we construct a bipartite
graph G = (V, E) as follows. Let F = {Sy,Ss,---,5,} -
and X = {,%2, -, Zp, }, where X = Ui<i<n Si- At
first, each element z; € X, where 1 < i < m, is a
vertex of G and each set S; € F, where 1 < j < n,
is also a vertex of G. There is a path of length two,
say z;—yij—S;, between vertices z; and S; in G if
and only if z; € S;. Then, for each vertex S; of G,
we attach a path of length two, say S;—a;—b;, at Sj.
Furthermore, we add three vertices u,v and w to G in
such a way that (w,v) € E, (v,u) € E and all vertices
z;’s, where 1 < i < m, are adjacent to u. Finally,
we add vertices 71,79, , Pympn, 21,22, »@mtnt1 O
G such that vertices 1,72, , m4n are adjacent to
v and vertices 21,22, ,Zm4nt1 are adjacent to w.
More precisely, :

V = {Sja;,b1<j<n}u{zml<i<m}
U{yijlt <i<m,1<j <nand = € §;}
U{w,v,u} U {re|ll <k <m +n}

U{ze|ll <k <m+n+1},

E = {(S5:05):(a;,b)I1 <j < n}

U{(2i,93)I11 <4 <m,1<j<n and o; € S;}
U{(@i,S)I1 <i <m,1<j<n and z; € S;}
U{(ww),(v:,’“)} U{(v,re)l1 <k <m +n}
U{(w, )|l <k <m+n+1}.

See Figure 1, for example, where F = {8, S, S3} =
{(z1,%3), (z2,23,24), (T2,24)}. Suppose that D is a
perfect edge domination set of G. Let U = {(u,z;) €
El1<i<m}, R={(v,rx) € E]1 < k < m+n} and
Z ={(w,2) € E|1 <k <m+n+1}. Then, we claim
that 6(G) > m + n + 1. Consider the following two
cases.

Case 1: ZND # @. Then, either Z U {(w,v)} C
D or |ZND| = 1 by the definition of perfect edge

. domination. In the former case, we clearly have |D| >
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m+n+2. We consider the latter case in the following.
Suppose |ZN D| =1 and let e € ZN D. Suppose that
(w,v) € D. Since |ZND| =1 and |Z| > 3, there is
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Figure 1: Bipa,itite graph G for F = {S1, S2, 53} = {(21,23), (%2, %3, T4), (T2, 24) }.

A
|

an edge €’ in Z such that e’ ¢ D and ¢’ is dominated
by edges e and (w,) in D, a contradiction. Suppose
that no edge of RU {(v,u)} is in D. Then, all edges
of R not in D are not dominated by any edge in D,
a contradiction. Hence, there is exactly one edge €
in RU {(v,u)} such that ¢” € D. As a result, (w,v)
~ not in D is dominated by two edges e ande” in D, a
' contradiction. Therefore, |ZND|#1.
Case 2: ZND = @. Clearly, (w,v) isin D to exactly
dominate those edges in Z. Then, we have either RU
{(v,4)} € D or (RU{(v,u)}) N.D = @. In the former
case, we have |D| > m +n + 2. We consider the latter
case in the following. Suppose that UND # @ and let
e € UND. Then, (v,u) not in D is dominated by edges
(w,v) and e in D, a contradiction. For each vertex z;
of G, where 1 < i < m, since (u, ;) is not in D, there
is exactly one edge €' in {(z:,yi) € E|1 < k < n}
such that ¢ € D. For each vertex S; of G, where
1 < j < n, suppose that DN {(Sj,ﬂj),(dj,bj)} =g.
Then, (a;,b;) not in D is not dominated by any edge
in D, a contradiction. Hence, D contains at least one
edge in {(S},a;), (a;,b;)}. Therefore, |D| > m+n+1.

As mentioned two cases above, we have §(G) >
m+n+ 1. In the case of §(G) = m+n+1, an
optimal solution must include (w,v), exactly one edge
in {(z;,yix) € E|1 < k < n} for 1 <i < m and-exactly
one edge in {(S;,a;), (a;j,b;)} for 1 < j < n.

Next, We claim that the exact cover problem has a
positive answer (i.e., F has an exact cover F') if and
only if 6(G) = m + n + 1. First, suppose that F has
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an exact cover F’'. Define B C FE as follows.

B = {(=i¥i), (aj,bQ)ISj € F' and z; € S}
U{(Ss,a7)IS; ¢ F'}U{(w,v)}-

It is easy to verify that B is a perfect edge dominating
set of G with 6(G) = m + n + 1. Conversely, suppose
that §(G) = m +n +1, ie, there is a perfect edge
dominating set D* of size m +n + 1 in G. As men-
tioned above, D* contains (w,v), exactly one edge in
{(zi,yix) € E]1l <k < n}forl <i < m and ex-
actly one edge in {(S;,a;),(a;j,b;)} for 1 < j < n.
Consider vertex z; of G, where 1 < ¢ S‘m. Let
(zs,y57) € D*. We claim that B’ € D*, where
B' = {(zx,yxy») € E|1 < k < m}. Suppose that
(x#,y#5) € B' and (zy,ysj) ¢ D*. Then, we distin-
guish the following two cases. '

Case 1: (yij,Sy) € D*. Observe that exactly one
edge of {(Sj,a;),(aj,bj)} is in D*. Suppose that
(Sj:,a,-/) ¢ D* and (aj:,b,-:) € D*. Then, (Sjl ,a,,-:) not
in D* is dominated by edges (y;j,Sy) and (aj,by)
in D*, a contradiction. Suppose that (yy;,S;) ¢
D*. Then, (yij,Sy) not in D* is dominated by
edges (yij7,S;) and (Sj,ay) in D*, a contradiction.
Note that there is exactly an edge e # (z#,ysy) in
{(z#,y#x) € E|1 < k < n} such that e € D*. As a
result, (Zy,yw;) not in D* is dominated by edges e

_and (y#5,S5) in D*, a contradiction.

Case 2:  (yi7,Sy) ¢ D*. Since (yij,Sj) not
in D* is dominated by edge (zi,1:i7), no edge in



{(yrj,Si) € E|1 < k < m and k # i} U{(Sy,a5)}
belongs to D*. As a result, (yy;,S;) not in D* is not
dominated by any edge of D*, a coﬁtradiction.

Let F' be defined by S; € F if and only if (a5, b;) €
D*, where 1 < j < m. Clearly, I’ is a subfamily of
pairwise disjoint sets whose union is equal to X. In

other words, F” is an exact cover. - |

Theorem 2.2 The perfect edge dbminatz’on problem
is NP-complete on bipartite graphs.

It is easy to verify that a perfect edge dominating
set of G = (V, E) is a perfect (vertex) dominating set
in L(G) = (V',E"), where L(G) is the line graph of
G with V! = E and E' = {(e, f)|e and f are ad-
jacent edges of E}. However, not all line graphs of

bipartite graphs are bipartite graphs (see Figure 2).
Because we have proved that the perfect edge domi-
nation problem is NP-complete on bipartite graphs, it
follows that the perfect {vertex) domination problem
remains NP-complete even when G is restricted to the
class of the line graphs of bipa,rtite graphs. Observe
that the line graph of a bipartite graph is both perfect
and claw-free [5].

¢ Lo

Figure 2: G is a bipartite (tree) graph, but L(G) is
not.

Corollary 2.1 The perfect (vertez) domination prob-
lem is NP-complete when G 1is restricted to the class
of the line graphs of bipartite graphs.

Corollary 2.2 The perfect (vertez) domination prob-
lem is NP-complete on perfect claw-free graphs.
3. The algorithm for trees

The previous section has shown that it is hard to find
a minimum perfect edge dominating set on bipartite
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graphs. In this section, however, we shall -use the
technique of dynamic programming to design a linear-
time algorithm for solving the perfect edge domination
problem on trees. Let T = (V,E) be a rooted tree
with root 7, which abbreviated to (T,r). For any two
rooted trees (Th, 1) and (T%,r2), define the composi- .
tion of T1 and T to be a rooted tree (T,71) by adding
an edge (r1,72) to disjoint union 71 and T3 (gee Fig-
ure 3). Note that a tree can be obtained from trivial
graphs (i.e., graphs with just one vertex) by a sequence
of tree compositions. For a rooted tree (T',r), we de-
fine the following notation for computing the minimum
perfect edge dominating set in T'.

o Jdg-perfect edge dominating set = a perfect edge
dominating set D of T and no edge in D is incident
with 7.

e J;-perfect edge dominating set = a perfect edge
dominating set D of T' and exactly one edge in D
is incident with 7. '

o do-perfect edge dominating set = a perfect edgé
dominating set D of T and all edges in D are
incident with .

e J3-perfect edge dominating set = a perfect edge
dominating set D of forest T — r, which obtained
by removing r from T', and no edge in D is incident
with r or any neighbor of r.

e 4;(T,r) is the minimum size of J;-perfect edge
dominating set of T', where 0 < ¢ < 3.

It is clear that min{éo(T,7),8:(T,r),0:(T,7)} is the
perfect edge dominating number §(T") of T according
to the definition. For any trivial rooted tree (T',r), the

1

T2

T;

Figure 3: The composition of (T1,7,) and (T, r2).
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values of 8;(T,r), where 0 < ¢ < 3, are initialized as
follows.

8o(T, 1) = 62(T,7) = 63(T,r) =0 and & (T, r) = oo.

Lemma 3.1 Let (T,r,) be the composition of rooted
trees (T1,71) and (T2,72). Then,

0o (T,r1) = 60(T1,7m1) + 61 (T2, 72).

Lemma 3.2 Let (T,r:1) be the composition of rooted
trees (T1,71) and (T2,72). Then,

51(T,1’1) = min{61(T1,r1)+60(T2,r2),1+

53(T1,’I'1) + min{52(T2, 7'2): 63(T2, 7'2)}}'

Lemma 3.3 Let (T,r,) be the composition of rooted
trees (T1,71) and (T2,72). Then,

02(T,71) = 14085(T1, 1) +min{d2(T3, r2), 03(T2,72) } }-

Lemma 3.4 Let (T,r1) be the composition of rooted
trees (T1,71) and (T2,72). Then,

53(T, 7‘1) = (53(T1,'I'1) + 60(T2,7‘2).

Based on the recursive functions of lemmas in this
section, we design Algorithm PEDP-T to calculate
the perfect edge domination number §(T') of T' using
the technique of dynamic programming. Algorithm
PEDP-T starts from the leaves of T' and works in-
ward to 7. Reaching at vertex v, Algorithm PEDP-T
computes all d;(u), where 0 < 7 < 3 and u is the parent
of v, according to Lemma 3.1, 3.2, 3.3 and 3.4, respec-
tively. The detail of Algorithm PEDP-T is shown
as follows. For convenience, notation §;(T,r), where
0 < i < 3, is abbreviated to d;(r).

Since each vertex v of T is considered once and the
computation of d;(u), where 0 < i < 3, in Step 2 is
done in constant time, the total time complexity of
Algorithm PEDP-T is O(n). With a slight modifica-
tion, Algorithm PEDP-T cannot only compute &(T"),
but also find the corresponding minimum perfect edge
dominating set. Therefore, we have the following the-
orem.
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Algorithm PEDP-T.
Input: A rooted tree T' with root r.
Output: The perfect edge domination number §(T").
1. /* Initialization */
for each vertex v of T do
bo(v) = d2(v) = d3(v)
2. T"=T.
while 7" has more than one vertex do
Choose a leave v of T do.
/* let u be the parent of v */
~do(u) = do(u) + 61(v).
d1(uv) = min{é;(u) + do(v), 1 + d3(u) +
min{ds(v),d3(v)}}.
02(u) = 1+ 02(u) + min{da(v), d3(v)}}.
d3(u) = d3(u) + Go(v).
=T —w.
3. Output min{dy(r), &1 (r),d2(r)}.

=0and 51('1)) = 0.

Theorem 3.1 The perfect edge domination problem
can be solved in linear time on trees.

4. The algorithm for series-

parallel graphs

In this section, we shall present a linear-time algo-
rithm for solving the perfect edge domination problem
on (two-terminals) series-parallel graphs. Each series-
parallel graph has two distinct vertices 4 and v to serve
as its left terminal and right terminal respectively, and
can be denoted by (G, (u,v)). A series-parallel graph
is recursively defined as follows.

(1) The complete graph K, with two vertices u and
v is a series-parallel graph (K», (u,v)).

(2) Let (G1,(u1,v1)) and (Ga,(ug,v2)) be series-
parallel graphs. Then, the graph G' obtained by
performing one of the following two operations on
G1 and G is a series-parallel graph.

e Series composition: identify v; of Gy with
ug of G2 to obtain (G,(u;,v2)) (see Fig-
ure 4(a)).

o Parallel composition: identify u; of Gy
with 42 of Go and v, of G1 with vy of
G2 to obtain (G, (u1,%1)), or equivalently
(G, (u2,v2)) (see Figure 4(b)). It is assumed



that no multiple edges will be created by this
composition.

(3) Only graphs constructed by a finite number of ap-
plications of series and parallel compositions are
series-parallel graphs.

U2

Figure 4: (a) Series composition. (b) Parallel compo-
sition. ' .

Note that the class of series-parallel graphs is a sub-
class of planar graphs. Kikuno et al. [7] gave a linear-
time algorithm to recognize whether a graph G is a
series-parallel graph and constructed a parsing tree of
G if so. A parsing tree T' of a series-parallel graph
(G, (u,v)) is defined as a binary tree in which each
node of T represents a subgraph (H, (v,v')) of G and
labeled by (u/,v"). Each leave of T' corresponds to an
edge in G. Each internal node of T' represents the
subgraph of G obtained by applying a series or paral-
lel composition to the subgraphs corresponding to its
children. The root of T represents G itself. Figure 5
shows a series-parallel graph and its parsing tree. Note
that the parsing tree of a series-parallel graph may be
not unique. For a,8 € {0,1,2,3}, we define (o, B)-
perfect edge dominating set of a series-parallel graph
(G, (u,v)) is a perfect edge dominating set D of

G if a #3 and 8 # 3,
G\ {u} ifa=3and B #3,
G\ {v} fa#3and f=3,
G\{y,v} ifa=3andf=3,
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1,3)

(1,3)

o . R AGEICYANE
R QINCEF QN
1,9)
YV 3 ©n©s)

(1,4)(4,5)
(2) (b)
Figure 5: (a) A series-parallel graph G. (b) A parsing
tree of G.

such that

4

no edge in D is incident with u if a = 0,
exactly one edge in D is incident with v if o =1,
D contains all edges which are incident with »
if a =2,
no edge in D is incident with u or its neighbors
| fa=3,

and

[ no edge in D is incident with v if 8 = 0,

exactly one edge in D is incident with v if 8 =1,

D contains all edges which are incident with v

\ i#p=2

no edge in D is incident with v or its neighbors
if =3.

\

The minimum size of an (a, B)-perfect edge domi-
nating set of a series-parallel graph (G, (u,v)) is de-
noted by 6(G,u*,v%). According to the definition
of perfect edge domination, it can be easily verified
that min{d(G,u*,v?)|a,B € {0,1,2}} is the perfect
edge domination number §(G) of (G, (u, v)). For the
graph (Ks, (u,v)), the values of §(Ka,u,v?), where
a,B € {0,1,2,3}, are initialized as follows.

o §(Ko,ul,v') = §(Ka,ut,v?) = §(Ka,u?,v') =
§(Ka,u?,v?) =1, :

* .6(K21 u01v3) = 6(K2) ,ul3,,00) =0,

o The values of all other cases are oo.
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Lemma 4.1 Let (G,(u1,v2)) be a series-parallel
graph obtained by applying a series composition to
(G1, (u1,v1)) and (G, (u2,v2)). Then, for any a,B €
{0,1, 2,3}, we have

8(G1,ug, v?) + 8(Ga,ul, vP),
8(G1,ug, v3) + 8(G2,ud,vd),
8(Gr,ug, v}) + 8(Ga, ud, v5),
8(G1,ug, v?) + 8(Ga, u2,vP)

v) = min

- 8(G,uf,

Lemma 4.2 Let (G, (u1,v1))
graph obtained by applying a paraellel composition to
(G1, (u1,7)) and (G2, (u2,v2)). Then, we have

(1)
0(G,ud,v9)

~be a series-parallel

= 0(G1,u?,v?) + 6(Ga,u3,vl),
3(G1,43,v3) + 6(G2,ud,vd),
8(G1,u3,v1) + 6(G2,u3, v3)
8(G,u?,v}) = 8(G1,u,7) + 6(Ga,u3, v3),
8(G,u3,v3) = 8(G1,ul, v3) + 8(Ga,ud, v3).

@)

0(G,ud,v}) = min

6(Gl’u17vl) + 6(G2’u2’”2)s
0(G, up, = s
(G, u1,v7) = min { 5(Gh, ud, o) +6(Ga, u},09)
Gh“]a 1)+6(G2,ug’vg)3
Gl’uliv%)+6(G2,u2’v2)’
é G, ) = ’
(G,u3,01) = min 6(G1,u1,v3) + 6(G2, u3, v}),
5(G1,u1,’v1)+5(G2,u2,v2)
- 6(G1,’U,1, )+5(G2)u27'"2)1
oGy, e1) = m"‘{ 5(G1,ud,07) + 6(Ga,ub o) |
6(G1,u1,v3) + 8(G2,u3,v3),
(G, u1,
( U1 vl mm{ 6(G1,u1,v1)+6(G’2,u2,v2)
@)
5(G7 ’U,%, ) - 6(G1,u1,v](.)) + 6(G2,u%!vg),
6(G1,u%,'v{) + 6(02’"'%,”%),
(G, ed,vd) { 5(G1,1,9) + 6(Ga, v, 0d)
6(G ul’vl)_ Gl’ul’ )+6(G2,U§,U%),
J(Gvulr 1)_6(G11u17 1)+6(G2,u§’vg)'
4)

8(G, ul, 1)) = 6(G1,ud, v?) + 6(Ga2,ud, v?),

6(G1v uzli’v%) + 6(G2’ ug,’l’g), }
" 6(Gh, u?,vi’) + 6(G2,u§,v%)
) = 6(G1,u3,v?) + 6(Ga,ud, v2),

v}) = 8(G1,ui,vf) + 6(Gz,uf, v3).

8(G,u?,v]) = min
J(G’ u?7 v%
(G, uf,

Based on the lemmas in this section, we design Algo-
rithm PEDP-SP to calculate §(G) of a series-parallel
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graph G using the technique of dynamic programming.
Algorithm PEDP-SP starts from the leaves of a pars-
ing tree T' of G and works inward to root of 7. Reach-
ing at node (u,v), Algorithm PEDP-SP computes all
8(H,u*,vP) according to Lemma 4.1 or 4.2, where H
corresponds to the subgraph of G obtained by apply-
ing a series or parallel composition to the subgraphs
corresponding to children of (u,v). The detail of Al-
gorithm PEDP-SP ig shown as follows.

Algorithm PEDP-SP.
Input: A series-parallel graph (G, (£1,t2)).
Output: The perfect edge domination number §(G).
1. Construct a parsing tree T of G.
2. /* Initialization */
for each leave (u, v) of T' do
6(K2,u o) = §(Ka,ut,v?) = §(Kz,u?,v ) =
(K2, u?,0?) =1,
J(Kz,uo,vs) = 6(K2,u3,v°) =0, and
the values of other cases are co.
mark leave (u,v).
3. while all nodes of T' are not marked do
choose an unmarked node (u,v) of T whose
children are marked do
case 1: Suppose that node (u,v) corre-
sponds to the subgraph H of G obtained
by applying a series composition to the sub-
graphs corresponding to its children. Then,
compute all §(H,u%v?), where 0,8 €
{0,1,2, 3}, according to Lemma 4.1.
case 2: Suppose that node (u,v) corre-
sponds to the subgraph H of G obtained by
applying a parallel composition to the sub-
graphs corresponding to its children. Then,
compute all §(H,u®,vP), where a,8 €
{0,1,2,3}, according to Lemma, 4.2.
mark node (u, v).
4. Output min{d(G, t¢, tg)la,ﬂ € {0,1,2}.

Theorem 4.1 The perfect edge domination problem
can be solved in linear time on series-parallel graphs.

5. Conclusions

In this paper, we considered the perfect edge domi-
nation problem in graphs. First, we proved that this
problem is NP-complete on bipartite graphs. Mean-
while, we also showed the perfect (vertex) domination



problem is NP-complete when graphs are restricted to
the class of the line graphs of bipartite graphs, which
equivalent to the perfect claw-free graphs. Finally,
we gave optimal algorithms for solving the perfect
edge domination problem on trees and series-parallel
graphs using the techniques of dynamic programming.
It is unknown that whether the perfect edge domina-
tion problem is polynomial or NP-complete on chordal
graphs or planar graphs. For further research, we are
interested in this problem for other classes of graphs,
such as interval graphs and permutation graphs.
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