Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

An Optimal In-Place Parallel Quicksort

Kaijung Chang, Yan Huat Tan, Yaakov Varol, Jiang-Hsing Chu
Department of Computer Science
Southern Illinois University at Carbondale

Carbondale, IL 62901, USA

Abstract

We give a complete analysis of the parallel quick-
sort algorithm which we call partswap. Unlike many
other parallel quicksort algorithms, the partswap al-
gorithm is in-place, that is, no auziliary memory is
needed. We will also show that partswap achieves
mazimal speed-up on the average. Average-case anal-
yses are also given to justify the choice of the load
distribution strategy over a straightforward and seem-
ingly equally efficient load distribution strategy.

1 Introduction

Sorting is one of the most extensively studied sub-
jects in computer science. Many sorting algorithms
{7] have been developed. It is well known that the
lower bound on sequential comparison-based sorting
algorithms is O(nlogn), where n is the size of the
input array. Several sorting algorithms achieve this
lower bound, among them quicksort[4] is one of the
more commonly used. As the lower bound on sort-
ing has been achieved, many researchers have turned
their attention to parallel sorting algorithms [1, 5, 10].

A parallel quicksort algorithm which assigns a pro-
cessor to each item in the array, was developed by
Martel and Gusfield [9]. It runs in O(logn) time,
using an expected O(n®) space on CRCW (concur-
rent read concurrent write) PRAM (parallel random
access machine) with Ogn) processors. A more prac-
tical, quicksort based, algorithm called parallel sort-
ing by regular sampling, PSRS, was proposed by Shi
and Schaeffer [11]. PSRS has a time complexity of
O((n/p)logn + p?log p + (n/p) log p), where p is the
number of processors. The parallel quicksort for the
EREW (exclusive read exclusive write) PRAM model
presented by Zhang and Rao [14] has an expected time
complexity of O((gn /p+logp)logn) and requires O(n)
space. These and other parallel quicksort algorithms
[8] seek to engage all available processors in useful and
non-overlapping work from start to finish. One way
to accomplish this is to partition and distribute the
data among the processors. A well known hypercube
formulation of this approach called hyperquicksort was
given by Wagar [12]. Another formulation called para-
sort proposed by Wheat and Evans [13] uses two way
merging of sorted partitions and is geared to shared
memory multiprocessors.

Brown and Xiong [2] presented pquicksort, which
initially assigns items evenly among the processors in

an interleaving manner. A pivot is chosen and broad-
cast to every processor. Each processor partitions its
own items and then swaps are performed so that the
whole array is partitioned around the pivot. Recur-
sively apply this process to all partitions until the
entire array is sorted. Three procedures for swapping
were proposed and discussed by the authors. Two of
the swapping procedures require O(n) auxiliary space
and the third one, although it requires only a constant
amount of additional space, is less efficient because it
uses producer-consumer style procedures.

We proposed a new parallel quicksort algorithm (3]
which we call partswap for the EREW PRAM model.
It is a variation of pquicksort, but runs efficiently
without the need for O(n) additional space. Both
partswap and pquicksort assign items to processors
In an interleaving manner. The main difference be-
tween them is the way that items are swapped in the
partitioning process. The partswap swaps items in
iterations, and maintains the interleaving structure
throughout the iterations. The partswap algorithm
is similar to hyperquicksort in principle, but is de-
signed for shared memory multiprocessors. We will
show that the partswap algorithm achieves maximal
speed-up on the average. The efficiency of partswap
is due to its load distribution strategy. We will give
a complete analysis to prove why the chosen load dis-
tribution strategy outperforms a straightforward and
seemingly equally efficient load distribution strategy.

2 Partswap — A New Parallel Quick-

sort
In this section we present a new parallel quicksort al-
gorithm, partswap, which achieves maximal speed-up
on the average and does not require additional mem-
ory space. Recall that the process of quicksort is sim-
ply a series of partitionings. Generally, there are two
approaches to parallelizing the quicksort algorithm.
One approach lets processors work on different parti-
tionings in parallel; the other lets all processors work
on the same partitioning. Our algorithm is a com-
bination of both approaches. At the beginning, all
processors work together to partition the input array.
After the input array is partitioned into two subar-
rays, half of the processors work on one subarray and
the other half of the processors work on the other sub-
array. Eventually, each processor works on its own
subarray.

Proceedings of International Conference
on Algorithms

Since our new algorithm can be made to work with
any load distribution strategies, we will discuss our
load distribution strategy separately. The following
steps are the outline of the partswap algorithm.

Load Distribution: assign items in the subarray to
the processors for partitioning.

Initial Partitioning: choose a pivot and broadcast
it to the processors, each processor then em-
ploys a sequential partition algorithm to parti-
tion items assigned to it around the pivot. Af-
ter this step, each group of items assigned to the
same processor is partitioned, but the subarray
as a whole is not partitioned. Swaps are needed
in order for the subarray to become partitioned.

Swapping: processors swap items so that the sub-
array is partitioned around the pivot. This is
done by repeatedly combining two groups of par-
titioned items into a larger group of partitioned
items until there is only one group left. Since
pairs of groups can be combined in parallel, after
each iteration, the number of groups is halved,
while the number of processors. working on each
group is doubled. If there are p processors to par-
tition a subarray, then it takes log, p iterations of

~ swaps to partition the subarray into two smaller
subarrays. :

Recursion: divide processors into two groups, one
group of processors continue working on one of
the subarrays while the other group of processors
continue working on the other subarray. When
there is only one processor left, this processor will
be responsible for sorting the entire subarray all
by itself.

The choice of a pivot could be made elaborate and
if chosen properly could improve load balancing and
thereby complexity. However, pivot selection is not
the focus of this paper and we could simply take it to
be the first item in the subarray. Pivot broadcasting
can become the bottleneck of this algorithm when the
number of processors is large. In such a case, we can
let all processors select a pivot using the same scheme
and thus avoid the cost of broadcasting. Therefore,
in our complexity analysis, the cost for broadcasting
the pivot will be ignored.

As mentioned earlier, we did not describe the load
distribution strategy in the Load Distribution step be-
cause our algorithm can work with any load distribu-
tion strategies. Naturally, the way processors cooper-
ate with each other in the Swapping step would de-
pend on the load distribution strategy. We will now
discuss the load distribution strategy that is used in
partswap.

2.1 Interleaving Load Distribution Strat-
egy

Suppose there are p processors Po, P1, ..., Pp-1,

where p = 2F for some integer k, and the subarray

Allow, high] is to be partitioned. A load distribution
strategy, which we call interleaving strategy, assigns
the first and every other p items to the first processor,
the second and every other p items to the next pro-
cessor, and so on. In other words, we assign A[low],
Allow + p], Allow + 2p], ... to Py, and Allow + 1,
Allow +p+1], Allow+2p+1], ... to Py, and so on.

In the Swapping step, processors will work together
as if they were grouped in a hypercube formulation,
from the highest dimension to the lowest dimension.

Tn the first 1teration of the Swapping step, processors

Py and P,;3 work together, processors Py and Ppjo41
work together, and so on. In the second iteration,
processors Po, Ppj4, Pp2, and Psp/s work together,
processors Py, Ppjay1, Ppja41, and Paprata work to-
gether, and so on. This may seem complex at the first
glance, but it is really easy if the indices are viewed as

‘binary numbers. In iteration ¢, all processors whose

indices (represented in binary) have the same right-
most k — 7 bits are in the same group.

2.2 An Example

We now illustrate how our algorithm works by show-
ing the first partitioning step by step. Assume we have
4 processors, Py through Ps, to partition 24 items with
indices from 0 to 23 shown in the following array.

3 147 9 1 1 4
In the Load Distribution step, we assign items with
indices 0, 4, 8, ..., 20 to P,, items with indices 1, 5,
9, ..., 21 to P, items with indices 2, 6, 10, ..., 22 to
P,, and items with indices 3, 7, 11, ..., 23 to Ps.

P k9 fr9 82

Py] e} by
P; 74 13 @
Ps 4 bl

In the Initial Partitioning step, the pivot, 43, is
chosen as the pivot and each processor partitions the
items assigned to it around the pivot. In the figures,
the items which are less than or equal to the pivot are
lightly shaded while the items which are greater than
the pivot are heavily shaded.

o
o2,

i3
P

In the Swapping step, we perform iterations of
swapping. In the first iteration, Py works with P,
while P; work with P;. Note that in this iteration,
only the items 21 74 have to be swapped. After swap-

ping, we have

P23
Pia ks

In the next iteration, which is the last iteration
for this example, the items 74, 85, and 79 have to be
swapped with the items 16, 4, and 25. After swapping,
we have

The Recursion step brings us to next stage, where
processors Py and P; will work together to partition
the first. subarray, while processors P, and P; will
work together to partition the second subarray.

2.3 Complexity Analysis

We now analyze the partswap algorithm. We will first
study the time steps without considering the recursive
calls. Later we will sum over all levels of recursion to
obtain the total number of time steps. With this ap-
proach, only Initial Partitioning and Swapping con-
tribute time steps.

Let us begin with the number of time steps required
in the Swapping step. First we consider the expected
number of swaps when combining two subarrays of
items, each of size m/2. Let Iy and I be the number
of the items that are less than or equal to the pivot in
the two subarrays to be combined. Given l; and Is,
the number of swaps needed is |[(I; — 11)/2]].

Given that the pivot is chosen randomly, The prob-
ability

() Gt

m (mn;z)

It is obvious that the probabilities Pr(ly = i,1; = j)
and Pr(ly = j,ly = i) are equal due to symmetry.
Therefore, when computing the expected number of
swaps, the contribution from the cases (I} = i,l, =
4) and (I = j,lo = i) can be considered altogether.
Without loss of gererality, let us assume that I, > I.
Then we have

T2 = 1)/21 + 1[(h — 2)/2]] = b2 — 1.

Therefore, the expected number of swaps is

Pr(ly =il =j) =

mf2j-1

SO G —)Pr(l =4l = j)

i=1i=0
which is equal to
N G
>0 G- 2)_*",,—)—~
j=11i=0 m mf2
The following summation

5 =05 () 2 e

05i<j

Joint Conference of 1996 international Computer Symposium
December 18~21, Kaohsiung, Taiwan, R.0.C.

related to the analysis of shellsort can be found in [7,
p599), from which we obtain

jég(j = (Z i j) (Tn./.;: zj> =m2"%,

It follows that the expected number of swaps needed
to combine two size m/2 subarrays is

2m—3
(mn;Z) l

From [6], we know that

mN2m
m/2~1'2ﬂ

and therefore,

Now we can use the above formula on expected
number of swaps to compute the number of time steps.
Assume there are g processors to partition a subarray
of size m. In the first iteration, processors work in
parallel as groups of two on combining two size m/q
subarrays. From what we derived above, we know

there are \/mm/64q swaps (which can be shared by

two processors without overhead) to be done within
each group. In the second iteration, each group has 4
processors to work on combining two size 2m/q sub-
arrays, and so on. Table 1 summarizes the number of
time steps required in each iteration.

iteration | p | size swaps time steps
1 2| m/q | Jam/64q.| +\/7m/q
2 4 | 2m/q | \/7m/32q 15 75/ T™m/q
3|8 4mjq | \Jrm/16q | &L /rm]q
logg | q| m/2 | \/7m/128 %5% mm/q
Table 1: Number of time steps required by iterations

(interleaving)

The total number of time steps is

T V2
%\/;(1-{--\%4-‘..-{-7-;),
which is O (/m/g).

In our analysis, the number of time steps decreases
in a factor of 1/1/2 as the algorithm proceeds to next

Proceedings of International Conference
on Algorithms

iternation. Note that the expected number of steps we
obtained is smaller than what it should be because we
assume that the swaps occur evenly among the subar-
rays. In reality, some subarrays will have more swaps
than the others. Nevertheless, the number of time
steps still decreases in a factor less than 1. Conse-
quently, our analysis is correct in terms of Big-O.

Recall that the above result is only the expected
number of time steps in the Swapping step, assuming
g processors are partitioning two size m/2 subarrays.
We need to compute the number of time steps re-
quired in the Initial Partitioning step too. The time
steps needed in the Initial Partitioning step is obvi-
ously proportional to the number of items that are
assigned to each processor. Assume there are p pro-
cessors to sort an array of n items and the items are
equally partitioned in each level. With this assump-
tion, the number of time steps required in the Initial
Partition step is always O(n/p) in every level because
the number of items assigned to each processor re-
mains a constant. Because the ratio of the number of
items in a subarray to the number of processors work-
ing on the subarray is fixed, the number of time steps
required in the Swapping step also remains constant
until when there is only one processor left to partition
a subarray, i.e., levels deeper than logp. Table 2 gives
the number of time steps needed by the partswap al-
gorithm. They are listed by levels of recursion.

Tevels | Partitioning | Swapping
AL
x| Su |
ogn_|_O(nfp) | 0

Table 2: I*fumber of time steps by levels

Summing over all levels of recursion, we have the
expected complexity of the partswap algorithm, which

O((n/p)logn + /n/plogp).

We note that partswap has the performance compa-
rable to other parallel quicksort algorithms, and the
advantage of not requiring auxiliary memory. The
partswap algorithm achieves maximal speed-up when
p is smaller than or comparable to n.

3 Segmentation

One obvious question is why one would use the inter-
leaving strategy. A natural and simpler load distribu-
" tion strategy, called segmentation, simply assigns the
first segment of n/p items to the first processor, next
segment of items to the next processor, and so on.
That is, assign Aflow)], Aflow+1], ..., Allow+p—1]

to Py, and A[low+p], Allow+p+1], ..., Allow+2p-1]
to P, and so on.

The pairing of the processors is easier than that of
the interleaving strategy. In the first iteration of the
Swapping step, processors Py and P; work together,
processors Py and P3 work together, and so on. In the
second iteration, processors Py, Py, P2, and P; work
together, processors Py, Ps, Ps, and P; work together,
and so on. In general, in the kth iteration, the first
2% processors work together, the next 2¥ processors
work together, and so on.

We now illustrate how our algorithm works by
showing the first partitioning, step by step. Assume
we have 4 processors, Py through P3, to partition 24
items with indices from 0 to 23. Suppose we want to
partition the given array:

Since we are using the segmentation method, in the
Load Partitioning step, items with indices 0,1, ..., 5
are distributed to processor 0, items with indices 6,
7, ..., 11 are distributed to processor 1, items with
indices 12, 13, ..., 17 are distributed to processor 2,
and items with indices 18, 19, ..., 23 are distributed
to processor 3.

P (741 514901 241 381
P
Py

In the Initial Partitioning step, the pivot, 43, is
broadcast to all processors and each processor parti-
tions its part of the array around the pivot.

In the Swapping step, we perform iterations of
swapping. In the first iteration, processors Py and
Py are working together, processors P, and Pj are
working together. Note that in this iteration, 4 swaps
are needed. After swapping, we have

LR ETTAERE
Ps

B

In the next iteration, which is the lasi iteration in
this example, all processors are working together, and
5 swaps are needed. We have

The Recursion step brings us to next stage, where
processors Py and P; will work together to partition
the first subarray, while processors P, and P3 will
work together to partition the second subarray.

It would seem that the segmentation strategy is as
efficient as the interleaving strategy. However, the fol-
lowing analysis will show otherwise.

3.1 Analysis of Segmentation Strategy

Note that the change of load distribution strategy will
only affect the number of time steps required in the
Swapping steps. In order to compute the number of
time steps required in the Swapping steps, we will
consider the expected number of swaps when combin-
ing two subarrays of items, each of size mf2. Let I
and I be the number of the items that are less than
or equal to the pivot in the two subarrays to be com-
bined. Given l; and Iy, the number of swaps needed
is the minimum of I3 and m/2 — l;. In the following
table, we show the number of swaps needed for differ-
ent values of Iy and 5. '

i~ foli]2 m/2—1] m2 |
0 0112 m2—1] m/2
1 01112 mf2—1]m/2-1
2 01112 mf2—2 | m/2—2
3 01112 mf2—-3 | m/2-3
4 0112 m/2—4 | m/3—4

m/2=T 011 i i
m/2_ 0100 0 0

Table 3: Number of swaps needed in the segmentation
strategy

The following observations can be made about Ta-
ble 3. First, if we trace the diagonals going from lower-
left to upper-right, i.e., the entries with l; + 1 = X
for some X, we have the series 0, 1, 2, etc. Second,
for the diagonals in the upper half, these values coin-
cide with the I, values. Third, the table is symmetric
about the I; + I = m/2 diagonal.

Let L be a random variable whose value is the num-
ber of items that are less than or equal to the pivot.
Note that the probabilities Pr(L = X) = 1/m, for
1 < X < m, since every item is equally likely to be
picked as the pivot. It follows that for any j < m/2,

) (a2
Pr(ly = §|L = X) = L2020
: m/2)

Because Pr(l, = jIL = X) = Pr(ly = j|lL = m -
X) and the symmetry property mentioned earlier, we
only need to focus on the upper half of the table. For
each such diagonal for some X, its contribution to the

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C. ‘

expected number of swaps is

X
> i Pr(ly=j|L = X) - Pr(L = X),
j=0

which can be reduced to

XD Grt) 1 &G R
(mj2)m m 2)
j=0 \m/2)m j=t \m/2
_ LZX:X 1) (7a2))
m j=1 m—ﬂl—/z mﬂ;;—}l)
_ x EOGEEN)
‘?'mjl:o (mr7;-31
- X
~ 2m

The last step in the derivation was obtained because
the summation of all probabilities of a distribution is
1. Thus, from the symmetry, the expected number of
swaps is '

o X 2 _ eX_ 3%
= 2m 2m = m 2m
_ L(%"(%“”)__’"_)
m 2 4
_m
)

Now we can use the above results on expected num-

ber of swaps to compute the number of time steps.
Assume there are g processors to partition a subarray
of size m. In the first iteration, processors work in
parallel as groups of two on combining two size m/q
subarrays. From what we derived above, we know
that there are 2m/8q swaps to be done within each
group, where work can be shared by two processors
without overhead. In the second iteration, each group
has 4 processors to work on combining two size 2m/q
subarrays, and so on. Table 4 lists the number of time
steps required in each iteration.

1teration | p | size swaps | time steps
1 2 | m/q | 2m/8q m/8q
2 4 1 2m/q | 4m/8q m/8q
3 8 | 4m/q | 8m/8q m/8q
log ¢ q m./2 m78 m / 8¢

Table 4: Number of time steps required by iterations
(segmentation)

Thus, the expected number of time

. steps
in the Swapping step is (m/8¢)logyg,

which is

-

Proceedings of International Conference
on Algorithms

O((m/q)logq). This result is definitely worse than

O(y/m/q), which is what we got for the interleaving
strategy.

If the segmentation strategy were used, the time
complexity of our algorithm would become

O((n/p)logn + (n/p)(log p)?),

assuming p processors are used to sort an array of size
n.

Obviously both strategies will have similar perfor-
mance when n > p since the number of time steps
performed in the Swapping step in not the dominating
factor in this case. However, the interleaving strategy
outperforms the segmentation strategy when p is com-
parable to or smaller than n.

This can be explained as follows. Consider the best
cases when combining two subarrays. If the segmenta-
tion strategy is used, the best cases are when [; = n/2
or I = 0. In contrast, if the interleaving strategy
is used, the best cases are when I; and I, are close.
Given a random input, it is more likely that I; is close
to I;. The interleaving strategy takes advantage of
this situation and that is why it outperforms the seg-
mentation strategy on the average.

4 Conclusion

We developed a new in-place parallel quicksort al-
gorithm called partswap. In partswap, we have all
processors working on the same partitioning at first.
After the partitioning is done, half of the processors
will work on one partition and the other half of the
processors will go on to work on the other partition.
This repeats until all processors are working on differ-
ent partitions at the same time. From then on, each
processor is responsible for sorting its own partition
all by itself. This algorithm has a good performance
comparable to other well known parallel quicksort al-
gorithms, plus the advantage of not needing auxiliary
mernory.

Note the performance of this algorithm is greatly
dependent on how the array is actually partitioned.
Eventually, each processor is given a subarray to sort.
If all subarrays are of the same size, all processors
will finish about at the same time and we will be able
to achieve the best speedup. When the array is not
partitioned evenly, the performance of our new algo-
rithm suffers, because processors with smaller subar-
rays will finish early and become idle while processors
with larger subarrays will have to work longer. Thus
the speedup will not be good. It would be prefer-
able to enhance our algorithm so that those proces-
sors which are given a small subarray can help other
processors after they finish their own subarrays. Al-
ternatively, at the early stage, when a subarray is not
partitioned evenly, we could assign more processors
to work on the larger partition and less processors to
work on the smaller partition.

We use the interleaving load distribution strategy
in partswap. Our analyses showed why the segmenta-
tion strategy does not work as well compared to the
Interleave strategy. Since the segmentation strategy
is commonly used and is also related to the divide-
and-conquer technique, it would be interesting to see
if ﬁlterleaving will prove to be useful in other algo-
rithms.

References
(1] S. G. Akl. The Design and Analysis of Parallel
Algorithms. Prentice-Hall, Englewood Cliffs, NJ,
1989.

[2] T. Brown and R. Xiong. A parallel quicksort
algorithm. Journal of Parallel and Distributed
Computing, 19(10):83-89, Oct. 1993.

[3] K. Chang, Y. H. Tan, Y. Varol, and J.-H. Chu.
Analysis of load partitioning: Segmentation vs.
interleave. In Proc. 7th IASTED/ISMM Interna-
tional Conference, pages 202-206, ‘Washington,
D.C., Oct. 1995. IASTED.

[4] C. A. R. Hoare. Quicksort. The Computer Jour-
nal, 5:10-15, 1962,

[5] 3. J4J4. An Introduction to Parallel Algorithms.
Addison-Wesley, Reading, MA., 1992.

(6] D. E. Knuth. The Art of Computer Pro-
gramming: Fundamental Algorithms, volume 1.
Addison-Wesley, Reading, MA., 1973.

(7] D. E. Knuth. The Art of Computer Program-
ming: Sorting and Searching, volume 3. Addison-
Wesley, Reading, MA., 1973.

(8] V. Kumar, A. Grama, A. Gupta, and G. Karyris.
Introduction to Parallel Computing. Ben-
jamin/Cummings, Redwood City, California,
1994.

(9] C. U. Martel and D. Gusfield. A fast parallel
quicksort algorithm. Information Processing Let-
ters, 30:97-102, Jan. 1989.

[10] M. J. Quinn. Parallel Computing, Theory and
Practice. McGraw-Hill, New York, NY., 1994.

[11] H. Shi and J. Schaeffer. Parallel sorting by regu-
lar sampling. Journal of Parallel and Distributed
Computing, 14:361-372, 1992.

[12] B. A. Wagar. Hyperquicksort: A fast sorting
algorithms for hypercubes. In Proceedings of
the Second Conference on Hypercube Multipro-
cessors, pages 292-299, 1987.

(13] M. Wheat and D. J. Evans. An efficient parallel
sorting algorithm for shared memory multipro-
cessors. Parallel Computing, 18(1):91-102, Jan.
1992.

[14] W. Zhang and N. S. V. Rao. Optimal parallel
" quicksort on erew pram. B.LT., 31:69-74, 1991.

