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Abstract

This paper presents a parallel algorithm for find-
ing the minimum spanning tree of a weighted undi-
rected graph in O(lognloglogn) time using n 4+ m
processors on the EREW PRAM. The best previ-
ous known results for this problem run in O(logl'5 n)
time using a linear number of EREW processors, or
O(lognloglogn) time using (n + m)m* processors,
where € > 0 is a constant.

1 Introduction

Let G = (V,E) be a connected, weighted undi-
rected graph. For every edge e € E, denote w(e) the
weight of it. For any spanning tree T of G, the weight
of T is the sum of the weights of all the edges in T.
The minimum spanning tree of G is-the one with the
smallest possible weight. Without loss of generality,
we can assume that the weights of the edges are all
distinct and hence the minimum spanning tree of G
is unique.

The problem of finding minimum spanning trees
has long been an interesting problem in the sequential
context. In a graph with n vertices and m edges, it
‘can be solved in O(mlogB(n,m)) time [5, 6], where
B(n,m) = min{i | log” n < m/n}. In particular,
when m > nlog( n for some constant k, B8(n,m) is
a constant. This problem can also be solved in O(m)
expected time if randomization is allowed [12].

In the parallel context, it is closely related to
the problem of finding the connected components of
an undirected graph. Hirschberg et al.’s [7] algo-
rithm, which was designed to find connected compo-
nents, can be modified to compute minimumspanning

trees in O(log? n) time using n2/logn CREW proces-

sors. Chin et al. [1] explicitly gave an algorithm for
this problem which improved the processor bound to
n?/log® n processors. After Johnson and Metaxas [9]
have developed their O(log"® n) time algorithm for
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finding connected components, they also devise an al-
gorithm for minimum spanning trees which runs in
O(log"® n) time using a linear number of EREW pro-
cessors [10]. Recently, Cole et al. [4] have designed
a randomized algorithm that runs in O(logn) time
using (n + m)/logn CRCW processors.

On the other hand, Karger [11] showed that the
problem of finding minimum spanning trees can be
reduced to that of connected components. This re-
duction implies that the parallel time complexity of
finding minimum spanning trees is no more than that
of connected components. The processor requirement,
however, has to blow up by a factor of m¢ for any
€ > 0. The best known algorithm for finding con-
nected components on the EREW PRAM is given by
Chong and Lam [3], which runs in O(log 2 loglogn)
time using n + m- EREW processors. Thus, with
the reduction technique, we can immediately obtain
an algorithm for minimum spanning trees running in
O(lognloglogn) time using (n + m)m® EREW pro-
cessors, where € is any constant bigger than zero.

In this paper, we present a deterministic parallel al-
gorithm for finding minimum spanning trees. It takes
O(log nloglog n) time using n+m EREW processors.
Our algorithm is based on the idea of growth control
schedule [9, 3] and of the hooking strategy of [10].

Almost all the algorithms for finding connected
components or minimum spanning trees use the hook-
and-contract approach: Initially each vertex repre-
sents a component of itself; then every component re-
peatedly merges (or hooks) together to forim a bigger
one by finding an edge connected to other component.
In the minimum spanning trees algorithms, the edge
chosen by a component to merge is critical (the one
with the minimum weight), while any outgoing edge
can be used in that of connected components.

In those algorithms running in o(log® n) time [9, 3],
they are always only. allowed to examine the adja-
cency lists of vertices in o(logn) time. Thus a compo-
nent may not have enough time to pick the edge with
the minimum weight to merge with others. It looks
unlikely to modify these algorithm to find minimum
spanning trees. Johnson and Metaxas [10] improve
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their connected components algorithm [9] by working
on some partial adjacent lists of the vertices. We gen-
eralize this idea and together with the growth control
schedule in [3] to obtain our algorithm.

Instead of dealing with some partial adjacent lists
[10], our algorithm always works on a subgraph of the
input; yet it also causes our algorithm to be more el-
egant than that of [3]. In performing computation in
a subgraph, we may, however, leave out edges which
are in the minimum spanning tree of the input graph.
Then a component should grow cautiously. To make
sure the computation is correct, we need a scheme
to control the correctness of picking the edges which
must be in the minimum spanning tree. This leads to
our study of threshold graphs. A threshold graph is
a weighted undirected graph in which every vertex is
associated with some predefined value (called thresh-
old). Instead of finding the minimum spanning tree,
we reduce the problem into finding a special set of
edges, called d-forest, in a threshold graph in which
every vertex has degree no more than d, where d <n
is an integer (see Section 4).

The rest of the paper is organized as follows: Sec-
tion 2 provides some basic idea of finding minimum
spanning trees in the parallel context and the frame-
work of our algorithm will also be highlighted. Sec-
tion 3 discusses the basic concept of threshold graph.
Section 4 shows how to choose a “small” degree sub-
graph from a threshold graph such that a d-forest can
easily be augmented into a d-forest of the input. Sec-
tion 5 presents the whole algorithm.

2 Preliminaries

Let G = (V, E). For any set of vertices U C V, an
outgoing edge of U in G is an edge (u,v) € E such
that v € U and v € V — U. The minimum oulgoing
edge of U is defined to be the one with the minimum
weight. Let T be the minimum spanning tree of G.
The following lemma (a similar one appears in [8])
suggests a simple way to find some edges of T}}.

Lemma 1 For any set of vertices U of V, the min-
imum outgoing edge of U must be in T}.

Proof: Let (u, v) be the minimum outgoing edge of
U, where u € U and v € V — U. Suppose on the con-
trary that (u,v) does not belong to T%%. Consider the
path (21,2, -, %;) connecting u to v in T}, where
zy=uand z; =vand ¢ >3. Sinceu €U and v ¢ U,
there is a vertex z; such that ¢; € U and ;41 ¢ U,
for some j < i—1. The edge (x;, 2;4+1) is an outgoing
edge of U but w((z;, zj+1)) > w((u,v)). Then the cy-
cle in T3 U{(u,v)} involves both (u,v) and (zj, 2j41)-

Removing (z;, 2j41) from T; U {(u, v)} forms a span-
ning tree of G' with weight straightly smaller than T.
A contradiction occurs. 0O

Note that the union of the minimum outgoing edge
of every subset of vertices of G is indeed the minimum
spanning tree of it. Instead of enumerating all pos-
sible subsets, which are exponential in number, the
following is a common schema for finding minimum
spanning trees.

By Lemma 1, we can immediately find a set of
edges (with size of at least n/2) which are in T by
choosing the minimum outgoing edge of every vertex
in G. These edges induce a forest in G. We partition
the vertices of G according to these edges such that
two vertices are in the same partition if and only if
they are in the same tree. Also, each partition con-
tains at least two vertices. If there is only one parti-
tion (i.e. one tree only), we have already found all the
edges of T};. Otherwise, we continue to find the edges
of T} in respect of the contracted graph G, which
is constructed as follows: Every tree T; is contracted
into a single vertex r; and r; inherits all the neighbors
of T;. Note that the minimum outgoing edge of »; in
G, is that of T; in G. Again, by Lemma 1, the min-
imum outgoing edge of every vertex in G. is in T3.
Thus we can find the edges of T by repeatedly con-
tracting the graph until there is at most one vertex
remained.

The running time of this simple algorithm is
O(log®n): A fast growing tree, containing as many
as Q(n) vertices, requires Q(logn) time for contract-
ing into a single vertex;.the algorithm has to iterate
[logn] times for the slow growing one which may in-
volve as little as two vertices.

To obtain a better time bound, we adopt the idea of
growth control schedule [9, 10, 3]. We want trees with
different sizes grow at different paces. A slow growing
(small) tree can grow more frequently in o(log n) time
while a fast growing (large) one may left idle until
the slower ones can catch up. However, the time to
contract a tree and to find its minimum outgoing edge
depend on the total length of the adjacency lists of its
vertices. There are cases that a small tree contains as
little as two vertices may have an adjacency list with
©(n) entries. As a result, the tree requires ©(logn)
time to contract and find its minimum outgoing edge.

To alleviate this situation, our algorithm always
considers a.subgraph H of G in which every vertex
has “small” degree and the subgraph captures those
“light” edges. Intuitively, working on such subgraph
is more efficient. For example, if every vertex in H
has no more than s, then a tree with no more than
s vertices can always be contracted in O(logs) time.



However, we face the problem that we may leave out
some edges of T in H. Also, the minimum outgo-
ing edge of a subset of vertices in H may not be in
T3. Thus picking the minimum outgoing edges in H
become insecure. : ,

To make sure the computation is correct, we intro-
duce a scheme that each vertex in H keeps a value
(threshold) which is the weight of the smallest edge
incident to it but has been left out from G. Then a
minimum outgoing edge e of a set of vertices U of H
is in T if w(e) is smaller than the thresholds of all

* the vertices in U (see Section 3).

In order to describe the algorithm in a recursive
manner, we reduce the problem of finding the mini-
mum spanning trees into finding a d-forest in a thresh-
old graph in which every vertex has degree no more
than d, where d < n. The edges in a d-forest partition
the vertices of a threshold graph into a set of trees and
each tree contains at least d vertices or its minimum
outgoing edge does not belong to 7. In Section 4, we
show that by setting the threshold of each vertex in
G appropriately, an n-forest of G is equal to the set

" of edges of T}:. '

2.1 Framework of the algorithm B
Our algorithm is implemented as a recursive prog

cedure, called Branches(H, k), where H is a thresh-"

old graph and k < [loglogn] is an integer. Also,

every vertex in H has degree no more than 2%°.

Branches(H, k) finds a set of edges B which is a 22*.

forest of H. Let d = 22*. Note that each tree induced
by B in H contains at least d vertices or its minimum
outgoing edge does not belong to 7. In particular,
Branches(G, [loglogn]) finds all the edges of T7%.

Branches(H, k) finds a d-forest of H in two phases.
In Phase 1, we find a v/d-forest for H. By choosing
a specific subgraph H' in H with every vertex has
degree no more than v/d (see Section 4), a v/d-forest
of H' can easily be augmented to produce a v/d-forest
for H. Note that some of the trees induced by the
v/d-forest in H may already satisfy the requirement
of a d-forest of H. In Phase 2, we contract those
“small” trees (nevertheless, they contain at least v/d
vertices) in H and recursively find a /d-forest among
the contracted vertices. Then each tree comprising at
least v/d contracted vertices actually involves at least
Vdv/d = d vertices of H.

Next we are going to look at some general proper-
ties of threshold graphs.

3 Threshold graphs

Consider a subgraph H of G. With respect to H,
the minimum outgoing edge of a subset of vertices
may or may not be an edge in T}. To identify easily
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~ which minimum outgoing edges in H are actually in

T, we associate every vertex u in H with a threshold
fi(u).“The threshold of u keeps track on the weight
of the smallest edge of « in G but not in H; if u’s
minimum outgoing edge in H has a weight less than its
threshold then this edge is also «’s minimum outgoing
edge in G.

Definition: An edge e in H is said to be a branch
of H if H contains a subset U of vertices such that e
is the minimum outgoing edge of U in H and w(e) <
£(U), where £,(U) denotes min{f,(u) | u € U}.

By definition, no matter how the thresholds of a
graph H are chosen, a branch of H is also an edge in
the minimum spanning tree of H (i.e. T};). Moreover,
the minimum spanning tree of G .can be obtained by
finding all the branches of G -with some predefined
thresholds—Suppose every vertex u of G is associated
with a threshold +o0, then every minimum outgoing
edge in G is a branch and the set of branches of G
forms T3. '

In general, our algorithm finds the branches for a
threshold graph H by recursively finding branches for
two kinds of smaller threshold graphs: a contracted
graph of H and a subgraph of H. Below, we show
how to set the thresholds in these smaller graphs so
that the branches found in these graphs are actually
branches of H.

Contracted graph: Consider a contracted graph
H, of H, in which each vertex u is contracted from
a subset U of vertices of H and u inherits all neigh-
bors of the vertices in U (if U contains more than
one outgoing edge to the same vertex then u re-
tains the one with the smallest weight). Also, u
inherits the thresholds of all vertices in U; that is,
fis () = min{f,(v) | v € U}. This is to ensure every
branch of H. is also a branch of H.

Lemma 2 Every branch of H, is also a branch of
H.

Proof: Let e be a branch of H.. Suppose ¢ is the
minimum outgoing edge of some subset W of vertices
in H; and w(e) < f; (W). For each vertex u; € W, let
U; be the set of vertices of H contracted to u;, then
fr(wi) = min{f,(v) | v € Ui}, Let X = U, e Ui
Note that e is the minimum outgoing edge of W and
wle) < £ (W) = min{f, (u) | w € W} = £(X).
Thus e is also a branch of H. O

Subgraph: Next, we study the case for setting
the thresholds for a subgraph H' of H so that every
branch of H' is also a branch of H. Intuitively, we
do not want a vertex to pick an edge in H' if an even
smaller edge has been left out. The threshold of each
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vertex u in H', i.e. f,(u), is defined as min({f,(u)} U
{w(e) | € is incident to u in H but e ¢ H'}).

Lemma 3 Every branch of H' is'also a branch of
H.

Proof: Assume on the contrary that H’ has a
branch ‘¢’ which is not a branch of H. Let U be the
subset of vertices of H' such that the minimum out-
going edge of U in H' is ¢’. Then w(e’) < £, (U).
Note that ¢’ is also an outgoing edge of U in H. Since
(U) < £(U), we have w(e') < f(U). If ¢ is not a
branch of H, the minimum outgoing edge of U in H
is another edge ¢ = (u,v) for some v € U. That is,

w(e) < w(e') and e ¢ H'. By definition, f,(u) < w(e)
and f,,(U) < w(e). Therefore, w(e’) > w(e) > £,(U)-
A contradlctlon occurs. 0O
3.1 Exhausted partitions of H

Let us look at another property of a threshold
graph. Suppose we have found some branches of H.
Denote S the set of these branches. The vertices of
H, in respect of S, are partitioned into a set of trees
{T1,Ts,---,T;}, where I > 1. For each T;, if its mini-
mum outgoing edge e in H carries a weight less than
f(T;), we can report e as another branch of H and e
can merge T; with another tree T/, where ¢/ < I. No-
tice that such an edge may not exist for some T; since
T; may have no outgoing edge or the weight of the
minimum outgoing edge of T; is greater than f(T;).

Definition: T; is said to be ezhausted if T; has no
outgoing edge or the weight of the minimum outgoing
edge of T; is greater than f,(T;)

In this case, we may not be able to merge T; with
any other tree. For those T;’s that are not exhausted,
their minimum outgoing edges are branches of H.
Consider @ to be a set comprising one or more of
such branches. S U @ defines another set of trees
{Ry, Ry, - -, R} partitioning the vertices of H. Each
R; is actually composed of one or several 7;’s linked
by their minimum outgoing edges. Note that each R;
may or may not be exhausted.

Lemma 4 Suppose R; is composed of trees
T,y Tjpy ¢+, Tj, linked by their minimum outgoing
edges. If there is a T}, that is exhausted, for some
i < r, then R; is also exhausted in H.

Proof: Let F = {T},,Tj,,--+,T;.}. Note that R;
can have at most one exhausted tree in F because
each tree in F that is not exhausted contributes one
edge in R; and there should be r — 1 of them.

Let Fy be the set of all trees in F' that their min-
imum outgoing edges are incident on Tj,. Let Tj,
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be one of them and note that the minimum outgo-
ing edge e;, of Tj, is also an outgoing edge of Tj;,.
As Tj, is exhausted, w(e;,) > f(T};) and because
wles.) < Ty, we have £(Tj,) < £(T5,)-

Let F» be the set of all trees in F — F; that their
minimum outgoing edges are incident on some tree of
Fy. Let T;, be a tree in Fy and T}, in F; such that the
minimum outgoing edge e;, of Tj, is incident on Tj,.
Similarly, we can show that w(e;,) > w(ej, ) > £(Tj;)
and £(Tj,) < £(T3,).

Repeatedly applying the same argument, we can
show that for every tree T in F', the minimum outgo-
ing edge e of T has weight greater than £ (Tj,) and
5(T;.) < f(T). Then f(R;) = £(Tj;)- Note that the
minimum outgoing edge e; of R; has weight greater
than that of any T € F. Therefore, w(e;) > f(T;;) =
f(R;) and R; is exhausted. O

4 Finding a d-forest

Let H be a threshold graph All the branches of
H can be computed in O(log? n) time using standard
algonthms for minimum spanning trees [7, 1, 8] How-
ever, it is not a trivial task to do it in o(log n) time.
In the following, we define the notion of a d-forest
of H that can be computed efficiently in a recursive
manner. : ’

Definition: Consider S to be a set of branches of
H. Suppose the vertices of H, with respect ‘to S, are
partitioned into the trees {T1,T%,---,Ti}. S is said to
be a d-forest if every T; not exhausted in H contains
at least d vertices.

For example, the set of the minimum outgomg edge
of each vertex u; € H which is not exhausted forms
a 2-forest of H (see Lemma 8). On the other hand,
the minimum spanning tree of G can be obtained by
finding an n-forest in G in which every vertex is asso-
ciated with a threshold +co (see Section 5).

With a d-forest, we have a tight control on the
partitioning of H. Basically, we do not want to have
a tree T; composed of very few (< d) vertices yet it
can be merged with other trees through some “trivial”
branches (the minimum outgoing edge of T3).

To find a d-forest for H, we consider a particular
subgraph H’ in which every vertex has “small” degree.
Intuitively, working on H' is more efficient. Moreover,
H' is chosen in such a way that any d-forest of H’
can easily bé augmented to produce a d-forest for H.
We call such subgraph a d-light subgraph of H, its
definition is as follows:

 Definition: (i) An edge e € H is said to be d-
light if each of its end-points (say, u) contains e as
one of the d smallest edges of it (i.e. |[{¢' € H |
¢’ is incident to u; w(e') < w(e)}| < d). (ii) The d-
light subgraph of H includes all the vertices of H and



all the d-light edges of H. Observe that the degree of
every vertex in H' is at most d. The thresholds of H'
are set as described in Section 3.

Next, let us see how a d-forest of H' can be used to
form a one for H. Consider a d-forest S’ of H'. Sup-
pose S’ partitions the vertices of H' (or equivalently,
H) into a set of trees F = {T,T3,---,Tj}. Note that
any T; exhausted in H' may not be exhausted in H.
If T; is exhausted in H or T; contains more than d
vertices, then it satisfies the requirement of a d-forest
with respect to H. We only need to worry with those
trees that do not fulfill the requirement. The follow-
ing lemma states that, for such a tree the minimum
outgoing edge in H is not included in H’ (i.e., not a
d-light edge); thus we can add one more branch to H
to merge this tree with other trees.

Lemma 5 Let T; € F be a tree that is exhausted
in H' and contains less than d vertices. Then the
minimum outgoing edge of T; in H is not d-light in
H.

Proof: Let e be the minimum outgoing edge of T;
in H. T; is not exhausted in H, so w(e) < £,(T}), i.e.
for any u € T;, w(e) < f,(u). Assume on the contrary
that e is d-light and is included in H’. Then € is an
“outgoing edge of T; in H'. Since 7} contains less than
d vertices, T; must be exhausted in H’ and w(e) >
£.(T:). In other words, there is a vertex v € T} such
that w(e) > £,(v). Since w(e) < £,(v), £,.(v) should
be less than f,(v). In this case, there is an edge e, € H
but not in H' incident to v such that f,(v) > w(e,)
and f,(v) = w(e,). As a result, w(e) > £a(v) =
w(ey). On the other hand, e, is not the minimum
outgoing edge of T; in H, thus e, is an internal edge
of T;. One of the end-points of e, must have at least d
edges, each with weight less than w(e,). These edges
are also internal edges of 7; in H (otherwise, e should
not be the minimum outgoing edge of T;). Therefore,
T; contains at least d vertices. A contradiction occurs.
0
In respect of H, consider all T}’s that are not ex-
hausted and contain less than d vertices; let Q be the
set of the minimum outgoing edges of all these T’s.
Again, §'UQ partitions the vertices of H into a set of
trees {R3, Ra,--+, Rx}. The following lemma shows
that S’ U Q is a d-forest of H.

Lemma 6 For each Rj, if R; is not exhausted in
H then R; contains at least d vertices.

Proof: Let R; be a tree not exhausted in H. As-
sume on the contrary that R; contains less than d ver-
tices. R; is composed of z > 2 trees Tj,, Tj,,---, T},

Joint Conference of 1996 International Computer.Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

linked by their minimum outgoing edges (which are
in @) and contains exactly z — 1 edges. Each T}, is
not exhausted in H (otherwise, by Lemima 4, R; is ex-
hausted). Also, each Tj; contains less than d vertices.
We conclude that each T}, should have contributed its
minimum outgoing edges in H to Q. All these edges
are now internal edges of R;. As R; contains z — 1
edges of @), there must exist two distinct trees T}, and
Tj,, such that their minimum outgoing edges in H ac-
tually refer to the same edge. Let e = (u,v) be this
edge, where v € T}, and v € T;,. By Lemma 5, e is
not a d-light edge, or equivalently, e is not one of the
d smallest edges of one of e’s end points, say, u. On
the other hand, e is the minimum outgoing edge of
Tj;, any edge incident to u with weight less than w(e)
must be internal edges of Tj,, and there are at least d
such edges. Therefore, there are at least d vertices in
Tj;. A contradiction occurs. O

By Lemma 6, S’ U Q is a d-forest of H.
4.1 A generalization

Now we consider a more general scenario in which
our algorithm will encounter. Again, consider H to be
a weighted undirected graph with predefined thresh-
olds. Let U be a set of distinguished wvertices in H.
Intuitively, U denotes some vertices that we are not
interested to process at this moment (for example, U
includes vertices that are exhausted in H). We only
want to consider the smaller graph H \ U and its d-
light subgraph, where H \ U refers to the subgraph of
H induced by the vertices of H that are not in U.

- Let H' be the d-light subgraph of H\ U and §’ a d-
forest of H'. Consider the partitioning of the vertices
of H\ U with respect to S’. Let T be one of the trees
induced. With respect to H, if T is not exhausted
and T contains less than d vertices, we would like to
add the minimum outgoing edge of T' to H (instead
of H\U). Let Q be the set of all these minimum
outgoing edges. Note that @, unlike S’, may involve
edges with end-points in U.

Lemma 7 Let R be any tree induced by S’ UQ on
the vertices of H that does not involve any vertex in
U. If R is not exhausted in H then T contains at least
d vertices.

Proof: The proof is similar to that of Lemma 6.
m]

5 The algorithm

Our algorithm is implemented as a recursive proce-
dure called Branches(H, k); the input H is a thresh-
old graph in which the degree of every vertex is
at most 22°, and the output is a 22‘-forest of H.
Given a graph G with n vertices and m edges, we



Proceedings of International Conference
on Algorithms

find the minimum spanning tree of G by execut-
ing Branches(G, ko), where ko = [loglogn] and the
threshold of every vertex of G is +oo. As to be
shown later, Branches(G, ko) requires time O(ko2*°)
(i.e. O(log nloglog n)) using n+m EREW processors.
Basically, for any k > 0, Branches(H, k) works in
two phases. Let p = 22° (and then \/p = 22'). In
Phase I, we find a ,/p-forest of H recursively. Note
that some of the trees induced by this /p-forest may
have already satisfied the requirement for a p-forest
for H, i.e. they are exhausted in H or contain at least
p vertices. We only need to worry those “small” trees
that are not exhausted (nevertheless, each of them
contains at least ,/p vertices). In Phase II, we con-
tract every such “small” tree into a single vertex and
find a ,/p-forest among these contracted vertices re-
cursively. Roughly speaking, each tree induced by
this new ,/p-forest, if not exhausted, composed of at
least ,/p contracted vertices, thus involving at least p
vertices of H.
procedure Branches(H, k)
Input: a threshold graph H in which the degree of
every vertex is at most p (= 22")
Output: a p-forest of H

if k = 0, find the minimum outgoing edge
of every vertex of H which is not exhausted.
Let S be the set of such edges. return S.
(S is a 2-forest of H.)

else (i.e. k > 0)

Phase I

(a) Let Uy be the set including all ver-
tices that are exhausted in H.
(b) Let H' be the ,/p-light subgraph of
H\U;. Find a ,/p-forest S; of H'
by invoking Branches(H’, k — 1).
(c) For each tree induced by S; on
the vertices of H \ Uy, if it is not
exhausted in H and contains less
‘than ,/p vertices, find its minimum
outgoing edge in H. Let Q)1 be the
set of these edges. (S1UQ, is a
/pforest of H.)

Phase I1

(a) Let Ry, Ry,---, R; be the trees in-
duced by S; U @ on the vertices
of H. Let U, be the set of vertices
belonging to some R; that is ex-
hausted or contains at least p ver-
tices.
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(b) Construct a graph H. from H by
contracting every tree R; that is
not exhausted and contains less
than p vertices into a single vertex.
All vertices in U; remain in H..

Let H" be the ,/p-light subgraph of
H\U,. Find a \/ﬁforest So of H"
by invoking Branches(H", k — 1).
For each tree induced by S3 on
the vertices of H. \ Uy, if it is not
exhausted in H, and contains less
than ,/p vertices, find its minimum
outgoing edge in H.. Let Q2 be the
set of these edges. (S1UQ1US2UQ2
" is a p-forest of H.)

return S; UQ; U S2 U Q3.

(©)

(d)

Let us explain why Branches(H, k) cornputes a p-
forest of H. First of all, we look at the case when
k = 0. Branches(H, 0) reports a set S comprising the
minimum outgoing edges of all vertices not exhausted
in H.

Lemma 8 S is a 2-forest of H.

Proof: Let T be a tree induced by S on the ver-
tices of H. If T is not exhausted in H, by Lemma 4,
every vertex in 7 is not exhausted in H; thus, every
vertex should have contributed its minimum outgoing
edge to S and T must contain at least two vertices.
Therefore, S is a 2-forest of H. O

Assume that Branches(H,k — 1) finds a /p-
forest of H correctly. —Then we can show that
Branches(H, k) does find a p-forest of H. Our proof
is divided into two parts in respect of the two phases
of Branches(H, k). ,

Phase I: In Phase I, we construct two sets of
branches, Sy and Qy, of H. Let F = {Ry, Ry,---, Ri}
be the set of trees induced by S; U@; on the vertices
of H.

Lemma 9 S, U@ is a /p-forest of H.

Proof: Consider any R; in F. If R; involves no
vertex of Uy, then, by Lemma 7, R; is either exhausted
or contains at least ,/p vertices. In case R; involves
some vertex in Uy, we show that R; must be exhausted
in H. Observe that such R; is composed of some trees
T;’s induced by S; on the vertices of H\Uj, as well as.
a vertex of Uy, all linked by some edges of @1, which
are the minimum outgoing edges of T;’s. Each vertex
u € U; can be regarded as a one-vertex tree exhausted
in H. By Lemma 4, R; is exhausted in H.



In conclusion, if each R; is not exhausted in H then
it contains at least \/p vertices. Thus, S; U Q) is a
J/pforest of H. O ,

Phase II: In Phase II, we work on a smaller graph
H,, which is constructed from H by contracting the
vertices of every R; that is not exhausted and contains
less than p vertices into a single vertex. We call such
a vertex in H. a contracted vertex, it corresponds to
at least ,/p vertices of H. Note that the vertices of
Uj, i.e. the vertices of those R;’s that are exhausted
or contain at least p vertices, all remain in H,. Based
on H.\ U;, we compute two sets of branches, S; and
Q-, for H..

Lemma 10 $; U@ U S; U Q> is a p-forest of H.

Proof: Consider the graph H.. Let L C S; U@,
be the branches that make up U;. Let Z be a tree
induced by SoUQ2UL in H,. Recall that each vertex
in H. \ U; is contracted from some vertices (at least
v/P) of H. By expanding each contracted vertex, we
can find the corresponding tree of Z, say, Y, induced
by $1UQ1USz;UQ5 in H and vice versa. We consider
whether Z involves any vertex in Us.

Z does not involve any vertex of U;: By
Lemma 7, Z is exhausted or Z contains at least \/p
vertices of H.. In the former case, Y is also exhausted
in H. In the latter case, Y contains at least \/p,/p = p
vertices of H as each vertex in H; \ Uz is contracted
from at least ,/p vertices of H.

Z involves some vertices of U;: Let u € U,
be such a vertex. According to the construction, u
is participated in a tree R; induced by S; UQ; in H
and R; is either exhausted or has at least p vertices
of H. If R; contains at least p vertices of H, the
corresponding tree Y of Z, of course, contains at least
p vertices. Otherwise, we show that Z is exhausted in
H.. Observe that Z is formed by connecting R; and
a set of trees {X1, X2,+-+,X,} induced by S, in H,
using the minimum outgoing edges of the X;’s (which
are edges of @Q2). By Lemma 4, Z is exhausted in H..
Hence, Y is exhausted in H.

In conclusion, if each Y is not exhausted in H, then
it contains at least p vertices. Therefore, $; U Q; U
S, U@, is a p-forest of H. D

Theorem 11 Branches(G, ko) finds the minimum
spanning tree of G, where ko = [loglogn].

Proof: For every vertex in G, its degree is at most
n < 22" and its threshold is +o0o. By Lemma 10,
Branches(G, ko) finds a 22*°forest of G. Denote §
this 22"°-forest. By definition, every branch in a 22*°-
forest is an edge in the minimum-spanning tree of G.
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Below, we show that the number of trees induced by
S on the vertices of G is exactly one; thus, S spans
all the vertices of G.

Suppose on the contrary that S induces more than
one tree on G. Let T be any one of them. As G is
connected, T" has at least one outgoing edge. Note
that £(T) = +oo. T is not exhausted and contains at
least 22" vertices. Since G is partitioned into more
than one of such trees, it must contain at least 92*o +
1 > n vertices. A contradiction occurs. 0O '

Time complexity: We show that Branches(H, k)
can be done in O(k2¥) time. Let F(k) be the
time complexity of Branches(H,k). For k& = 0,
Branches(H, 0) just finds the minimum outgoing edge
of every vertex. As every vertex has a constant degree
and the branch can be found in constant time using n
EREW processors. Thus F(0) = b for some constant
b>0. '

Consider the case for £ > 1. In Phase I, Step(a), -

identifying the exhausted vertices Uy in H can be done
in O(logp) time by examining the adjacency list of
the vertices. The ,/p-light subgraph of H \ U; can be
constructed as follows: Each vertex selects the first
/P smallest edges from its adjacency list. Thep an
edge e is in H' if both of its copy are selected ¥ its
end-points. Thus H’ can be created in O(logp) time
using a linear number of processors. After finding the
/p-forest Sy in H', we determine whether the size of
each (unrooted) tree induced by S; is smaller than p
vertices. We construct a combined adjacent list for
each tree induced by S; in H in constant time (see
Appendix). Let T be one of the tree induced. We
then test the length of the list using O(logp) time.
Note that every vertex in H has degree no more than
p. If T contains no more than p vertices, its com-
bined adjacent list contains no more than p? entries
and the list can be contracted in the time allowed.
Otherwise, T' must contain more than p vertices and
we do not need to take care of thern in the rest
of Branches(H, k). We find the minimum outgoing
edges of those “small” trees (that are not exhausted
and have no more than p vertices) in H in Step(c).
The minimum outgoing edge of T can be found in
O(logp) time. As a result, Phase I, except for the
recursive call to Branches(H’, k — 1), can be done in
O(log p) time using n + m processors. The computa-
tion in Phase II are similar to that of Phase I and also
can be done within the same resource bound.

Hence the time used in all steps of Branches(H, k),
excluding the two calls of Branches(H, k — 1), is b2*
and therefore

F(k) = 2F(k—1)+b2*
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22F(k —2) + 262"

2XF(0) + kb2*
O(k2%).

For ko = [loglogn], F(ko) = O(lognloglogn).
Therefore, the algorithm runs in O(lognloglogn)
time using n + m EREW processors.
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Appendix

Let H be a graph in which every vertex has degree
of no more than s° for some constant ¢ > 0. Let
S be a set of branches of H. We want to form a
combined adjacency list for each ‘tree T induced by
S, in constant time using a linear number of EREW
Processors.

Figure 1:

We assume that the graph is given in the form of
adjacency lists. We first construct a combined adja-
cency list (a circular linked list) for each tree T' in

- constant time. We adopt the Euler tour technique [8]

as follows: For each edge e € S, let u.and v be its end-
points in H and L(u) and L(v) the adjacency lists of
u and v respectively. In particular, L(u) and L(v) are
circular linked lists, i.e., the last entry of each list is
pointed to the first entry. The entry of e in L{u) set
its nexzt pointer to the next entry of e in L(v), and
vice versa (see Figure 1). Figure 2 gives an example

of a combined adjacency list of a tree.
¥, CI-—CD
il
w

Figure 2:

The combined adjacency list of each tree actually
is an Euler tour of it.



