Proceedings of International Conference
on Algorithms

Scheduling and Processor Allocation
for Pipeline Execution of Multijoin Queries

Yin-Fu Huang, Jyh-Her Chen, and Longson Lin
Department of Electronic Engineering
National Yunlin Institute of Technology
Touliu, Yunlin, Taiwan 640, R.O.C.
Email: huangyf @el.yuntech.edu.tw

Abstract

In this paper, we explore the scheduling and
processor allocation for pipeline execution of
multijoin queries. To improve the pipeline execution
of hash joins in a multiprocessor system, a cost
model is proposed to compute the execution time of a
pipeline segment. Based on the model, two heuristic
scheduling algorithms that produce a join sequence
with shorter execution time for a pipeline segment,
are presented. As for processor allocation, we also
present two heuristic processor allocation algorithms
to make the processors have least idle time. To show
the performance of our algorithms, a testbed system
has been implemented on a multiprocessor machine,
16 transputers connected with a ring. In our
experiments, LPC_pm has better performance than
LPC_sm when the intermediate results of pipeline
segments are small. And LIT stage always performs
better than LIT _seg for all cases.

1 Introduction

When queries become more complex and
relations grow larger, the performance of a database
system will become a critical issue. Some complex
queries may take hours or even days to complete, and
system performance will degrade by those complex
queries. In a relational database system, a join
operation is the most expensive one, especially with
the increases in database size and query complex [2].
Multiprocessor-based parallel machines had been
used to improve system performance due to their high

potential for parallel execution of complex database

operations [2]. Thus parallelism is the only primary
solution to increase system performance.

Different join methods can be parallelized with
the pipelined approach. These methods includes

nested loop, sorted merge, and hash based. The -

nested loop method has been found to be useful only

202

when the relations to be joined are relatively small
[6]. For the sorted merge method, it has better
performance when the relation size is small and the
join operation has low selectivity, The hash based
method is faster under most conditions and easier to
parallelize [9]. The hash based method has two
phases. The first one is to build a hash table. The
smaller relation (inner relation), say R, is fitted into
memory by hashing on the join attribute of each.tuple.
The next one is to probe the hash table. Another
relation (outer relation), say S, is hashed on the join
attribute of each tuple, based on the hash function
used in the first phase. The hash value is used to
probe the hash table. If tuples in the table match the
hash value, both tuples in relations-R .and S will be
combined.

Note that different execution sequence of join
operators in a query will result-in different execution
cost. Nevertheless, generating an optimal processing
strategy for a multi-join query has-been proven to be
NP hard [8]. Thus several heuristic algorithms have
been proposed to solve the problem. In [8], a two-
way semi-join (forward reduce and backward reduce)
was ~proposed to reduce data transmission and
processing on a LAN environment. The algorithm
makes the query site:free from having to store and
process intermediate results, and this accounts for
signification saving in I/O. But the join order was not
explored there. In [10], Srivastava and Elsesser
proposed a new heuristic algorithm that breaks the
cycle by constructing a plan tree layer by layer in a
bottom-up manner. Nevertheless, the search space is
very huge when the system memory is large or-the
relation size is-small. In [2], an analytical model for
the execution of a pipeline segment was first derived,
and then two heuristic schemes to build the
segmented right-deep tree for efficient query
execution was proposed. The two algorithms focus on
how to minimize the amount of works. But
minimizing the amount of works does not necessarily
minimize the execution time of a join query in a
parallel machine.

In this paper, we explore the scheduling and

processor allocation for pipeline execution of
multijoin queries. In the next section, the system
models and cost-formulas- are described. In Section 3,
the scheduling algorithms of a muti-join query are
proposed. Then the processor allocation for each
pipeline segment is explored in Section 4. To show
how better our algorithms perform than other ones,
the experiments are conducted in Section 5. Finally,
conclusions are given-in Section 6. :

2 System Models

The system we propose here is a homogeneous
one; i.e. all processors are identical. We focus on
intra-query parallelism; thus a join operator is
executed within only one processor. Furthermore. we
assume the relations involved in a join operator can
be fitted into the memory of a processor, and the
intermediate results that each pipeline segment
produces, will have to be written back to disks.

2.1 The Description of Pipeline
Segments:

The execution of a query can be denoted by a
segmented right-deep tree [2], as shown in Fig. 1, that
allows the implementation of a pipelined approach.
The segmented right-deep tree is composed of several
pipeline segments that are executed one by one in a
bottom up manner. Then the pipeline segment
includes several stages during which hash joins are
executed. ‘

:
:

.. . 12 K\ : ' ’ élnhm\nma results
Stage3 &/~ '."\%ﬁ‘ s e
@ 11 . Input relations
. ‘- ;’;")

-5 - ofa hy

.
.
Stage2 N : * Plpeline stages
" . ¢
, N A - e -

Fig. 1 A Pipeline Segment

2.2 The Cost Model

Before evaluating a pipeline segment, all
associated relations must be loaded into target nodes.
Thus the distribution time of relations from disks to
nodes must be derived. Here a relation assigned to
pipeline stage i is called the i-th relation. In the
centralized type, the coordinator retrieves relations
from disks one by one, and distributes them to target
nodes. Owing to this sequential activity, the

203

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

distribution time of stage i includes disk retrieval
time, data transmission time, and the distribution time
of stage i-1. However the distribution is performed in
parallel in the distributed type. Thus the distribution
time of a stage only contains its local disk retrieval
time and data transmission time. Finally, the
distribution' time of stage i can be expressed as
follows where the value of I/O_type is dependent on
the storage architecture of the system. ’
Tdistribution(i) = Tdistribution(i —1) X I/ O_type +
[Size(Ri)/Bsize | tuo_r +| Size(Ri)/ Psize | X te, 1<i <N
Taistribution(0) = rSiZe(S)/Bsize-I X tyo_r + rSize(S) / Psize-l X te

After the distribution, each stage will build its
hash table, and perform the probing according to:the
data from the previous stage. We assume the building
time (or probing time, or even combining time) of all
tuples is identical, respectively. The processing time
in the probing phase consists of probing.time and
combining time, and it can be described as follows. A
tuple in the outer relation is first probed through- the
hash function; and then compared- with the tuples in
the hash table if it hits the table. Finally, the two
tuples are combined as an intermediate tuple if both
match. Both' building time formula and processing
time formula are expressed as follows :
Thuitd (i) = Card (Ri)X touild, 1 <1 <N, Thuild(0) =0
Tprocess (1) = Card (Ri)X tprobe +Card (Ii)X tcombine,

1<i<N, Tprocess(0)=0

There are two types of extra cost for pipeline
synchronization. One is idle time that is the time for a
stage to wait for the first packet from the previous
stage. If a node has built its hash table and no packets
from the previous stage have arrived yet, it must wait.
It occurs when the i-th relation is much smaller than
the (i-1)th relation and the i-th pipeline stage
completes building the hash table before the (i-1)th
pipeline stage. This case is shown in Fig. 2.
Absolutely there may be no idle time for a stage when
the first packet from the previous stage has arrived
and it is building its hash table. Fig. 3 shows another
case. Thus the idle time for the i-th stage may be
expressed as follows:

Tadistribution (i = 1)+ Tbuitd (i - 1)+ Tchannel (i -1)
Tidte (i) = { — Taistribution (i)— Thuita (i), if idle
0, if not idle
1<i<N

Tidle (0) =0

Proceedings of International Conference
on Algorithms

21T chamnaili-1)

Tprocesali=1)

Beeeesensen e >
T

T atrunion(=1) Toanali-1)

H

T gstatbuiontd) + Tounal) proem(i)

Fig. 2 Idle Time Case

2 T epanmarli-1)

Torocassli=1)

Topungli-1)

G .
< > >

Tastrvation{) + Tounali) Torocensli)

T stnoution(i-1)

Fig. 3 No ldle Time Case

Another extra cost for pipeline synchronization
is overhead. For flow control, a stage may wait for
packets from the previous stage or suspend
transmitting packets to the next stage during pipeline
processing. It occurs when the previous stage is too
slow to produce packets for this stage or the next
stage has no free buffer to receive its intermediate
results. Fig. 4 shows the case. Absolutely there may
be no overhead for a stage when the flow in the
pipeline is smooth. Fig. 5 shows another case. Thus
the overhead for the i-th stage may be expressed as
follows where Ty denotes the sum of Tgisuibutions
Tbuild, Tidle: and Tprocess-

Trode (i - 1)+ Tovernead (i - 1)+ Tehannel (i -1)

Toverhead (i) = 4 — Tnode (1), if overhead
0, if no overhead
1<i<N

Toverhead (0) =0

Tensnnef)

Tooadli-)

a

Troaoll) Toverheadi)

Fig. 4 Overhead Case

Tenannefi-!)

< n Bqeeeeee ®]
Thoasli*1) Tovorhoodi*1)

T noadll)

Fig. 5 No Overhead Case
Finally, it is obvious that the execution time of a
pipeline segment is the completion time of the last
pipeline stage. The cost formula is expressed as
follows:

Tesecution (PS) = Tnode (N)+ Toverhead (M)

3 Scheduling of a Multijoin Query

Two heuristic scheduling algorithms to produce
pipeline segments are proposed here. One is LPC_sm
(i.e. least processing cost based on sequential mode)
whose solution allows only one pipeline segment
processed at a time. Another one is LPC_pm (i.e.

204

least processing cost based on parallel mode) whose
solution allows more than one pipeline segment
processed concurrently. Within both algorithms, two
different strategies can be applied to find the join
sequence for a pipeline segment, respectively; those
are bottom up and top down approaches.

3.1 Basic Concepts

The objective of a scheduling algorithm is to
produce a join sequence with shorter execution time
for a multijoin query. We can use an exhaustive
method to find an optimal join sequence, but the
scheduling time is definitely enormous since the
number of join sequences for a query with n joins is
n!. Thus heuristic scheduling algorithms are proposed
to find a join sequence with shorter execution time.

A query can be represented as a join query
graph denoted by G = (V, E) where V is the set of
nodes and E is the set of edges. Each node in a join
query graph represents a relation. Two nodes are
connected with an edge if there exists a join predicate
on some common attribute of two corresponding
relations. As shown in Fig. 6, there are nine relations
and thirteen joins involved in the query. In our
algorithms, a join query graph is partitioned into a
few star join graphs as shown in Fig. 7. One of the
relations, called main relation, is connected to all
other relations. Other relations are called satellite
relations. As shown in Fig. 7, R4 is main relation,
and R1, R2, R3, R6, and R7 are satellite relations of a
star join graph.

Fig. 7 A Star Join Graph

Fig. 6 A Join Query Graph

Our algorithms to find a pipeline segment are
based on evaluating the processing cost per byte.
Here we focus on how to find a star join graph first.
As for the join sequence of a star join graph will be
discussed later. In the algorithm LPC_sm, a star join
graph with the least processing cost per byte is
chosen at a time. Then these relations in the star join
graph are clustered as a relation in the new join query
graph. The process to find a star join graph with the
least processing cost per byte continues until the new
join query graph reduces to only one relation. As
shown in Fig. 8(a), we have several star join graphs

embedded in the join query graph, such as {R1, R2,
R3, R4, R6, R7}, {R3,R7,R8, R9}, {R4,R5,R6,R7,
R9} etc. Provided the processing cost of {R1, R2, R3,
R4, R6, R7} is the least, it will be clustered as a
relation named I1. Then the join query graph is
transformed into the new graph as shown in Fig. 8(b).
Following the same way, the only one star join graph
{I1, R5, R8, R9} is clustered and named I2 as shown
in Fig. 8(c). The joins in a star join graph constitute a
pipeline segment after a join sequence is determined.
Here the pipeline segments producing relation I1 and
12 can not be processed in parallel. That is why we
call this algorithm LPC_sm.

(e)
Fig. 8 Transformation of Join Query Graphs by Algorithm LPC_sm

To allow more than one pipeline segment
processed in parallel, we have another algorithm
called LPC_pm. The algorithm LPC_pm tries to find
independent pipeline segments at a time. Here a join
query graph with layer i is introduced to describe the
independence between pipeline segments. That is the
pipeline segments with the same layer can be
processed in parallel. Like the algorithm LPC_sm,
the evaluation is still based on the processing cost per
byte. Fig. 9(a) shows a join query graph with layer 1
where the star join graph {R1, R2, R3, R4, R6, R7}
is first found, and then {RS, R8, R9}. They can be
processed concurrently. Through a transformation,
Fig. 9(b) shows a new join query graph with layer 2
where relation I1 and relation I2 are produced by {R1,
R2,R3, R4, R6, R7} and {RS, R8, R9}, respectively.
Finally, relation I3 is produced by relations I1 and 12,
as shown in Fig. 9(c). The detailed procedures about
algorithms LPC_sm and LPC_pm are described in
Section 3.2.

(a) (b) (¢)

Fig. 9 Transformation of Join Query Graphs by Algerithm LPC_pm
Here we discuss the join sequence of a star join
graph. As mentioned before, a star join graph
becomes a pipeline segment after its join sequence is
determined. For example, the join sequence of a star
join graph, (((((R4 join R6) join R3) join R7) join R1)
join R2), and its corresponding pipeline segment are

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiurg, Taiwan, R.0.C.

shown in Fig. 10. The outer relation of pipeline stage
1 is actually the main relation of a star join graph.
Therefore, the join sequence we want to determine is
the order of satellite relations. The strategy
BOTTOM_up uses a greedy method to find the first
join with the least execution time, then the second
join with the next least execution time, and so. In
pipeline stage 1 as shown in Fig. 10, the outer
relation is R4, and the inner relation is chosen from
relations R1, R2, R3, R6, and R7 according to which
join with R4 has the least execution time. Here
relation RO is chosen first. Then relation I1 produced
by R4 and R6 acts as the outer relation of pipeline
stage 2. Following the same way, the inner relation of
each pipeline stage is chosen until all satellite
relations are emptied, and the pipeline segment is
then built.

Fig. 10 A Star Join Graph and the Corresponding Pipeline
Segment by Strategy BOTTOM _up

The strategy TOP_down is another one to find
the join sequence of a star join graph. In most cases,
the last pipeline stage could be the bottleneck of a
pipeline segment. Thus the strategy TOP_down finds
a join sequence where the last pipeline stage has the
least work cost. Like the strategy BOTTOM_up, the
outer relation of pipeline stage 1 is definitely the
main relation of a star join graph. Therefore, the join
sequence to be found is the order of satellite relations.
The difference between strategies BOTTOM _up and
TOP_down is the building way. BOTTOM__up builds
a pipeline segment in a bottom up manner, whereas
TOP_down uses a top down method to construct a
pipeline segment. An example is shown in Fig. 11.
First, let R4 be the outer relation of pipeline stage 5
temporarily, and the inner relation is chosen from
relations R1, R2, R3, R6, and R7 according to which
join with R4 has the least work cost. Let R2 be the
inner relation selected. Next, R4 acts as the outer
relation of pipeline stage 4 again, and relation R1 is
chosen to join R4 and R2 (i.e. (R4 join R1) join R2)),
so that the last pipeline stage still has the least work
cost. Following the same way, the inner relation of
each pipeline stage is chosen until all saiellite
relations are emptied. Finally, main relation R4 is
assigned to be the outer relation of pipeline stage 1.
The detailed procedures about strategies
BOTTOM_up and TOP_down are described in
Section 3.2.

205

Proceedings of International Conference
on Algorithms

Q
ONO’

Fig. 11 A Star Join Graph and the Corresponding Pipeline
Segment by Strategy' TOP_down

e

®

3.2 The Heuristic Algorithms for
Scheduling

3.2.1 Least Processing Cost Based
on Sequential Mode

Algorithm LPC_sm finds a pipeline segment
with the least processing cost per byte at a time. It has
two basic steps. First, all star join graphs embedded
in the join query graph are found and select the star
join graph with the least processing cost per byte.
Next, the join query graph is reduced. Repeat these
two steps till the new join query graph has only one
relation. The detailed algorithm is omitted here.

3.2.2 Least Processing Cost Based
on Parallel Mode

This algorithm is similar to algorithm LPC_sm
except that more than one independent pipeline
segment is found and they could be processed in
parallel. Algorithm LPC_pm has three steps. The first
step is the same as that in algorithm LPC_sm. Next,
the relations constituting the pipeline segment are
removed from the query join graph so that the next
independent pipeline segment can be found from that
graph. Last, collect the new relation defined in step 2
in order to find pipeline segments in the next layer.
We have double nested loops in this algorithm.
Repeat.these three steps to find pipeline segments of
different layers till the new join query graph has only
one relation. The detailed algorithm is omitted here.

3.2.3 Join Strategy: BOTTOM_up

Strategy BOTTOM_up finds a join sequence of
a star join graph, with the least execution time. It has
two basic steps. First, select a relation from all
satellite relations such that its join with the relations
in Roger has the least execution time. Next, the
relation chosen above is removed from the set of

206

satellite relations. Repeat these two steps till no
satellite relations exist. Within -~ this procedure,
Texecution Nas been defined in Section 2.2, which is
different from Texec_per byte- The detailed procedure is
omitted here.

3.2.4 Join Strategy: TOP_down

Strategy TOP_down also finds a join sequence
of a star join graph, but uses a different appoach. It
has three basic steps. First, select a relation from
satellite relations such that the last pipeline stage
always has the least work cost. Second, the relation
chosen above is removed from the set of satellite
relations. Repeat the first and second steps, till no
satellite relations exist. Last, add the main relation to
output set and reverse the order of output set. The
detailed procedure is omitted here.

3.2.5 Common Functions Used in
the Scheduling Algorithms

Three common functions called in above
algorithms are described as follows. Function
GROUP combines relations as a star join graph, but
the number of combined relations must be less than
that of processors in the system. Each time a join with
the smallest selectivity is considered. That is because
the results produced by each pipeline segment must
be written back to disk, and we want the results as
small as possible to save disk /O time. Next,
function LOAD calculates the work cost in the last
pipeline stage per byte. Last, function
Texec_per_byte calculates the execution time of a
pipeline segment per byte.

4 Processor Allocation for Each
Pipeline Segment

The relations must be distributed to processors
before the execution of a pipeline segment. The
processor allocation algorithms decide that the
relations of a pipeline segment will be assigned to
which processors. Although processor allocation
problem depends on the underlying platform, the
general performance measure is based on minimal
transmission time or minimal idle time. In this section,
two processor allocation algorithms are proposed:
one is called LIT_seg, i.e. least idle time based on a
pipeline segment, and another is called LIT_stage, i.e.
least idle time based on a pipeline stage.

4.1 Basic Concepis

In the processor allocation algorithms, a
formula called Transmission Cost Estimation (TCE)
is used to calculate the transmission time of a
pipeline segment. It can be expressed as follows.

TCE(MODE_SET) = E:l tci + OVERHEA Daistribution
i=1
+ OVERHEADwrite_back

Within this formula, NODE_SET is a set of nodes
assigned to a pipeline segment, and fic; is the
transmission time of the i-th node. Before the
execution of the pipeline segment, it takes some time
for Coordinator to distribute data to Workers, and the
time is called OVERHEADisuibution Similarly
OVERHEAD it pack i the transmission time when
the results produced by the pipeline segment are
written back to disks. Given an example NODE_SET
= {4, 5, 7} in Fig. 12, its TCE will be
(142)+(4+5+7)+(1)=20. The minimal transmission
time can be found as follows. Let the total number of
idle nodes be N, and m is the number of nodes
required for a pipeline segment. Then we will have
N-m+1 ways to select m nodes in order from the N
idle nodes. Among theses candidates, the allocation
with the minimal transmission time will be found.

Fig. 12 An Example for TCE

In addition to find the minimal transmission
time described above, we expect the node set found
to have the least idle time. According to the strategy
“The pipeline segment with the least relations is the
first one served”, algorithms LIT_seg and LIT_stage
assign idle nodes to the pipeline segment with the
least relations first. After the assignment, the pipeline
segment with the next least relations is assigned
repeatedly until the number of idle nodes in the
system are less than that required by the pipeline
segment. Since the execution time of each node
involved in a pipeline segment can be calculated, we
know when a busy node will be released. Then these
released nodes and original remainder idle nodes will
be considered for the next pipeline segment. The
difference between algorithms LIT seg and
LIT stage is when busy nodes will be released. In

207

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

algorithm LIT seg, all busy nodes are released
together when the entire pipeline segment is
completed. And in algorithm LIT_stage, a busy node

is released immediately once its corresponding

pipeline stage is completed. In sequential mode
mentioned in Section 3.1, each layer has only one
pipeline segment, so there is at most one pipeline
segment executed at a time. Thus algorithm
LIT_stage is never applied in sequential mode. As for
parallel mode, both algorithms LIT seg and
LIT_stage can be applied. Due to the feature that the
tasks of previous nodes will be finished earlier than
the latter ones in the pipeline processing, LIT _stage
should perform better than LIT seg. This is because
the idle time of previous nodes is not utilized in
algorithm LIT_seg until the entire pipeline segment is
completed. The detailed procedures of algorithms
LIT_seg and LIT_stage will be described in Section
4.2.

4.2 The Heuristic Algorithms for
Processor Allocation

4.2.1 Least Idle Time Based on a
Pipeline Segment

Algorithm LIT_seg releases all busy nodes
together when the entire pipeline segment is
completed. It has five basic steps. First, test whether
there exists a pipeline segment in the current layer,
which can be executed using the remainder idle nodes
in the system. If yes, select a pipeline segment with
the minimal relations and allocate nodes to make it
have the minimal transmission time. Next, record
completion time of each node allocated to the
pipeline segment. If no pipeline segment can be
executed, release the nodes allocated to a pipeline
segment whose completion time is the nearest.
Repeat node allocation and node release till all
pipeline segments are assigned. The detailed
algorithm is omitted here.

4.2.2 Least Idle Time Based on a
Pipeline Stage

This algorithm is similar to algorithm LIT_seg
except that the completion time of each node is
recorded according to each pipeline stage. The
detailed algorithm is omitted here.

Proceedings of International Conference
on Algorithms

5 The Experiments

5.1 The Experimental Environment

The experiments are conducted on a testbed
system constructed by 16 transputers connected with
a ring, where the different heuristic algorithms
proposed in Section 3 and 4 are implemented. In the
system only root node can access a disk, and the
involved relations are arranged to fit the main
memory on each node. In all experiments, the system
parameters are set or measured as shown in Table 1.

Table I The System Parameters

Packet Size 10 KBytes
Router Buffer Capacity | 10 packets
Worker Buffer Capacity | 10 packets
Tuple Length 50 bytes

Disk Transfer Rate 354 ps/packet
Channel Transfer Rate 171 ps/packet
Processing Time 213 ps/tuple
Building Time 57 ps/tuple

To observe the performance of proposed
algorithms under different situations, the workload
parameters used in the experiments are defined.
These workload parameters provide us to clarify
which algorithm has better performance under what
environments. The workload parameters consists of
join selectivity, relation cardinality, relation number,
processor number.

5.2 The Experimental Results

We explored join selectivity in Experiment 1,
relation size in Experiment 2, and the interrelations
between relation number and processor number in
Experiment 3.

Experiment 1: join selectivity
Case 1: High, Case 2: Low
Selectivity : 0.001 - 0.005,
Cardinality : 750 - 1000
Relation no. : 10
Processor no. : §

0.0001- 0.0005

Algorithms Case 1 | Case 2
Pm-Botiom-Seg 6042] 4186
Pm-Bottom-Stage 6027] 4154
Pm-Top-Seg 5405] 4189]
Pm-Top-Stage 53701 4161
Sm-Bottom-Seg 5580 5016
Sm-Top-Seg 5403 5052
Opt-RD 5209 4178

208

Experiment 2: relation cardinality
Case 1: Small, Case 2: Middle, Case 3: Large

Selectivity : 0.0001 -

0.0005

Cardinality : 500 - 750, 750-1000, 1000-1250

Relation no. : 10

Processor no. : 8

Algorithms Case 1 | Case 2 | Case 3

Pm-Botiom-Seg 3216 4186] 5768
Pm-Bottom-Stage 3198] 4154} 5744
Pm-Top-Seg 3236 4189] 6036
Pm-Top-Stage 3215] 4161} 6001
Sm-Bottom-Seg 3375] 5016] 6152
Sm-Top-Seg 3648] 5052 6218
Opt-RD 3218] 4178 5327

Experiment 3: relation number and processor

number

Case 1, Case 2, Case3, Cased
Selectivity : 0.0001 -

0.0005

Cardinality : 500 - 750
(Relation, Processor) : (6,8), (12,8), (12,16), (20,16)

Algorithms Case 1 | Case 2 | Case 3 | Case 4
Pm-Bottom-Seg 2395 5035 5292] 8554
Pm-Bottom-Stage 2364 5002 5051] 7491
Pm-Top-Seg 2401 4717| 4875 7935
Pm-Top-Stage 2368] 4709 4747] 7360
Sm-Bottom-Seg 2066] 5098] 5436] 6889
Sm-Top-Seg 2369 4749 4752] 6717
Opt-RD 1912 4162] 3722] 6242

6 Conclusions

In this paper, we explore the scheduling and
processor allocation for pipeline execution of
multijoin queries. To improve the pipeline execution
of hash joins in a multiprocessor system, a cost model
is proposed to compute the execution time of a
pipeline segment. Based on the model, two heuristic
scheduling algorithms that produce a join sequence
with shorter execution time for a pipeline segment,
are presented. Algorithin LPC_sm processes only one
pipeline segment at a time, whereas algorithm
LPC_pm allows more than one pipeline segment to
be processed at the same time. Within both
algorithms, two different strategies can be applied to
find the join sequence for a pipeline segment,
respectively; those are bottom up and top down
approaches. Strategy BOTTOM_up finds the join
sequence for a pipeline segment with less execution
time, whereas sirategy TOP_down finds the last
pipeline stage of a pipeline segment with minimum
work cost. As for processor allocation, we also

present two heuristic algorithms to make the
processors have the minimal transmission time and
the least idle time. Algorithm LIT seg assigns
processors to the next pipeline segment when the
current pipeline segment is completed, whereas
algorithm LIT_stage does based on a pipeline stage.
Although LIT_stage is always better than LIT_seg in
our experiments, LIT_stage must be based on the
preknowledge of completion time of each pipeline
segment.

To show the performance of our algorithms, a
testbed system has been implemented on a
multiprocessor machine, 16 transputers connected
with a ring. As shown in the experiments, LPC_pm
has better performance than LPC_sm when the
intermediate results of pipeline segments are small.
When the processing time of a query is long or a
query is decomposed into more layers, TOP_down
has better performance than BOTTOM_up.
LIT_stage always performs better than LIT_seg for
all cases. In addition, especially when relation
cardinality is small or middle, some of our algorithms
are better than Opt-RD.

References

(11 M.-S Chen, P. S. Yu, and K.-L Wu,
“Scheduling and processing allocation for
parallel execution of multi-join queries,” Proc.
Eighth Int'l Conf. on Data Engineering, pp.
58-67, Feb. 1992.

[21 M.-S Chen, P. S. Yu, and H. C. Young,
“Applying segmented right-deep trees to
pipelining multiple hash join,” IEEE
Transactions on Knowledge and Data
Engineering, vol. 7, no. 4, Aug. 1995, pp. 656~
668.

[3] Computer System Architects, Transputer
Architecture and Overview, Prentice Hall,
1990.

[4] S. M. Deen, D. N. P. Kanangara, and M. C.
Taylor, “Multi-join on parallel processors,”
Proc. Second Int’l Symp. on Database in
Parallel and Distributed Systems, pp. 92-102,
July 1990. :

(51 L. Harada and N. Akaoshi, “Bvaluation of
linear join processing tree in shared-nothing
database environment,” Proc. Fifth Int'l Conf.
on Computing and Information, pp. 413-417,
May 1993.

{6] M. S. Lakshmi and P. 8. Yu, “Effectiveness of
parallel joins,” IEEE Transactions on
Knowledge and Data Engineering, vol. 2, no 4,
Dec. 1990, pp. 410-424.

[7) K. P. Mikkilineni and 5. Y. W. Su, “An
evaluation of relational join algorithms in a
pipelined query processing environment,”

209

(8]

(9]

(10]

Joint Conference of 1996 Internationa! Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

IEEE Transactions on Software Engineering.,
vol. 14. no. 6, June 1988, pp. 838-848.

N. Roussopoulos and H. Kang, “A pipeline N-
way join algorithm based on the 2-way
semijoin program,” IEEE Transactions on
Knowledge and Data Engineering, vol. 3, no. 4,
Dec. 1991, pp. 486-795.

D. A. Schneider and D. J. DeWitt, “A
performance evaluation of four parallel join
algorithms in a shared-nothing multiprocessor
environment,” Proc. ACM-SIGMOD Int’L
Conf. on Management of Data, pp. 110-121,
June 1989. ‘

J. Srivastava and G. Elsesser, “Optimizing
multi-join queries in parallel relational
databases,” Proc. - Second Int’l Conf. on
Parallel and Distributed Information system,
pp. 84-92, Jan. 1993.

