Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C. o :

A Simple File Assignment Method to Maxnmlze the System Rellablllty in
Distributed Computlng Systems under Memory Space Constraints

Deng-Jyi Chen, Ching-Yun Lee, Tz-Shin Cheng N
Institute of Computer Science and Information Engineering
National Chiao-Tung University, Hsinchu, Taiwan, R.0.C.’

Abstract

Distributed computing systems (DCS) have become a
major trend in today's computer system design due to
their capability for offering high speed and high reliable
performance advantages. Reliability is an important
issue in DCS design for military application. The
distribution of programs and data files are two important
Jactors that affect the program reliability and system
reliability. The - reliability-oriented file assignment
problem is to find a file distribution such that the
program reliability or system reliability is maximal. In
this paper, we develop a simple heuristic file assignment
algorithm which use several simple heuristic assignment
rules to achieve reliability-oriented file assignment. The
proposed algorithm can obtain the optimal solutions in
most cases and reduce computation time significantly.

1. Introduction

A distributed computing system is a collection of
processor-memory pairs connected by a communication
subnet and-logically integrated by a distributed operating
system and/or a distributed database system [1,2,3].
Potential advantages of a DCS are significant, including
good performance, reliability, resource sharing, and
extendibility. Performance enhancement is due to the use
of multiple processors and efficient subnets. Reliability
improvement is due to the use of redundant techniques in
data files, programs, processes, and communication
devices. A program in a DCS may require one or more
data files located in. different computers for execution.
The distribution of data files can affect program reliability
and overall system reliability. An important problem in
DCS design is to find a file distribution such that a certain
reliability measure is maximal. Several network
reliability measures have been defined and associated
evaluation methods have been developed. The concepts of
distributed program reliability (DPR) and" distributed

system reliability (DSR) in [4,5] and the rehablllty
evaluation algorithm in [13,14] are adopted in this paper.

The file assignment problem and related programs such
as task assignment and job scheduling have been studied
for many years [6,7,8,9]. Since the file assignmem
problem is NP-complete [10], Wang [11] proposed a
reliability-oriented file assignment algorithm to solve the
optimal file assignment problem under a memory space
constraint. This method is capable of finding the optimal
solution, but' it is not efficiently. Hwang & Tseng
proposed a heuristic task assignment algorithm for the k-
DTA problem to maximize reliability of a distributed
system under some resource constreints [12]. The k-DTA
algorithm assigns fixed number of copies of programs and
data files only, so the system utilization is nm mzmmlzed
In addition, the algorithm is quite complex. This paper
presents a simple but effective heuristic algorlthm for
reliability-oriented file assignment problem. The Simple

File Assignment algorithm use a’ special Minimum

Selection Rule and - Grouping Rule based upon some
heuristics [11,12] to find a file distribution such that the
DPR (or DSR) is maximal and the memory limitation
constraint of each processing elemerit is satisfied.
Numerical results are given through computer simulation
to show the solution of our proposed algorithms.

2. Notation,
" statements

Definitions, and Problem

Notation & Acronyms:

G(V,E) An undirected graph; V, E: set of [vertices,
edges/links] in the graph

N; nodeiinV

L link between N; and N;

-PRG . the set of programs allocated in the network

for execution.

F, the set of files required by PRG

PRG, program p in PRG

F; fileiin F,

195

Proceedings of International Conference
on Algorithms

n number of nodes in G; n=| V|

k number of files in F

1 number of programs in PRG v

p(@ probability that the communication link
works (fails)

PA; The set of programs allocated on N;

FA; The set of files allocated on N;

E(PRG,) event that PRG, can successfully run and files
can be successfully accessed by PRG,

Pr(E) probability of event E

ROFA Reliability-Oriented File Assignment

SFA Simple File Assignment algorithm

Definitions:

e FST: a file spanning tree that connects the root node
(the processing element that runs the program under
consideration) to some other nodes such that its vertices
hold all the needed files.
e MFST: a minimal FST such that there exists no other
FST which is subset of it. '
« DPR: The probability that a given program can be run
successfully and will be able to access all the files it
requires from remote sites in spite of faults occurring
among the processing elements and communication links.
The MFSTs connect the root node (the PE that runs the
program under consideration) to other nodes such that
these nodes hold all the files needed for the program
under execution. The DPR and DSR can then be
determined by computing the probability that at least one
of these MFSTs is working. Thus the distributed program
reliability for a given program j can be defined as the
probability that at least one MFST of a given program j is
operational [4,5]. This can be written as

Ny
DPR = Pr (Ul MFST,)

j=
where ngg is the number of MFSTs that run the given
program.
o DSR: The probability that all the programs in the
system can be run successfully. The DPR measures the
reliability of a particular distributed program. For the
entire DCS to be operational, several such programs or a
given set of distributed programs must be operational. A
system level reliability measure for / distributed programs
" tobe operatlonal is defined in [15] as

DSR =Pr (ﬂ PRG,)

i=l
MFFC: An MFFC is a maximal‘ feasible file
combination such that there exists no other feasible file
combination which is a superset of it. If a combination

)) (0 (1)
X: - (xl s Xig 5ea X

is said to be a feasible file

combination of node N;, then

k
2.5% <G
=

" where C; = the available memory space of node i (N;)

196

s; = size of file j (F))
x;; = the indicator of file assignment; x; = 1ifF;
is assigned to N; , otherwise x; =0

¢ Node Environment Weight Heuristics: Node X is more
reliable than node X, if and only if the degree of X; is
higher than that of X5 [12]. It is because the node with
higher degree is more likely to have more paths to the
destination nodes than those with lower degrees. The
node environment weight represents the composite

reliability for the nodes and links surrounding a node.
ENV_WEIGHT(N;) =

RN Y ooy RV) R(L)

where ADJ(N;) = set of nodes which are adjacent to N;
RNy = Pr{N; is operational }
R(Ly) = Pr{L; is operational}
 Program Weakness Heuristics: Program P is weaker
than program P, if and only if the minimum number of
nodes required to assign P, and its associated files are
greater than those required for P, [12]. We simply use the
total memory of P; and its associated files to approximate
the number of nodes required. The weakness decision
function is:

WEAKNESS(P) = SIZE@®) + ,SIZE(F))
FjePN,
Problem statements:
The reliability-oriented file assignment problem can be
mathematically stated as follows:

Problem - Maximizing DSR subject to memory space
constraint

i
Maximize DSR = Pr | ﬂ E(PRG,)}, subject to

i=1

] k
> SIZE(P), X, + " SIZE(F,)Y, <C, , ¥
Jj=1 j=1 -

N;, i= 1,2,...

$ x5

i=1

3y, 21

i=]

L,

j=12..1

j=12,..k

X; = 1 if P;is allocated on N;, otherwise X;; =0
Y; = 1 if F; is allocated on N;, otherwise Y; =0
For the reliability-oriented file assignment problem, we
give:
a) network topology

b) files required by each program for execution
¢) the size of each program and data-file

d) the available memory space of each processing

element (computer node)
¢) the reliability of each node and communication link
This paper is concerned with the file assignment to
maximize the system reliability. of the distributed
computing system under memory space constraints.

3. The Simple File Assignment algorithm

This section presents a Simple File Assignment (SFA)
algorithm which use the MFFC concept, program
weakness and node environment weight heuristic
measures. We also simplify the assignment method by
introducing two new concepts called the Minimum
Selection Rule and Grouping Rule. The combined effort
makes our new algorithm simple and efficient.

3.1 Minimum Selection Rule (MSR).

From the definition of the MFFC, we know that the
MFFCs give us the best reliability for each node. For a file
assignment problem with size of each program and files
given, there are several MFFC combinations for a single
node with limited storage capacity. The basic idea for the
SFA algorithm is using MSR to pick up just one or two
good MFFCs for each node. The MSR algorithm is simple
with reducing computation time very much. This
heuristic reduction makes original intractable problems
solvable and the reliability deviation from the optimal
solution is also tolerable by simulation results.

Example 1: Suppose we know that programs Py, P,
need file {F,, F,} and {F,, F3} to execute successfully.
The size of node Ny is 3 and the sizes of program Py, P,
and file F;, Fp, F3 are 1, 2, 1, 2 and 3, respectively (i.e.,
SIZE(P;) = i and SIZE(F;) = i). We can compute all the
MFFCs for node N; and show the result in table 1.

Table 1; All the MFFCs for node N; of Example 1
Node N; (MFFCs) P, ‘P,
a,={P,,P>} F1+F,=3 Fi+F3=4
b ={P,,F1} Fy=2 Po+F3=5
C]={P2,F1 } P]+F2=3 F3=3
d,={P,,F>} F= Py+F|+F3=6
ei={Fi.Fa} P= |t Po+Fs=5
fi1={F;} P,+F,+F,=4 P+F=3

Assume we wish to favor program P, for node N; (it is
decided by program weakness and node environment
weight heuristics), we sum up the sizes of all the lacking
components of set {P,, F;, F,} for each MFFC. We do this
because {P,, F,, F,} is the set of complete requirement for

197

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

successful execution of program P,. If we assign MFFC
a,={P,, P,} to this DCS, the other nodes of this DCS must
supply the remaining F, and F; for P; to run successfully.
It goes without saying that d,;={Py, F2} iis more favorable
than a,={P,, P,} for P, because d, is more self-sufficient
(i.e., d lacks F; only, while a, lacks both F) and F).

From table 1, we can see (in bold & italic face) MFFC
d,={P,, F,} and e;={F,, F.} are indistinguishable to
Minimum Selection Rule because the weight of their
lacking component is identical. However, MSR has
successfully reduced the number of possible MFFCs of
node N; from 6 to 2, a three-fold speed up just for a single
node N,. The combined effort.of MSR for every node is
very significant.

3.2 Grouping Rule (GR)

Before we go into the details about the Grouping Rule,
let's observe some optimal file assignment cases.

Example 2: In Figure 1, the optimal solutions are the
sets whose union of node N's MFFC and node Nj's
MFEC is the full set {P;, P,, Fi, F2, F3} of the DCS. The
node Ny's MFFC is irrelevant, however.

Storage Capacity(C):
Node 1: 3
Node 2: 4
Node 3: 5
Program/File Size:
P11 Fpirl
- P2 Fy2
{F\, F3} {P,, P, F;} Fy3
P, F {P,, F\, F;}
EP' F}}F} {pl F;) : Program Requirement:
Pt > .
{P,, F,} {P,.F, F} l’?; El, r;z
{P,, P, F} {F,, F3} 2 Fp by

Figure 1. The optimal file assignments of Example 2

The definition of the Full Set is: a set which contains
all the programs and their required data files in the DCS.
Node 2 and node 3 in the example 2 obviously contain a
single full set {P,, P,, Fi, Fa, F3}. Full set is the basic
requirement of the DSR. Let's recall the definition of the
minimum file spanning tree. The MFST for all programs
must contain all the elements in the full set. If not, at least
one of the programs will fail so the DSR value is zero. In
addition, denote the set of MFSTs for an assignment
ASS(S,G) of a dependent set by MFST(S,G). If there
exists another assignment ASS(S-{v},G) where v is a
terminal node of some MFST in MFST(S,G), then
DSR(S,G) < DSR(S-{v},G). This theorem is obvious from
the definition of DSR.

Let's examine the result of example 2. The optimal
assignment is the spanning of all programs and their files

Proceedings of International Conference
on Algorithms

on the node 2 and node 3 in the full set. From prev1ous
theorem we know this assxgnment is better than other
assignments which full set must span all the three nodes.
But how do we make a choice between two or more file
assignments with the same maximum number of full sets?
Figure 2 is an optimal file assignment to this DCS and
Figure 3 is a poor one. They differ only in the file
assignments. This DCS has several groups of nodes
which contain the full set {P,, P,, P3, Fy, Fy, F3, F,}.

Optimal (DSR = 0.9787875)
{P33 F4}

{P2> Fl’ F }

Figure 2. The optimal file assighment of Emmple 4

Poor (DSR = 0.9549)
{Fs, F,}

0.
{P,, F\, F;}

{P2> F]: FZ}
Figure 3. The poor file assignment of Example 4.

Figure 2 and 3 is an example to show how file
assignments affect the distributed system reliability. First
we know that the file assignment which contains more
groups of nodes with full set is more reliable. To prove
this theorem, let's recall how distributed system reliability
is computed. The DSR is the probability of the union of
the number of MFSTs that run the given program. The
MFST spans one of the full sets we just discovered. If
there are more full sets in the DCS, the number of MFSTSs
is also larger, hence the DSR should be greater because of
P(A w B) 2 P(A) by the set theory. These are some hints

we got from the previous observations: a) A file
assignment which has greatest number of groups with full
set is our preferred choice, and b) If there are two or more
file assignments which contains the same number of
groups with full set, the one which groups with full set
reside on less number of nodes and their center on
stronger nodes is our preferred choice. For each
heuristic guess, we will select the best one by following
criteria:

- The number of full set is maximum:.

- These full sets occupy minimum number of nodes.

- These full sets which have stronger nodes.
The Grouping Rule provides good estimates to those MSR
selections and gives us a quite precise method to pick up
near-optimum file assignments.

3.3 The Simple_File_Assignment algorithm

The Simple File Assignment algorithm consists of five
steps:
Stepl: Initialization
Step2: Determine the MFFCs for each node
We try every possible combinations of program and
file distributions, check this combination's storage
capacity and compare it with all MFFCs in the found" list.
If the new found MFFC is over-sized, ignore it. If it is a
superset of previously found MFFCs, delete those MFFCs
in the found' list.
Step3: Determine the program weakness and node
environment weight measures
For program weakness, we add the size of program
and all its needed files and does a sort to determine the
order. For environment weight, we just add all the link
reliabilities for each node under the simplifying
assumption of perfect node and does a sort to determine
the order.
Step4: Use Minimum Selection Rule to choose good
MFFCs
We generate the heuristic Minimum Selection Table
and assign weak program to strong node.
Step5: Use Grouping Rule to determine the near-
optimum file assignment
We check all our file assignments in Step 4 and pick
up the one which has maximum number of full sets. If
there are two or more assignments which have maximum
number of full sets, we check if the new one occupy less
nodes. If two or more assignments occupy the same
number of nodes, we check which assignments own
stronger nodes.

3.4 The Complete SFA algorithm

198

Algorithm Simple_File_Assignment;
begin
Step1: Initialization
Step2: Determine the MFFCs for each node
for n = 1 to Number_of Nodes do
MFFC]n,i] = 0 /* clear i'th MFFC for Node n */
NC=0 /*Node Capacity */
for i = 2P downto 1 do /* i is a FFC's bit
representation */
add File/Program Size to NC
if NC < (This Node's Maximum Capacity) then
MFFC[n,nm] = FFC /* add this FFC to the
list of MFFCs */
for k=1 to nm do /* nm: the number of the
list of MFFCs */ ‘
if FFC is a superset of MFFC[nk] delete
MFFC[n,k]
Step3: Determine the program weakness and node
environment weight measures
for i = 1 to Number_of_Programs do
for j = 1 to Number_of_Files do
if (program i needs file j) then weak{i] = weak[i]
+ FileSizelj]
sort the weak([i] array
for i =1 to Number_of Nodes do
~ for j =1 to Number_of_Edges do
if (node i has edge j) then weight[i] = weight[i]
+ Link_Rel[j]
sort the weight[i] array
Step4: Use Minimum Selection Rule to choose good
MFFCs
for i = 1 to Number_of_Nodes do
for j = 1 to Number_of_Programs do
for k = 1 to Number_of MFFCs[i] do
m = (program j and files needed) - MFFCIi,j
/* m: remaining prg/file*/
if m < min_m then m = min_m /* pick up
the minimum */
for i = 1 to Number_of Nodes do
do the assignment (one-by-one)
Step5: Use Grouping Rule to determine the near-
optimum file assignment
for cnt = 1 to Number_of Minimum_Selections do-
for i = 1 TO 2Number-olNods go /% i : Set of Nodes
bit representation */
if (set i = FullSet) then FS = FS + 1 Y Al O
Number of FullSets */
if FS > MaxFS then MaxFS =FS /*i: find the
maximum # of FullSets */
if FS = MaxFS then Check_Stronger_Nodes
end

199

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

3.5 Time complexity analysis

The time complexity of the SFA algorithm is analyzed
and summarized in table 2.

‘Table 2: The time complexities for SFA algorithm

Step Complexity

1 o)

2 Om-2"h

3 O(p-) + O(p log p) + O(n-e) + O(n log n)
4 O(n-p-m) + O(n)

5 O(s-2"

Total 02"+ nlog n + n-p-m + 5:2%)

where (n, p, f) = number of (nodes, programs, files),

e = number of edges of the node,

m = number of MFFCs of the node,

s = number of minimum selections.
From table 2, we therefore conclude that the complexity
of SFA algorithm is bound by step 2 or step 5.

4. Tustrative examples & Simulation results.

Example 3: For a simple distributed computing
system with parameters is shown in Figure 4, we apply
our Simple File Assignment algorithm to it to show how
it works. ' '

Storage Capacity(C):
Node 1:3 Node3:5 -
Node 2: 4

Program/File Size:
P:l Fpt Fg3
P2 Fy2

Program
Requirement:
P:F,F, PyTF,F

Figure 4. Network topology and-data requirement of
Example 3.

First, We try every possible combinations of program
and file distributions to determine the MFFCs for each
node. The left column of table 3 lists all the MFFCs of
each node. Then, we compute the program weakness and
the node environment weight. The program weakness
measure is the sum of the size of the program itself and
all required files for successful execution, SO
WEAKNESS(P,) = SIZE(P,) + SIZE(F) + SIZE(F,) = 1
+ 1+ 2 =4 and WEAKNESS(P,) = SIZE(P,) + SIZE(F))
+ SIZE(F;) = 2 + 1 + 3 = 6. Apparently program P, is

Proceedings of international Conference
on Algorithms

weaker than program P, because P, relies on files of
bigger size, which is less likely to be assigned because of
node capacity limits. The node environment weight
measure is the sum of the link reliabilities surrounding
that node for the node perfect case here, so
ENV_WEIGHT(N;) =0.9 + 0.8 =1.7, ENV_WEIGHT(N,)
=09+0.7=1.6and ENV_WEIGHT(N;) = 0.8 + 0.7 =
L.5. The order of node environment weight measure is
N] > N3 > N;.

Next, we use MSR to choose good MFFCs. Based on
the heuristic which put the weaker program to stronger
nodes, we assign P, to N, P, to N; and P, to N;. When
the favorable order of assignments are determined, table 3
shows how the MFFC of each node is selected: Node N; is
determined to be favored to Program P,, so we examine
the table 3 to pick up the good MFFCs by the Minimum
Selection Rule. Apparently ¢;={P,, F,} and fi={F;} is our
preferred choices. Continued this way we got ¢,={P,, F,,
F;} is the preferred MFFC for node N, and e;3={P,, F3} is
the choice for node N;. From table 3 we can see there are
6x5x7=210 possible MFFC combinations for this case,
and the Minimum Selection Rule effectively cut the
choice from 210 to 2.

Table 3: The MSR applied to Example 3

Example 4:

Storage Program/File Size: { Program Req.:
Capacity:
Node I: 7 Pi: 1 Fi: 1 Pi:Fy, Fy, Fa
Node 2: 4 - P2 F 2 Py F,Fp, Fy
Node 3: 5 P53 Fs: 3 P3: Fy, F3, F4
Node 4: 3 Fs 4

Figure S. Network topology and data requirement
of Example 4

The measure results of program weakness and node
environment weight of Example 4 are listed below:
ENV_WEIGHT(N,) = 2.6 - WEAKNESS(P)) =7
ENV_WEIGHT(N,) = 1.85 WEAKNESS(P,) =9
ENV_WEIGHT(N;) = 2.5 WEAKNESS(P;) = 12
ENV_WEIGHT(N,) = 1.55

Lastly, we apply the Grouping Rule to select our answer
from two candidates. Both candidates have the full set
{N2, N3} so GR isn't useful in this case. However, it is
irrelevant because both file assignments happened to
deliver the optimal solution R=0.916.

200

Node N; (MFFCs) P, P, Follow the same heuristic, we put the weaker program to
ar={P,P,} Fi+F;=3 Fi+F3=4 stronger nodes. When the favorable order of assignments
b={P|,F} Fy=2 Py+Fs=5 are determined, we use the MSR to pick up the good
ci={P,,F1} P+F=3 Fy= MFFCs. Then we apply the Grouping Rule to select our
di={P\,F2} F=1 Py+F +F3=6 answer from the candidates. Table 4 lists all the §
&={F),Fa} Pr=1 PytFs=5 possible heuristic guesses out of 24 in the Example 4. By
fi={Fs} PitF +F;=4 PytF=3 applying our Grouping Rule, we know the second and the

Node N; (MFFCs) P, P, fifth ones (in bold face) are our preferred choices because
a={P;,P, F,} F,=2 F=3 they span only three nodes Ni, N; and N;. The last
by={P;,Fy} Pi+F)=2 Fi+F;=4 column of table 4 is the computed DSR values of each file
c={P,F}, F2} 0 Py+Fs=5 assignment, which reflect the fact that our Grouping Rule
d={P ,F3} Fi+ Fp=3 Py+F) =3 is really quite effective. Table 5 shows the simulation
e={F\,F3} Pi+Fy=3 P= results of Example 4.

Node N, (MFFCs) P Py Table 4: The file assignments and full set groups of
ay={P|,P,,F1} F=2 F3=3 Example 4]
b3={P,,Py,F2} Fi=1 Fi+F=4 Node1 |[Node2 [Node3 [Node 4 |Full Set |DSR
c3={P,F1,F2} 0 || Pi#Fs=5 1 HFs Fa} [{Py, Fi, Fa} [{Po, Fiy, Fa} [{Py} | N;.Np.Ny.N, [0.9549
dy={P3,F1,F,} P=1 Fy=3 2 |{Ps, Fy} |{P), F3} {P2, F), F3} [{Ps} [N,,N;,N; .|0.9787875
e3={P,,F3} P\+F+F,=4 Fi=1 3 {{Fs, Fa} [{P1, F3} [{Py F), Fa} [{Ps} |N,.,N3,N5.Ny |0.9549
E={P,FLFo] T2 = 4 _|{Ps, Fa} [{Py, Fi, Fao} [Py, Fy, Fa} [{Fs} IN;,N2.N5.Ns |0.9549
o {FuF) T v S1PuFg [(PuFs} [Py Fi P} [{Fy) [N,.NoN, _ |0.9787875

Table S: Simulation results of Example 4

Number of MFFCs 10,752 = (16x8x12x7)
Possible Heuristic Solutions 24

Heuristic Guesses 5

Speed Up Ratio 448 = (10752/24)
DSRpax 0.9787875 DSRmin 0.9549
DSRsra 0.9787875 E, 0%

where DSRy.x = maximum DSR of random assignment
DSRuin = minimum DSR of random assignment
DSRgra = solution of SFA algorithm

DSR_.. — DSR

max SFA

DSR,,, ~ DSR,,,

E. = Relative error =

S. Summary and Conclusion

Distributed computing system has become a major
trend in today's computer system design for its high fault-
tolerance, potential for parallel processing and better
reliability performance.One of the distributed computing
system important characteristics is that it offers redundant
copies of software to improve system's reliability. To
effectively distribute these redundant copies of software to
appropriate nodes is the basic consideration for file
assignment problem. The problem has been proved to be
an NP-problem. Traditional solution techniques such as
back-tracking algorithm and mathematical programming
can give the optimal solution, but they have to pay very
high computation price as well as high storage problem.
To effectively reduce problem space is an important
research subject. '

In this paper, we develop a heuristic algorithm called
Simple File Assignment algorithn for the reliability-
oriented file assignment problem to reduce the problem
space. Based on the numerical simulation results, our
simple file assignment algorithm obtain the exact solution
in most cases with much improved computation time.
Examples are given to illustrate the applicability of our
approach. Simulation results are analyzed to justify the
applicability and efficiency of our approach.

References

[1] P. Enslow, "What is a distributed data processing
system,” Computer, vol. 11, Jan. 1978.

(2] D. A. Remnels, "Distributed fault-tolerant computer
systems," Computer, vol. 13, pp. 55-65, Mar. 1980.

[3] D. W. Davies, E. Holler and E. D. Jensen, S. R.
Kimbleton, B. W. Lampson, G. Lelann, K. J. Thurber,
and R.W. Watson, "Distributed systems architecture and
implementation,” in Lecture Notes in Computer Science,
vol. 105, Berlin, Germany : Springer-Verlag, 198].

{4] V. K. Kumar, S. Hariri, C. S. Raghavendra, "Distributed
program reliability analysis", IEEE Trans. on Software
Engineering, vol. SE-12, 1986 Jan., pp 42-50.

{5] C.S. Raghavendra, V. K. Kumar, S. Hariri, "Reliability
analysis in distributed systems", IEEE Trans. Computer,
vol C-37, Mar. 1988, pp. 352-358.

{6} W.W. Chu, L. J. Holloway, M. T. Lan, K.Efe, "Task
allocation in distributed data processing”, IEEE
Computer Magazine, Nov. 1980, pp. 57-69.

201

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

[71 V. Rajendra Prasad, Y. P. Aneja, K. P. K. Nair, "A
Heuristic Approach to Optimal Assignment of
Components to a Parallel-Series Network", [EEE Trans.
Reliability, vol. 40, no. 5, Dec. 1991.

(8] C. V. Ramamoorthy, "The Isomorphism of Simple File
Allocation", IEEE Trans. Computer, vol. C-32, Mar.
1983.

[9] Wesley W. Chu, "Optimal File Allocation in a Multiple
Computer Systems", IEEE Trans. Computer, vol. C-18,
no. 10, Oct. 1969.

[10] K. P. Eswaran, "Placement of records in a file and file
allocation in a computer network”, Information
Processing 74, IFIPS. New York: North Holland, 1974.

[11] C. P. Wang, "On the study of file assignment in
distributed system", NCTU Tech. Rep., 1990.

[12] G.J. Hwang, S. S. Tseng, "A Heuristic Task Assignment
Algorithm to Maximize - Reliability of a Distributed
System", [EEE Trans. on Reliability, vol. 42, no. 3, Sep.
1993, pp. 408-415.

[13] M. S. Lin and D. J. Chen, "New Algorithm for the
Reliability Analysis of Distributed Systerns ", Journal of
Information Science and Engineering 8(3) 1992.

[14] D. J. Chen and T. H. Huang, "Reliability Analysis of
Distributed Systems Based on a Fast Reliability
Algorithm", JEEE Trans. on Parallel and Distributed
Systems vol. 3, no. 2, pp. 139-154, Mar. 1992.

[15] ‘A. Kumar, S. Rai and D. P. Agrawal, " On Computer
Communication Network Reliability Under Program
Execution Constraints", IEEE Journal on Selected Areas
in Communication, vol. 6, no. 8, pp. 1393-1399, Oct.
1998.

