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Abstract

An edge ranking of a graph G is a labeling of its
edges with positive integers such that every path be-
tween two edges with the same label i contains an in-
termediate edge with label j > i. An edge ranking
is optimal if it uses the least number of distinct la-
bels among all possible edge rankings. Such a ranking
corresponds to a minimum-height edge-separator tree
of G. The problem of finding an optimal edge rank-
ing has been studied intensively; recent development
has shown that the problem when restricted to trees
s not NP-hard and indeed admits a polynomial-time
solution, yet the complezity of the problem for general
graphs has remained open in the literature. In this pa-
per we settle this open question and prove that finding
an optimal edge ranking of a graph is NP-hard.

1 Introduction

Let G be an undirected graph. An edge ranking
of G is a labeling of its edges with positive integers
such that every path between two edges with the
same label ¢ contains an intermediate edge with la-
bel j-> i. An edge ranking is optimal if it uses the
least number of distinct labels among all possible edge
rankings. Such a ranking corresponds to a minimum-
height edge-separator tree of G. An example is given
in Figure 1. The problem of finding an optimal edge
ranking was first studiedby Iyer, Ratiff, and Vijayan
[8] as they found the problem having an application
in scheduling the assembly of multipart products.

A closely related analogue of edge ranking is vertex
ranking. A vertex ranking of a.graph G is a labeling
of its vertices such that every path between two ver-
tices with the same label 7 contains an intermediate
vertex with label j > i¢. The complexity of finding
an optimal vertex ranking has been well studied. In
particular, Pothen [9] showed that finding an optimal
vertex ranking of graphs is NP-hard, while Schéffer
[10], improving the work of Iyer, Ratiff, and Vijayan
[7], obtained a linear time algorithm for finding an op-
timal node ranking of a tree. In the literature, there
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Figure 1: An optimal edge ranking of a graph and the
corresponding edge-separator tree.

are also a number of polynomial time algorithms for
finding approximately optimal vertex rankings of gen-
eral graphs [2] and different kinds of restricted graphs
such as permutation graphs [4].

The complexity of finding an optimal edge ranking
has been relatively less understood. In the pioneer
work of Iyer, Ratliff, and Vijayan [8], only an approx-
imation algorithm was given for trees; whether finding
an optimal edge ranking of a tree or a graph is in P
or NP-hard was left undetermined. The open ques-
tion for trees was eventually answered by de la Torre,
Greenlaw, and Schiffer [3], who gave an O(n®logn)

time algorithm for finding an optimal edge ranking of

a tree, where n is the number of nodes. Later, Zhou
and Nishizeki [11] showed that the running time can
be improved to O(n? log A), where A is the maximum
degree. With respect to graphs, though there is a gen-
eral belief that finding an optimal ranking is NP-hard
[3, 1, 11], there has not been any significant progress
in the literature. Recently, Bodlaendar et al. [1] found
that the problem of deciding whether a graph G has
an edge ranking using at most a fixed constant of dis-
tinct labels (independent of G) is solvable in linear
time. In this paper we show that the general edge-
ranking problem, which, given a graph G and an in-
teger t, determines whether G has an edge ranking
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using at most # distinct labels, is NP-complete. Thus,
finding an optimal ranking of a graph is NP-hard.

There is indeed a trivial reduction from the edge-
ranking problem to the vertex-ranking problem [1],
but the reverse has not been known. Proving the
NP-completeness of edge ranking seems to be more
difficult than that of the vertex analogue. Such rela-
tionship between edge-based and vertex-based graph
problems is not new in the literature; a typical exam-
ple is the edge coloring [6] versus vertex coloring [5].
In this paper we prove the NP-completeness of edge
ranking by first reducing formula satisfiability to the
edge-ranking problem of multigraphs (Section 4), and
then transforming the latter to the edge-ranking prob-
lem of simple graphs (Section 5).

Given a formula F, we are going to construct a
multigraph G such that F is satisfiable if and only if
G has rank equal to a certain value. G is composed
of a number of subgraphs, each corresponding to a
variable or a clause of F. In Section 3, we discuss
some basic rules of composing graphs that are useful
in the construction.

Before we proceed to the NP-completeness proofs,
we give a few more notations below and introduce
some important and interesting properties of optimal
edge rankings in Section 2.

The symbol 4 is used to denote an edge ranking of
a graph. We define rank(y) (or the rank of ) to be
the number of distinct labels used by 9 and rank(G)
(or the rank of G) to be the number of distinct labels
used by an optimal edge ranking of G.

A multigraph is a graph in which a pair of nodes
can be connected by one or more parallel edges. Note
that the parallel edges between two nodes can form a
path themselves. Thus, all parallel edges between two
nodes must be ranked with distinct labels. Figure 2
gives an optimal edge ranking of a multigraph.

Figure 2: An optimal edge ranking of a multigraph.

2 Preliminary

This section shows that, among all optimal edge
rankings of a graph G, there is one satisfying some
desirable properties. Such a ranking is said to be in a
normal form.

Minimal cut and primitive separator: Let
G = (V, E) be a multigraph. For any C C E, C is an
edge cut of G if the removal of C from G disconnects
G. An edge cut C of G is said to be minimal if the
removal of any subset C’' C C does not disconnect G.
For any minimal cut C of G, the removal of C discon-
nects G into exactly two connected components. Also,
if C contains an edge (u,v), all the parallel edges con-
necting v and v belong to C and the nodes u and v
become disconnected after the removal of C.

Let 9 be an edge ranking of G. Consider the pro-

- cess of removing edges from G in the decreasing order

of the labels given by 9. Recall that the edge with the
biggest label under 9 is unique. After this edge is re-
moved, G either remains connected or is disconnected
into two components. In the former case, the edge
with the second largest label is unique. 'We remove
it from G and so on until G becomes disconnected.
Let ¢ be the label of the last edge removed from G.
We define the primitive separator of ¢ to be the set
of edges that have labels > ¢t under 3. The removal
of the primitive separator from G disconnects it into
exactly two connected components. All edges not in
the primitive separator have labels less than ¢.

Fact: Let 1 be an optimal edge ranking of a graph
G. Let S be the primitive separator of 9 and let G
and G be the connected components after removing
S from G. Then both G; and G5 can be ranked using
at most rank(G) — |S] distinct labels.

We say that v satisfies the minimal cut property if
its primitive separator S forms a minimal cut in G and
the restrictions of 9 to the two connected components
resulting from the removal of C from G also satisfy
the minimal cut property.

Figure 3: The edge ranking in (a) satisfies the minimal
cut property but the one in (b) does not.

Lemma 1 Any multigraph G has an optimal edge
ranking satisfying the minimal cut property.

Proof: The following algorithm shows that, given
an edge ranking v of G, we can rearrange the labels
of the edges such that the resultant ranking satisfies
the minimal cut property.

Let S be the primitive separator of 1 and let S’ C
S be a minimal cut of G. We rearrange the labels



on the edges of S such that S’ receives the biggest
labels. Note that such rearrangement still preserves
the requirement of a ranking. Removing S’ from G
leaves exactly two connected components G| and G5,
If G1 or G}, consists of one or more edges, we proceed
to rearrange the labels on their edges recursively. Let
%' be the resultant ranking of G. As the process above
never introduces new labels, rank(y') = rank(y). If ¢
is optimal then %' is optimal, too. O

Terminal edges and internal edges: In a multi-
graph G, we refer to the degree of a vertex as the
number of edges incident to it (instead of the num-
ber of adjacent vertices). We call an edge a terminal
edge if one of its endpoints has degree one. Other
edges are called internal edges. Intuitively, a termi-
nal edge cannot be the intermidate edge of any path
between two edges and does not deserve a big label.
The following lemma shows the existence of an opti-
mal ranking that does not include any terminal edge
in its primitive separator.

Lemma 2 For any graph G containing at least one
internal edge, G has an optimal edge ranking v satis-
fying the minimal cut property such that the primitive
separator of ¥ contains no terminal edges.

Proof: Let 1 be an optimal edge ranking of G sat-
isfying the minimal cut property. Suppose the primi-
tive separator S of ¢ contains a terminal edge é. Since
the removal of é disconnects its unit degree endpoint
from G, S contains € as its only edge and & gets the
biggest label in 1. In this case, we construct another
optimal edge ranking 4’ for G from % such that é gets
a label 1 as follows:

, 1 ife=¢é
¥(e) = { ¥(e) +1 otherwise.

1" uses the same number of distinct labels as 1 and
€ no longer lies in the primitive separator. Also, v
satisfies the minimal cut property. If the primitive
separator of ¢’ does not contains any terminal edge
then we are done. Otherwise, we can repeat the pro-
cess until we get an optimal edge ranking of G with
an internal edge getting the maximum label. O

More Definitions: An optimal edge ranking 9 is
said to be in a normal form if it satisfies the minimal
cut property and its primitive separator contains no
terminal edges.

Given a multigraph G, the edge multiplicity of an
edge e = (u,v) is the number of parallel edges con-
necting 4 and v in G. The internal edge multiplicity
of G is defined to be the minimum edge multiplicity
over all its internal edges.
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3 Composition of graphs .

In this section, we describe a way to compose
graphs together. The resultant graph will have a
natural lower bound on its rank. The most inter-
esting property of such a composition is that if the
resultant graph can be ranked tightly (i.e. meeting its
lower bound), the individual constituent graphs can
be ranked tightly, too. We first examine the way of
composing two smaller graphs. Then we study a gen-
eralization to compose a sequence of graphs in Section
3.1.

Let G; and G5 be two connected multigraphs. We
construct a bigger multigraph G by connecting G,
and G2 with another multigraph H where V(H) =
Uy U U, U Us for some Uy C V(G1), Uz € V(G2) and
Us N (V(G1) UV(G2)) =8, and E(H) C (U x Uz) U
(U1 x Us) U (Us x Uy). For any C C E(H), C is said
to be a total cut of H if the removal of C from H
disconnects all the vertices in U; from all the vertices
in U,. Figure 4 illustrates a cut and a total cut. Let
fu denote the size of the smallest total cut of H.

Figure 4: (a) and (b) give examples of joining G; and
G, with different H’s. (c) and (d) illustrate cuts of
H. C is a total cut of H but C’ is not.

In the reduction argument to be shown later, the
graphs G1, G2 and H involved are not chosen arbi-
trarily. We know a lower bound on the ranks of G,
and G2 and their internal edge multiplicities are big
enough to exceed the value of fy. The next lemma
shows that, with such assumptions, the graph G also
has a non-trivial lower bound on its ranks.

Lemma 3 Let G be a multigraph formed by con-
necting two multigraphs G; and Gs with another
multigraph H, where G; and G have ranks > k and
internal edge multiplicity > fg + 1. Then rank(G) >
fu+k.
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Proof: We prove Lemma 3 by induction on the
number of edges m in H.

Base Case, m = 1: Obviously, fg = 1. Suppose
on the contrary that there exists a ranking ¢ of G
using no more than k distinct labels. Let e be the
edge in G getting the maximum label under 3. Note
that e is unique. W.L.0O.G., we assume e is not in
G1. Then 9 induces a ranking of G; using at most
k — 1 distinct labels. This contradicts the fact that
the rank of G is at least k.

Induction Step: Suppose the lemma holds when-
ever H has less than m edges. Consider the case when
H has m edges. Let ¥ be an optimal edge ranking of
G in a normal form, and let S denote the primitive
separator of 1. We show that rank(y) > fg + k in
each of the following cases:

Case 1—S ¢ E(H): Suppose S contains an internal
edge e of G;. Let E' be the set of all parallel edges
joining the endpoints of e. Since G; has internal
edge multiplicity greater than fg, |E'| > fu +1.
On the other hand, E' C S (otherwise, S is not a
minimal cut of G); hence, with respect to %, all
other edges in G have a label different from those
of E'. In particular, G5 receives at least k distinct
labels. Thus, rank(y) > |E'| + k > fu +k.

Case 2—S C E(H) and S is a total cut of H:
Note that |S| > fu. Also, Gy contains at least
k distinct labels different from those in S under
9. Therefore, 9 uses at least |S|+k > fu + &k
distinct labels.

Case 3—S C E(H) and S is not a total cut of H:
Suppose we remove S from G, G; and G are still
connected through some proper subgraph H' of
H. Let G' denote the graph formed by connect-
ing G and G2 with H'. Then,

rank(y) > |S|+ rank(G")

> k+ fu

The last inequality follows because a total cut of H'
plus S forms a total cut of H but contains at least
one redundant edge in S. We have completed the
induction and proved Lemma 3. O

Next, we show a useful observation when G can
actually be ranked using fy + k distinct labels.

Lemma 4 Let G1,G2, H and G be multigraphs
defined as in Lemma 3. Suppose rank(G) = fi + k.
Then there exists an optimal edge ranking % of G such
that the primitive separator of ¥ is a minimum total
cut of H. '
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> |S|+ frr + k (by induction hypothesis)

Proof: Let 9 be an optimal edge ranking of G in a
normal form. Its primitive separator S cannot contain
any edges of G; or G2 (otherwise, we can use the
argument in Case 1 of Lemma 3 to prove that 1 uses
more than fg + k distinct labels and a contradiction
occurs). So S'C E(H)

Suppose on the contrary that S is not a total cut of
H. Then removing S from H still leaves a subgraph
H' that can connect G; and G3. Let G’ denote the
resultant graph. Therefore,

rank(y) > ||+ rank(G')
> S|+ fu+k

> fH+k.

(by Lemma 3)

A contradictions occurs. We conclude that S is a total
cut of H.

If S is not a minimum total cut of H then S con-
tains more than fy edges and G, (and G2) is ranked
using less than k labels under 9. Contradiction oc-
curs again and S must be a minimum total cut of H.
[m}

Corollary 5 Let G1,G2, H and G be multigraphs
defined as in Lemma 3. Suppose rank(G) = fg + k.
Then G; and G2 can each be ranked using k& distinct
labels.

3.1 Restricted generalization

In this subsection, we restrict our attention to the
simplest kind of connection graphs H where V/(H) =
{u1,uz} for some u; € V(G1) and uz € V(G2) and
E(H) contains parallel edges between u; and u;. We
generalize the composition of two graphs to construct
a chain-like graph G that is composed of a. sequence of
graphs G1,Ga2, - -+, G54 for some d > 1. As mentioned
before, we will assume all the graphs G; have a known
lower bound on their ranks. Then we can obtain a
lower bound for G, and more importantly, prove that
if G can be ranked tightly, each individual graph G;
can be ranked tightly, too.

For each G;, we choose a particular internal node
u; for connection purpose. Inside G, two consecutive
graphs G;,G;y1 are simply connected by b or more
parallel edges between the two designated nodes u;
and u;y1, where b is some fixed integer. The follow-
ing is a recursive definition of the way we compose a
sequence of graphs to form a chain: For any integers
d >0 and b > 1, define £([G;..G2:¢],b) to be a graph
formed by connecting the graphs £([G1..Gg4-1],b+1)
and L([G3a-141..G24], b+ 1) with b parallel edges be-
tween the nodes uza-1 and uga-14;. If d = 0, the
sequence consists of one single graph and we de-
fine £([G1],b) to be G, itself. Let G be the graph



L([G1..G32],b). Inside G, the multiplicity of the edge
(ui,ui41) is in the range [b..b + d — 1]; thus, G; and
Gi41 are connected by a graph with a total cut of size
at most b+d — 1.

b+2 b+l b+2

Figure 5: The graph G([Gl..Gg],b).

The recursive definition of the chain L([G1..G:], )
involves defining chains of length 27 for j = 0,1,---,d.
Let G; denote the set of chains of length 27, i.e.,

Gi = {L([G(i-1y2i 41-Gizs], b +d —j) | 1 < i < 2777}

Note that a chain in Gj, say, L([G(i-1)2i +1--Gizi], b+
d — j), is formed by joining two chains in G;_i,
namely 5([G(i—1)25 +1--G(2i—1)2i—1], b+d—(j—1)) and
E([G(zi_l)gj—1+1..Gizj], b+d—(j— 1)), with b+d—j
parallel edges.

Obviously, if each G; can be ranked with % distinct
labels then each chain of length 2 in G; can be ranked
with (b+d—1)+k distinct labels (the highest b+d—1
labels are put on the b + d — 1 parallel connection
edges). Similarly, each chain in G, can be ranked with
(b+d— 2)+(b+d— 1)+k distinct labels. In general, for
each j =0,1,---,d, every chain in G; can be ranked
with T'(j) = 1(b+d O +k=35b+31<pc;i(d—
£)+k distinct Iabels So L([G1..G34],b) can be ranked
with T'(d) = db+ JdTQ + k distinct labels.

In many cases we may only know the lower bound
on the rank of each G;. The following lemma derives
a lower bound of rank(G).

Lemma 6 Let G = L([G,..G24],b), where each G;
is a connected multigraph with rank > k and the in-
ternal edge multiplicity of each G; is at least b + d.
Then rank(G) > db+ ﬂdT_l—l +k.

Proof: We prove by induction on 7 = 0,1,---,d
that the ranks of each chain in G; is at least T'(j) =
Jb+ 32 <1<j(d — 1) + k. In particular, when j = d, we
obtain the result that rank(G) > T'(d) = db+ ﬂ%l +
k.

Base case, j = 0: We are dealing with sequences
each consisting of one graph G;. Recall that G; is
assumed to have rank > k. Thus L([G;],b + d) also
has a rank > k.

Induction Step: Consider ;7 > 1. Recall that
every chain £ in G; is formed by joining two chains
Ly and L3 in G;_1 by b+d — j parallel edges. Denote
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by H the graph comprising the b+ d—j parallel edges
between £; and £;. Then fgy =b+d—j.

We would like to apply Lemma 3 to deduce the
lower bound for £, which requires two preconditions.
(i) By the induction hypothesis, the ranks of £; and
Lo are at least T'(j — 1). (ii) Every G; is assumed to
have internal edge multiplicity > b+ d > fg. More-
over, the edges connecting two consecutive G;’s in £;
and £ have multiplicity > b+d—(j—1) > fy. Thus,
by Lemma 3, rank(G) > b+d—j+T(j - 1) = T(j).
O

Lemma 7 Let G = £([G1..G34], b), where each G;
is a connected multigraph with rank > k and the in-
ternal edge multiplicity of each G; is at least b+d. If
rank(G) = db+ 1%;12 + k then each G; can be ranked
using k distinct labels.

Proof: We use backward induction on j = d,d —

-, 0 to prove that every chain in G; can be ranked

using T'(j) = jb+ Xo1<<;(d — 1) + k distinct labels.

Thus, when j = 0, it implies that each individual G;
can be ranked using k distinct labels.

The base case where j = d is trivial. The induction
step is based on Corollary 5. Consider any j < d.
Suppose every chain in G;.1 can be ranked using T'(j+
1) distinct labels. For any chain £; in G;, £; is joined
with another chain £; in G; by b+d — (j+ 1) parallel
edges to form a chain £ in Gj;+;. Denote by H the
graph comprising the b + d — (j + 1) parallel edges
between £; and £o. Then fg =b+d — (j +1). By
supposition, £ hasrank < T(j+1)=b+d—-(j+1)+

TG =fu+T3)

Both £; and £, have internal edge multiplicity >
(b+d-3j) > fg. By Lemma 6, the rank of both
Ly and L, are at least T'(j). So by Corollary 5, both
Ly and L2 can be ranked using no more than T(5)
distinct labels. O

4 Reduction from satisfiability

This section gives a reduction from the satisfiabil-
ity problem (in particular, 3CNF-SAT) [5] to the edge
ranking problem of multigraphs, thus proving the lat-
ter is NP-complete.

Let F be a Boolean formula with n variables
{z1,%2,...,2o} and £ clauses {c1,¢2,-..,c¢} where
¢;i = (i1 + €2 + £;3). Let d be the smallest inte-

.ger such that 2¢ > max{n,¢}. Let b = 3¢+ 1 and
e=b+d+2.

For each variable z;, we construct a variable com-
ponent X; with edge multiplicity € and two designated
nodes z; and Z; as depicted in Figure 6(a).

Fact: The rank of X is exactly 2e. If we attach up to
e simple edges to either z; or Tj, the resultant graph
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Figure 6: A variable component.

still has rank 2e. However, if edges are attached to
both z; and 77, the resultant graph has rank > 2e
(see Figure 6(b) and (c)).

For each clause ¢;, we construct a clause component
C; consisting of two edges with multiplicity € and one
edge with multiplicity € — 2 joined at the node ¢; as
depicted in Figure 7(a).

c; & €
-2
(@)
O-.. C; O-.. C; €
o o
e-2 & -2
(b) ©)

Figure 7: A clause component.

‘Fact: C; has rank exactly 2¢. The rank of the graph
obtained by attaching two simple edges to the node c;
remains 2¢. But the one formed by attaching three or
more edges to ¢; has rank > 2¢ (see Figure 7(b) and

(¢)-

We connect Xi,Xo,...,X, with 2¢ — n dummy
variable components X,1,...,X24 to form a chain,
G1 = £([X1..de],b). AISO, 01,02,...,C¢ are
connected with 2¢ — £ dummy clause components
Ct+1,Ct42,...,Cq to form another chain, Gy =
L([C1,...,Ca4],b). Inside each X; or C;, the internal
edge multiplicity is at least € —2 = b+d. As shown in
Section 3.1, the rank of G; and Gz is db+ ﬂ%l + 2¢.

Let ¢ denote db + -'gd;—ll + 2¢.

Finally, we connect G; and G, to form a multi-

graph G as follows: for each clause ¢; = (£;; + £;2 +
4;3), we create a six-edge connector, as depicted in
Figure 8, connecting the nodes of G; labeled with
;1,4 2,¢; 3 to the node ¢; of G;. The six edges are
denoted by 7i1,742,7:,3,75 1,7 2,7 3- Let H be the
graph comprising all of the connectors .between G,
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- Figure 8: A six-edge connector.

and Gs, and let G be the graph formed by connecting
G, and G2 with H. Figure 9 shows an example of
constructing such a graph.

Figure 9: The graph G for the formula F' = (z +y +
2)(T+y+0)(z+w+u)Z+w+u)Z+T0+u)(y+z+w),
where b= 19,¢ = 24, and ¢ = 108.

The size of a minimum total cut of H is 3¢. The
rank of Gy or G is at least ¢, and their internal edge
multiplicity is at least b > 3¢. By Lemma, 3, rank(G)
>3+t

Lemma 8 F is satisfiable if and only if rank(G) =
30+ ¢, where t = db + 441 4 9¢.

(=) Let A be a satisfiable truth assignment for F.
W.L.O.G., assume the first literal ¢;; in each clause
is true under A. A ranking 9 of G using 3¢ + # dis-
tinct labels is constructed as follows: The primitive
separator S of 1 consists of 3¢ edges from H, namely



Ui {72, 7i 3, 7:1}- The removal of S from G decom-

poses G into two connected components é\l and é;,
where G1 contains G; and all the edges in U,_l {ris1},

and G; consists of G2 and the edges U¢_, {riz>ris}

G1 is still in the form of a chain. More re precisely,

= L([X1,Xs,.. de] b) where each X includes

X and the edges r; ;s attached to the nodes T; or Tj.
Note that an edge r;; is attached to z; if and only
if z; (= ;1) is true under A, and similarly for 7;.
Since either x; or Z is true under A4, it is impossible
to have edges attached to both vertices. Also, there
are at most £ < e edges attached to either z; or Z;.
The rank of each X remains 2e¢. Thus, we can rank

G using t = db+ —@LZ + 2¢ distinct labels.

Similarly, Gz = G([Cl,Cz, ng] b) where C; is
formed by attaching two edges r, 2,743 to the node ¢;

in C;. Again, the rank of each C; is 2e. Thus, we can
rank G, using ¢ distinct labels.

(<«=) Suppose the rank of G is 3£ + t. By Lemma
4, G has an optimal edge ranking 9 such that its
primitive separator S forms a minimum total cut of
H. That is, S contains exactly 3¢ edges from H and
 the removal of S from G disconnects G; from G,.
Then for each ¢ € {1,2,---,£} and k € {1,2,3}, S
contains exactly one of the edges r; and 7} ,.

__Suppose S has been removed from G. Let é’: and
G2 be the two connected components containing G,
and G, respectively. Since rank(G) = 3¢+t and S
contains exactly 3/ edges, the ranks of @; and 6’; are
exactly ¢.

Let X\, be the subgraph in G consisting of X; and
the edges in H — S attached to the nodes T; and Z;
of X;. Since mnlc(X ) = 2¢, we have rank(X ) > 2.
Moreover, rank(Gl) =t= db+M+2e By Lemma
7, each X can be ranked using 2e distinct labels.
Therefore in each X , the edges inherited from H—S§
can attach to the node z; or the node Z7, but not both.

A truth assignment for F is given as follows: For
each variable z;, if the subgraph X; ; gets at least one
edge 7;; attached to the node z;, the variable z;j in
F is assigned the value true. Otherwise, z; is given
the value false.

Below, we explain why this truth assingment sat-
isfies F'. Let C; be the subgraph in G'2 including C;
and the edges in H — S attached to the node ¢;. Since
G> can be ranked using t = db + ii—ll + 2¢ dis-

tinct labels, by Lemma 7, each C has rank exactly
2¢. In each non-dummy C,, at least one of the edges
in {r},,r}q,7}3} must be in the primitive sepa.rator
S and not attached to the node ¢i. Suppose 1], € S.
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Then r;; is attached to a node labeled with £ in
G1, and the literal 4; ; must have assigned true. In
other words, in every clause ¢; = (€1 + £; 2 + £; 3) of
F, at least one literal is getting a value true.

Theorem 9 The edge-ranking problem of multi-
graphs is NP-complete.

Proof: The edge-ranking problem of multigraphs
is in NP because, given any multigraph G and any
integer ¢ > 0, we can guess a ranking 3 of G nonde-
terministically and verify the validity and optimality
of 9 deterministically in polynomial time.

With the construction given at the beginning of
this section, we have shown that finding an optimal
edge ranking for a multigraph is NP-hard (Lemma 8).
So the edge-ranking problem is NP-complete. O

5 Transformation to simple graphs

The edge-ranking problem of simple graphs is obvi-
ously in NP. In what follows, we prove that the edge-
ranking problem for simple graphs is NP-hard, thus
showing the latter is NP-complete.

Theorem 10 The edge-rankmg problem of simple
graphs is NP-complete.

The following describes a polynomial time reduc-
tion from the edge-ranking problem of multigraphs
to that of simple graphs. For any graph G =
(V, E) that possibly contains parallel edges, let V =
{v1,v2,...,v:} and E = {ej,es,...,6x,}. Construct
a simple graph G' = (V',E') by replacing each
vertex v; in G with a clique K; of (m + 2) ver-
tices {v;1,vi2,...,vim+2} and for each edge e, =
(vi,v;) € E, puttlng an edge between the nodes v; ¢
andvﬂmG Formally, V' —{'u,¢|1<z<n1<
£<m+2}and E' = {(vigvip) |1 <i<nl<
2,8 <m+2}U {(vie,v5) | €0 = (vi,v;) € E}.

Claim: rank(G') = rank(G) + k where k is the
rank of a clique of m + 2 vertices.

Proof: (<) Let ¢ and ¢ be the optimal edge
rankings for G and a clique of m + 2 vertices re-
spectively. Construct an edge ranking 7 for G’ such
that for each edge e in Kj, n(e) = p(e) and, for each

= (v;,v;) € E, 77(('”1 121 V5,8 )) = 9(e¢) + k. Then
mnk(r;) = rank()) + k. So rank(G') < rank(G) + k.

(=) In what follows, we will construct an edge rank-
ing of G from an optimal edge ranking of G’ using at
most rank(G') — k distinct labels.

Let N(K;) be the set of inter-clique edges of G’
with one of its endpoints in K;. We show that if 7 is
an optimal edge ranking of G' satisfying the minimal
cut property then, for each K; in G, every edge in K;
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gets a label smaller than all the labels on the edges in
- N(K)). '
Let 57 be an optimal edge ranking of G’ satisfying
. the minimal cut property. As shown before, rank(G')
is at most rank(G) + k. Also, rank(G) is bounded by
m, the number of edges in G. Thus, rank(n) < m+k.
Suppose on the contrary that there exists an edge e of
some K; such that n(e) > n(e’) for some e’ € N(Kj).
- Let ey be the one with the biggest label. - Assume
eo is in K; and n(ep) > n(ey) where e connects K;
to another clique K;. Note that e and the edges
in K; and Kj all receive labels not exceeding 7(eo)-
Consider the graph formed by removing all the edges
with label > 7n(eo) from G'. Obviously, ej and all
edges in K; and K are not removed, and they appear
in the same connected component, say, Q. Let 7q
be the labeling of Q inherited from 7. Below, we
show that ¢ uses at least m 4 1 + k distinct labels
contradicting the fact that rank(n) < m +k.

Because 7 satisfies the minimal cut property, 7¢
also satisfies this property.! We also observe that ep
is the edge in @ having the biggest label. The prim-
itive separator Sg of 7o must contain eg. By the
minimal cut property of 7g, the removal of Sg from
Q must disconnect the endpoints of eg. Since these
two nodes are joined by m + 1 edge disjoint paths in
K;, Sq-must contain least m + 1 edges in Kj, each of
which gets a distinct label. All other edges in Q have
labels different from those on these m + 1 edges. In
particular, K; contains at least k distinct labels differ-
ent from them. So there are at least m+1+k different

.labels in Q and a contradiction occurs. We conclude
that for each K; in G, every edge in K; gets a label
smaller than all the labels on the edges in N(K). for
each1<i<n.

We are now ready to construct a ranking for G.
With respect to an optimal edge ranking 1 of G', ev-
ery K; contains at-least k distinct labels and each
inter-clique edge has label > k under 7. Let ) be an
edge ranking of G such that for each e; = (v;,v;) € E,
P(er) = n((vie, Vo)) — k. Therefore, rank(yp) <
rank(n) — k and rank(G) < rank(G')—k. O

Bodlander et al. have given a close formula for the
ranks of cliques in [1], from which the rank of a clique
of m+ 2 vertices can be determined in O(logm) time.
Note that the graph G’ contains O(nm) vertices and
O(nm?) edges. So the reduction described above can
be computed in polynomial time. This completes the
proof of Theorem 10.

In general, we can prove by induction on £ =
rank(n), rank(n) — 1,--+,1 that if we delete all the edges of
G’ with labels > ¢, the labelmg of each connected component
inherited from 7 still satisfies the minimal cut property.
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