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Abstract

In this paper, we have proposed truth-qualified
fuzzy propositions as the representation of uncertain
vague information where the fuzzy seis embody the
intended meaning of imprecise informaiion and the
fuzzy truth values serve as the representation of un-
certainty. We have developed an inference mechanism
for fuzzy propositions with fuzzy truth values. There
are three steps tnvolved. First, the fuzzy rules and
fuzzy facts with fuzzy truth values are transformed into
a set of uncertain classical propositions with necessity
and possibility measures by means of A-cut. Second,
our proposed inference called possibilistic entailment
is performed on the set of unceriain classical proposi-
tions. Third, we reverse the process in the first step
to synthesize all the A-level-sets obtained in the sec-
ond step into a fuzzy set, and 1o compose necessity and
possibility pairs to form a fuzzy truth value. Compared
with the existing work, our approach does not impose
any restriction on the inference mechanism, that is,
the intended meaning is not required to be unchanged;
meanwhile, the confidence level can be partially cer-
tain. The proposed approach is not only a general-
1zation of Zadeh’s generalized modus ponens but also
an uncertain reasoning for classical propositions with
necessity and possibility pairs.

1 Introduction

Considerable expert systems have been developed
in recent years[8] £9] 10}. Two of the most important
components in rule-based expert systems are: knowl-
edge base and inference engine, which serve the pur-
pose of inferring a useful conclusion from established
rules by experts and users’ observed facts. However,
certain and precise knowledge are not always available
for human experts to establish knowledge base; fur-
thermore, users’ observations are sometimes uncertain
and imprecise. Therefore, an adequate management
of uncertainty and imprecision pervading in the rule
base and the data base of expert systems has become
a significant issue[2)].

The distinction between imprecise and uncertain
information can be best explained by the canonical
form representation (i.e. a quadruple of attribute,
object, value, confidence) proposed by Dubois and
Prade[4]. Imprecision implies the absence of a sharp
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boundary of the value component of the quadruple;
whereas, uncertainty is related to the confidence com-
ponent of the quadruple which is an indication of our
reliance about the information. Information is labeled
as being imperfect if the imprecision and uncertainty
simultaneously occur.

In order to perform reasoning for both impre-
cise and uncertain information, two important issues
should be addressed. First, any- improvement of the
confidence level for a piece of information can only be
achieved at the expense of the specificity of the in-
formation; and vise verse[14]. Second, the matching
between a fact and the premise of a rule is not ex-
act, but only partial[15]. We have roughly classified
the existing approaches in dealing with both impre-
cise and uncertain information into three categories
based on their treatments for the two issues.

¢ An uncertainty-qualified fuzzy proposition is
translated into a proposition whose confidence
level is certain but with less specific information,
while partial matching is to modify the intended
meaning of conclusions. This approach was ad-
vocated by Zadeh[15]. Zadeh proposed three
uncertainty-qualifications for fuzzy propositions:
probability-, possibility- and truth-qualifiers.

e The degree of partial matching is to influence the
confidence level of conclusions (i.e. a truncation
will occur), which was adopted by researchers
such as Ogawa et al.[13], Martin-Clouair et
al.[11]. Ogawa combined certainty factors and
fuzzy sets to represent uncertain and impre-
cise information in an expert system SPERIL-2.
Martin-Clouair attached possibility and necessity
degrees to fuzzy propositions.

¢ No partial matching is allowed in Godo et al.[7].
Godo used the fuzzy truth value as uncertainty-
qualifier of fuzzy propositions.

Notice that the first kind of research results in a com-
pletely certain conclusion whose intended meaning
has been changed. On the other hand, the second
one produces a new confidence level for a conclusion
without modifying its intended meaning. The third
one can be viewed as a special case of the second one.



It is obvious that these inference strategies are some-
what limited due to the fact that either the intended
meaning is required to be unchanged, or the confi-
dence level has to be completely certain.

In this paper, we propose the use of fuzzy truth
values and fuzzy sets for representing uncertain and
imprecise information, respectively. The fuzzy truth
value is adopted for its capability to express the pos-
sibility of the degree of truth of a fuzzy proposition.
We have developed an inference mechanism for fuzzy
propositions with fuzzy truth values. There are three
steps involved. First, the fuzzy rules and fuzzy facts
with fuzzy truth values are transformed into a set
of uncertain classical propositions with necessity and
possibility measures by means of A-cut. Second, an
our proposed inference called possibilistic entailment
is performed on the set of uncertain classical proposi-
tions. Third, we reverse the process in the first step to
synthesize all the A-level-sets obtained in the second
step into a fuzzy set, and to compose necessity and
possibility pairs to form a fuzzy truth value.

The organization of this paper is as follows. The
representation of uncertain vague propositions and its
semantics are defined in the next section. In section
3, an algorithm for inference strategy is developed.
Finally, a summary of our approach and its potential
benefits are given in the section 4.

2 Representation

A classical proposition is true in some possible
worlds and false in the rest of possible worlds, while
a fuzzy proposition p is true with respect to a possi-
ble world to a degree[6]. We model our uncertainty
about the actual world by defining a possibility dis-
tribution over all possible worlds to specify the possi-
bility that the actual world is in each possible world.
Esteva et al.[6] have extended Dubois and Prades’ def-
inition about the possibility and necessity measures of
classical propositions to the case of fuzzy propositions
through fuzzy truth values. Given a possibility distri-
bution 7 on the set of possible worlds 2, the mem-
be[rs]hip function of a fuzzy truth value of p is defined
as[1]:

fr (gl (t) = Supwea{m(w)lus(w) =t} t€[0,1] (1)

where p5 denote the fuzzy set of possible worlds of p
in Q, w is a possible world and ¢ is the degree of truth.
7(p|r) can be viewed as the possibility measure of a
set of possible worlds in which the truth degree of p
is equivalent to t, that is,[6]

tr(pimy (1) = M {w € Qlus(w) =t}; t€[0,1] (2)

To represent uncertain vague information, we have
chosen a fuzzy proposition with a fuzzy valuation, de-
noted as ‘

(B,7)
where p is a fuzzy proposition of the form “X is F”
(i.e. X is a variable and F is a fuzzy set in a uni-
verse U), and 7 is a fuzzy valuation. It should be
noted that, for every formula (p, 1) (called a truth-
qualified fuzzy proposition), we assume 7 > 7(p|7),
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Figure 1: A fuzzy truth value

which means p.(t) is the upper bound of the possi-
bility that 7 is true to a degree t. The fuzzy set is to
represent the intended meaning of imprecise informa-
tion; while, the fuzzy truth value serves as the repre-
sentation of uncertainty for its capability to express
the possibility of the degree of truth.

To develop inference rules for truth-qualified fuzzy
propositions, we have treated a truth-qualified fuzzy
proposition as a set of weighted classical propositions,
in which the weight is represented using necessity and
possibility measures. For the purpose of explaining
how a set of weighted classical propositions are in-
duced from a truth-qualified fuzzy proposition, we
first introduce the notion of l-cut.

Definition 1 The crisp set of elements whose degree

of membership in the fuzzy set F are | is called the
l-level-set:

= A
Fiy = {u€e€Ulpp(u) =1}
where U is the universe of discourse.

Based on definition 1, we can derive the following in-
equality:

e (t) > M[Fy), t €10,1] '(3)

Thus, equation (3) can be interpreted as: The upper
bound of the possibility measure of “X is l*:'(t)” is
pr(t)- . .

It is obvious that a A-level-set F» of F'is a union
of some Illevel-sets, i.e. F\x = U{Fp,Yl > A}
Therefore, the upper bound Iz of the possibility

of “X is F\” (denoted as py) is to take the maxi-
mum value among the membership degrees whose cor-
responding truth degrees are equal to or greater than
A; the lower bound Ng, of the necessity of “X is F)”
is equal to the lower bound of the duality of the pos-
sibility of “X is not F\”, which is to take the dif-
ference between one and the maximum value among
the membership degrees whose corresponding truth
degrees are less than A (see figure 1). These are for-
mally defined below.

Definition 2 A truth-qualified fuzzy proposition

(P, 7) is equivalent to a set of classical propositions
with necessity and possibility pairs

{(Br, (N3, ), A € (0,1]}
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where Np denotes the lower bound of the necessity
measure; whereas, Il denotes the upper bound of
the possibility measure, defined as

1 —maz{p.(t)|t €[0,A)}

Nz )
= mazdp (€ [\ 1]) (4)

By

The membership function of F can be recon-
structed in terms of the characteristic functions pp,

of its A-level-sets F derived based on equation (4),
that is,

pp(u) = Supymin{d, pp (v)} w€U  (5)

Reconstruction of 7 from the set of (N Folp,)

pairs in equation (4) is through the use of the princi-
ple of minimum specificity!. The principle states that
the least arbitrary choice among those candidates of
7, satisfying equation (4) for each pair of (Nz , 13 ),
is the least specific solution 7(A) (see figure 1), that
is, for each A,

_J g ift> A
tr(x)(t) = { ;1._*]\713A ift <\ (6)
Thus, 7 can be reconstructed by
pr(t) = minAﬂr(AZ)(t) t€[0,1] (7)

3 Inference
The formulation of the proposed inference rule for
truth-qualified fuzzy propositions is:

Iz,_* 67 ! ‘
p ~/a 2 (8)
q, 73

where P, §, P, and §’ are fuzzy propositions and char-
acterized by “X is F”, “Y is G, “X is F" and
“Y is G'”, respectively; o, 72, and 73 are fuzzy val-
uation for truth values and defined by u,, (%), pr, (1),

and p.,(t), respectively. F and F' are the subsets of

U, while G and G’ are the subsets of V.

There are three major steps for deriving ¢’ and
3 of equation (8). First, the fuzzy rules and fuzzy
facts with fuzzy truth values are transformed into a
set of uncertain classical propositions with necessity
and possibility measures by means of A-cut. Second,
inference is performed on the set of uncertain classical
propositions. Third, we reverse the process in the first
step to synthesize all the A-level-sets obtained in the
second step into a fuzzy set, and to compose necessity
and possibility pairs to form a fuzzy truth value.

10f importance in possibility theory is the principle of min-
imum specificity[3], which says that, given a set of constraints
restricting the value of a variable, the possibility distribution
of the variable should be defined so as to allocate the maxi-
mal degree of possibility to each value, in accordance with the
constraints.
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Step 1: Transformation Based on definition 2, a
truth-qualified fuzzy fact is equivalent to a set of clas-
sical propositions (the A-level-sets of the fact) with
necessity and possibility pairs. Similarly, a fuzzy rule
with a fuzzy truth value can be viewed as a collec-
tion of classical implication relationships (the A-level-
sets of the fuzzy relation for this rule) with necessity
and possibility pairs. Therefore, equation (8) can be
transformed into

(B = WNepogy, Wipegy) (9)
P (Np, T ) (10)
G (Ngo s Tg) (11)

where A € (0,1] and

N(F'—»G.’))‘ =1- mamt{“ﬁ (t)lt € [Oy A)}
Np =1 mazedn, (I € 0, )
My = mozdun (ol € 1)

Step 2: Inference

Computing § G is computed through the use of
compositional rule o)f\ inference, that is,

G\ = F} o (F — Q) (13)
where o is a composition operator and — denotes an

implication operator.

Computing N, and g Equation (9) is seman-
tically equivalent to

By — & (N gy W) (14)

The NF;—»C‘:; and Hﬁi—*éﬁ are defined as

Npi_g = 1—maz{n(u,v)| (u,0) ¢ ~ F\ UGy}
HF‘;—»G*')‘ = ma:c{7r(u, v)| (u, ’U) €~ Fy UGy}
(15)
where 7(u,v) denotes a possibility distribution over

U x V, derived by means of the principle of minimum
specificity:

w(u,v) = { 1= Ny, (0) €

O O

—
—

)a
)A

TS

(16)

Therefore, for each A, we have
P =& Wa_a Op_g)
~; ,
P » (Mg, T ) (17)




-

Figure 2: A semantic tree

]

To infer Né,A and Hé; , We propose a reasoning

method called possibility entailment, inspired by Nils-
son’s probability entailment[12]. First, we determine
the possible worlds based on the semantic tree for
Py — ¢4, Py and g} (see figure 2). In figure 2, incon-
sistent patﬁs are indicated by an x; T and F' denote
the truth values true and false, respectively. This se-

mantic tree shows that there are four possible worlds:

| w1 w2 w3 Wq
2 true true false false
P\ — @) | true false true true
@ true false true false

We have mentioned that a possibility distribution
over all possible worlds is used to model our uncer-
tainty about the actual world, the possibility measure
of any proposition p is then reasonly taken to be the
maximum of the possibilities of all possible worlds in
which p is true. Therefore, we can construct the rela-
tionship between the upper bound of the possibilities
and the lower bound of the necessities of propositions
and the possibilities of possible worlds:

15 1100
h_ﬁﬁg 00 1 1 wgwlg
=gl 1 0 1 1 (w2
l—ﬁﬁ&:ﬁ - 01 0 0 ° 7rw3)
Hq., 1 01 0 ﬂ’w4)
1— Ny 010 1 '
» (18)

where o indicates the composition operater “max-
min” and 7(w;) denotes the possibility that the ac-
tual world is in possible world w;. The first row of the
above matrix gives truth values for p) in the four pos-
sible worlds; whereas, the second row gives opposite
truth values for p, in the four possible worlds.
Based on equation (18) and the constraints
“mazr;m(w;) =17 and “m(w;) <17, we have

m(w) < min{lly g, Mg}

m(wg) < min{l — Ny g0, Uz }
m(ws) < min{lly g, 1= Np }
71'(0)4) < mz'n{[[ﬁ:k_,q;, 1- Nljl)‘}
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Thus, the upper bound of the possibility and the lower
bound of the necessity of ¢} are derived:

Oy = maw{mz:n[ﬂﬁf;_*q-a, Oz ],
Nq; = mzn{mam[Nﬁ:A_,q-;, 1- H%], ,

maz[l — Hﬁf\—-vq'&; N;/A]}

Step 3: Composition Based on equation (5), the
construction of membership function of G’ is per-
formed by

pa(v) = Sup,\mz'n{/\,/_zé;(v)} veV (20)
Meanwhile, the construction of 75 is calculated by
equation (7):

pirs (£) = minapr, () t€[0,1] (21)
where

ey IIs ift> A )
,u'ra()\)(,t) == { 1 _ANG'A th < A (22)

Notice that if “Sup-min” is chosen as the composi-
tion operator for equation (13) and both 7, and 7 in
equation (8) are “4rue” which is defined by its mem-
bership function, pyryue(t) = ¢ for all ¢ € [0,1], 73 is
then “true”. That is, our proposed inference rule re-
duces to

p—q, true
P, true
q, true

It should be also noted that if both p and ' are equal
to a classical proposition p, and both § and § are
equal to a classical proposition ¢, and each 7; gi:l—S)
reduces to pr,(0) which means the possibility of falsity
(i.e. the duality of the necessity of truth) and u,,(1)
which means the possibility of truth, our inference
rule becomes the form of equation (17)

b—yq, (Np—»m Hp—rq)
p ) Np: P
q, (NQ)HQ)

where N; is the lower bound of the necessity measure
and II; is the upper bound of the possibility mea-
sure, different from the lower bounds for both mea-
sures defined by Dubois and Prade[5]. To sum up,
our proposed algorithin is not only a generalization of
Zadeh’s generalized modus ponens but also an uncer-
tain reasoning for classical propositions with necessity
and possibility pairs.

4 Conclusion

We have proposed truth-qualified fuzzy proposi-
tions as a representation of uncertain vague informa-
tion, since a fuzzy truth-value is capable of express-
ing the possibility of the degree of truth of a fuzzy
proposition. An uncertain vague proposition is inter-
preted as a set of classical propositions with necessity
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and possibility pairs. Based on the interpretation, we
have also developed an algorithm for reasoning with
such propositions.

There are two important features in the proposed
algorithm,

¢ Compared with the existing work, our approach
does not impose any restriction on the inference,
that is, the intended meaning is not required to
be unchanged; meanwhile, the confidence level
can be partially certain.

¢ This algorithm is not only a generalization of
Zadeh’s generalized modus ponens but also an
uncertain reasoning for classical propositions
with necessity and possibility pairs.
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