Proceedings of International Conference
on Algorithms

Modification and Retrieval Algorithms for Bitemporal Databases"

To-yat Cheung
Department of Computer Science
City University of Hong Kong

Hong Kong

Xinming Ye
Department of Computer Science
Inner Mongolia University
Inner Mongolia, PRC

Abstract .

Three system-level algorithms are proposed for time-related maodification and retrieval in bitemporal databases.
The algorithms adopt several strategies in their design, such as attribute-value timestamping, a special type of
multi-lists for data storage and name-independency in operation calls. They also make use of two virtual data
values: empty and null. The value empty makes single-valued representation of consecutive time-intervals
feasible, whereas the value null provides a limited capability of ‘resuming’ a value processed previously. The
algorithms are superior to some existing ones in both storage space and efficiency.

1. Introduction

In the past, research concerning time-related
operations on temporal databases has mostly been at the
user language level, such as TSQL or HSQ [10,12,14].
Each user-level operation, such as insertion, retrieval of
old values, etc. , is mapped onto a sequence of system-
level modifications and/or retrievals. At the system level,
study has been confined mainly to data representations
[2,5,6,9] and indexing methods [3]. Recently, the
algorithmic aspects of system-level supports draws the
attention of researchers [13].

This paper presents three system-level algorithms for
supporting time-related operations on bitemporal
databases, one for modification and two for retrieval.
Examples of such operations include inserting a value
between two previous time instants and retrieving an old
value. Design of these algorithms is based on a multi-list

- model, two special values and several well-accepted
database implementation strategies. In the following, we
briefly describe the advantages of our strategies as
compared with others.

Factors Affecting the Design of System-level
Modification and Retrieval Algorithms

A. Kinds of Time and Types of Temporal Databases
Supported

A data object d is a database constituent identifiable by
akey (e.g., a tuple of a relational database). A value of d
is a set of values of those attributes of d involved with

time. The valid-time (e-time, also called effective time) e
of a value v is the real-life time at which a data object
obtains v. The transaction-time [4] (t-time, also called
processing time) t of v is the computer-clock time at
which v is processed by the TDBMS. The expression
“data object d has value v at e-time e as of t-time t”
means “according to the record of the TDBMS at
computer time t, d possesses the value v at real-life time
e”. On the basis of valid-time and transaction-time,
temporal databases can be classified into four types [6]:
snapshot, historical, rollback and bitemporal, involving
no time, only valid-time, only transaction-time and both
valid-time and transaction-time, respectively. Obviously,
a bitemporal database is most informative in comparison
with the other types.

B.Timestamps and Timestamping [2,6,9]
One of the timestamp design issues is whether time-

intervals should be consecutive or not. Using non-
consecutive intervals has at least three disadvantages:

(1) Itis less efficient, as the operations have to take care

of the interval ‘gaps’.
(2) Each interval has to be represented by a pair of time
values, possibly duplicating some boundary values.
(3) Value inconsistency may arise in the common parts
of overlapping intervals. '

A scheme for timestamping describes how a timestamp
is associated with data values. Two schemes are often
used:

" This research was financially supported by the University Grant Council of Hong Kong

182

(1) Attribute-value timestamping [2], in which every key
instance appears in one and only one tuple. The
timestamps and relevant values are then associated
with this tuple by some indexing techniques.

(2) Tuple timestamping [6,8], in which the same key is
repeated in as many tuples as necessary. Obviously,
attribute-value timestamping requires less storage
space than tuple timestamping.

C. Data Structure and Strategies for Handling
Operation Names

The methods of storing data and handling operation
names directly affect the design and implementation of an
algorithm [4,13]. Several strategies will be discussed

below:

a.

Splitting each relation into a core portion and a
backlog:

The core portion is for tuples accessed more
frequently (e.g., current tuples) whereas the backlog is
for tuples accessed less frequently (e.g., outdated
tuples).

‘b. Name-driven versus time-driven operations:

An operation may be called in two ways:

1) Name-driven:

The name is explicitly mentioned .in the call and
stored with the data. In particular, for a retrieval
operation (e.g., rollback), past valus may have to be
recreated by reversing a sequence of stored operations
according to their names.

2) Time-driven:

Instead of operation’s name, the relevant time
values are specified in a call for determining the actual
operation. The name-driven approach has several
disadvantages: Firstly, for TDBM, since any
modification always just adds new values to the
database, its name is not essential. Secondly, besides
wasting the extra space for storing the names, the data
values become overly tied with the internal operations.
Any alteration may affect the recoverability or validity
of the data. Thirdly, it may lead to unnecessary
complexity and restrictions on the interface between the
user and system levels.

Two approaches are often used to handle the states of a
temporal database. In the partially-materializing
approach, only some of the states are stored while the
others are recreated on request by some deduction

. scheme. Data retrieval, however, will then suffer similar

shortcomings as the name-driven approach. In the fully-
materializing approach, all states are stored physically.

183

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

It is more flexible for accommodating other functions
such as view update [6,7], updating an intermediate
database entity (e.g., the join of two relations), etc.

2. A multi-list data storage model

This section presents a data model (MD) as the design
basis for our algorithms. It makes use of a set of multi-
lists and two special data values: empty and null, which
make consecutive intervals and virtual nullification
feasible.

The data storage model DM:

"In DM, the attributes of a record (top of Figure 1)
are divided into three groups:

a. The first group contains the key d of the data object
instance. _

b. The second group contains all the time-independent
attributes pertaining to d.

c. The third group is a header pointing to an e-fime

history (e-history) E(d). E(d) is a multi-list whose
header is a sequence of pairs of the form (e, pointer)
arranged in ascending order of value of e, where
pointer is the address of a t-history T(d, €, t).
The transaction history (t-history) of d at e-time e as
of t-time t, in notation T(d, e, t) or simply T(e) if d
and t are known from the context, is the following
sequence:

T(de.)=T@={(V 1t sVt Vi 1oth 1)Vt M

wheret) <. St < Sty Sty <t and (vs,)
represents the value v of d as processed at t-time 4.

T(e) contains all values which occur at the same e-
time e but are processed at different t-time instants.

An empty interval implies that the data object'd has no
real-life value in that interval. When a null (X) value at

" e-time e is assigned to d in t-time interval [t, t’), it means

that the current value of d is nullified and d resumes the
value just before the current one. A value v is valid if it is
neither empty nor null. A valid interval of v is an e-time
interval in which v is valid. now is the computer-clock
time when an operation is processed.

In our model, a data value remains constant until being
modified at the next time instant. By allowing the value
empty, intervals can be considered as consecutive and
represented by single discrete values of their boundary
points. The null value X is used to make a data object
resume a previous value. Detail of how to do this is given

‘in Section 3.A. Null values have been used in

conventional DBMSs but for a different purpose [11].

Proceedings of International Conference
on Algorithms

= Data Object (e.g. tuple or record instance) — ==

Key d

time-independent attributes

option, pointer to E{d)

g~
®o ——=> T(e)
€4 ——> T(e,)
Data structure
of e—history E{d) .

€m-1 [= T{®m1) EachT(e,)is alist of
pairs of the form (v, t).

€m ——> T(e

Fig. 1. The data storage model DM representing the history of a data object.

3. Three system-level algorithms for bitemporal
databases

Based on the above data model, this section presents
three system-level algorithms for modifying data objects
and retrieving their valid values and intervals. Here, a
modification is on the values of the same data object but at
different e-time or t-time.

A. An Algorithm for Modifying the History of a Data
Object

Suppose a modification M on the value v at e-time e is
initiated for processing at t-time t. As explained below
and in Figures 2 and 3, if v is neither empty nor null, M
can be a change, insertion or update, depending on the
value of e with respect to the e-time e,.... &j, €41, €

already recorded. M is a deletion if v ‘is empty or a
nullification if v is null.

Operation: Conditions: Explanation:
change: e=ej<en value is changed to v in [e;, €i+1)
insertion: ej<e<ejy1 value remains unchanged in [ej, €) and changed to v in [e,
€ji+1)
update: em<e value remains unchanged in [e,, €) and changed to v in [e,
o)
deletion: v = empty same as the above three operations except that, after a
deletion, the interval has no value
nullification: v =null same as the above three operations except that, after a
nullification, the old value is resumed in the new interval
change insert update
at e at e ate
I ! X=mns] | X >
ey € €i+1 € (latest e-time)

Fig. 2. Classification of operations.

Deletion and nullification need further explanation.
They are both done by appending the pair (v, t,,1) to T(e),
where t; < ty,; < t. Figure 3 explains the value of d in [ty,;,

184

t) before and after the operation. After both operations,
the value in [tp, th41) is still vp,.

The value null has the backward effect that an ® can
nullify another X and thus that all v{'s in the specified e-

time interval my be nullified. In the second case, the value

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

in the previous e-time interval will be extended into this
interval.

* value in [ty,1, t) is vy, before operation

* no value in [ty,,,t) after deletion

Value: vy 1 Vh.

* value in [ty,, t) is Vh-1 after nullification

|=me>

t-time: th-1 th

th+1 (operation is processed at ty, 1) t

Fig. 3. Explanation of the deletion and nullification operations.

Note that the above classification of operations is
purely logical. Operationally, as will be seen in Algorithm
ADD, each is done by just adding a pair (v, now) to d’s
history. '

Algorithm ADD(, v, e): This algorithm adds the pair
(v, now) at the end of the t-history T(d, e,
now). As a consequence, v becomes the new
value at e as of now.

Input: Data object d (i.e., its key), value v and e-time e.

Output: ~ None.

Procedure (See Figure 1): The given key d is first used
for locating the appropriate tuple, where the pointer
to the e-history E(d) can be found. E(d) is then
searched for an entry indexed by e. If such an entry is
not found, this operation is an insertion. Then, create
the new entries T(e) = {(v, now)} and [e, ptr], and
insert the latter into E(d), where ptr points to the
location of T(e). If an entry is found, at ¢; say, then

append the pair (v, now) to T(e;).

B. Two Algorithms for Retrieving Valid Values and
Valid Intervals

Algorithm INT(d, t) extracts the valid values and valid
intervals for all the recorded e-time instants as of t.
Algorithm VAL(d, e, t) extracts only those values which
are valid at e as of t. A retrieval is normal if t = now and
roltback if t < now.

Algorithm INT(d, t): For data object d, this algorithm
retrieves all the valid (i.e., nonnull and non-empty)
values and their valid intervals as of t-time t.

Input: Data object d (i.e., its key) and t-time t.

Output: A sequence SEQ = {(viy e, ei+1)}i=1,...,n’
which states that, as of t-time t, d has valid
value vj in e-time interval [ej» €j41) fori=1,2, ...
n. :

185

Procedure:

begin */ Obtain the sequence S of non-null values at all
the e-time instants as of t-time t. m is the subscript of
the last e-time ey, /* ‘

Locate e-history E(d) by d.

S:=¢;size:=0; j:=m 2)

while j > 1 do

*/ For each &js extract the current nonnull value from
T(d, e;, t). (see sequence (1)) /*

begin For &, obtain T(d, e;,) from E(d). Let
T, ej, = {(vy, ty), (V)), e (Vs tp)}, where
{ S Sty Sty St be the remainder after
eliminating from T(d, e;,) all pairs whose t-time
is bigger than t.

k:=h
while v = X and k 2 2 do begin k:=k-2 end
If k 21 then
begin S := (v, ej).S; size :=size+1 end (3)
j=j-1
end
If size = O then stop 4)

*/ Suppose S = { (v, €1), ..., (Vj, €p),.-. (Vgizes €size) }
after relabeling the subscripts, where vj is the non-null
value of d at e; as of t. /*

/ Create e-time intervals with non-empty values /

SEQ:=¢;i:=1
while i < size do
begin if v; # ¢ then SEQ := SEQ. v [es ej41D)
i=i+1
end

coalesce (SEQ)
end

Note: Procedure coalesce(SEQ) combines consecutive
intervals in SEQ which have identical value by repeating

Proceedings of International Conference
on Algorithms

the following task until it is no longer possible: “Replace
two consecutive pairs (v;, [ej, ejy+1)) and (viy1, [ej41,
©i42)): where v; = vj,1, with the pair (vj, [ej, €j42)). After
the combination, rearrange the subscripts.”

Algorithm VAL(d, e, t): This algorithm retrieves the
nonnull but possibly empty value and its latest e-
time interval ending at e as of t-time t.
Input: Data object d (i.e., its key), e-time e and t-time t.
Output: A pair S = (v, [e;, e]), which states that, as of t-
time t, v is the current, nonnull (but possibly
empty) value of d in'the e-time interval [e;, e]. ‘
Procedure: This algorithm contains those statements of
Algorithm INT(.) up to Line (4) but with two
modifications: a) /*Identify the latest ej on or before

¢ */ Insert the two statements. 'while ej>e andj>0
do begin j :=j - 1 end and If j = O then stop”
immediately after Line (2), where stop terminates
the algorithm. b) Line (3) is replaced with the
statement ' If k > 1 then begin S := (v, [e;, €]);
stop end'.

Example 1. ADD, INT and VAL had been applied to an
entity-relationship database used in Statistics Canada [2],
where A and D mean ‘being-alive’ and ‘die’, respectively.
Starting from an empty database, the triplets listed in
Column 1 of Table 1 have been ADDed at t-time t
(Column 2). After these operations, as shown in Fig. 4,
entity d has e-history. E(d) = {e1lT(e1), e2lT(e2),
e3lT(e3)}, wheree] <ep <e3zand t] <t <3 <t4 <t5.

(@, X, e3) t4
(d, X, ep) t5
(d, X, e3) 5

ADD(d,v,e) t-time Explanation

(d,empty,eq) tq data object d is instantiated at e without an initial value
d, A, ep) t being-alive (i.¢., born) at e-time) |

(d, D, e3) t3 died at e-time e3 ,‘

d, R,ep) t4 birth at e as processed at ty is erroneous and thus nullified

death at e3 as processed at ty is also erroneous and thus nullified
the birth nullification processed at t4 is erroneous and is nullified
the death nullification processed at t4 is erroneous and is nullified

i

Table 1. List of additions to entity d of an entity-relationship database

e)lempty, t
€2 3] A,t2 N,t4 N,ts
e s Doty | Xt | X, ts

Fig. 4. The multi-list E(d) of entity d after performing the additions listed in Table 2.

Algorithm INT(d, t) obtains the valid values and
intervals as of t-time t as follows: If t5 < t, SEQ = {(A,

[e2, €3)), (D, [€3, =))}. This means that, on or after t-time
t5, d is recorded as alive in [e), €3) and as dead on or
after e3. If t4 < t < t5, SEQ = {(empty, [e1, =))}. This

Condition on ¢ and t of VAL(d, e, t)

Case I: e1<e<epandtg <t<ts
Case 2: ep<e<ezandtg<t<ts
Case 3: eg<e<ezandt5<t
Case 4: e3<eand t5<t

186

means that, between t4 and t5, d is recorded as having no
valid value since ej.

The following four cases show the results of applying
Algorithm VAL(d, e, t).

Extracted pair
(empty, [e1, e])
(empty, [e2, e])
(A, [e2, €]
(D, [e3, e])

Example 2.

Table 2 shows a bitemporal relation used by Sarda
[13], where [FROM,TO] is the e-time interval, [START,
STOP] is the t-time interval, and infinity (eo) means that
the value will last from FROM or START until it is
changed. It contains only one object ‘Jane’. Since
Sarda’s model uses tuple-timestamping, ‘Jane’ appears
in all the combinations of e-time and t-tiem intervals.
Figure 5.a shows the same database under our model. It
contains only one tuple and an associated history E(Jane)

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

= {T(ey), T(7/81), T(5/82), T(9/83), T(3/85), T(10/86)},
where e1 is the initial e-time and t{ is the initial t-time.

Suppose the date on which Jane’s salary became 40K
should be 2/84 instead of 9/83. Correction is done on 2/87
by applying ADD(Jane, R, X, 9/83, 2/87) and ADD(Jane,
associate, 40K, 2/84, 2/87). The first ADD nullifies the
error occurring on 9/83 and the second inserts the updated
value occurring on 2/84. Figure 5 shows the e-history for
Jane as of 11/86 (just before correction is made) and as of
2/87 (just after correction is made).

NAME RANK SALARY FROM TO START STOP
Jane Assistant 35K 7/81 5/82 7/81 oo
Jane Assistant 37K 5/82 9/83 4/82 oo
Jane Associate 40K 9/83 3/85 9/83 oo
Jane Full 45K 3/85 10/86 2/85 oo
Jane Full 47K 10/86 oo 11/86 oo

Table 2. Sarda’s bitemporal relation [13].

Jane | I (Jane's tuple in the core of the relation)

e 1 —%i empty , empty, 1, |

=3 —-—%i‘emptg ,empty , t4 I

7481 ———%-I assistant, 35K, 7/81 |

7781 —%l assistant, 35K, 7/81 l

S5/82 —%-| assistant, 37K, 4#32|

5/82 _-——%l assistant, 37K, 4/82'

0/93 _%' associate, 40K, 9f34 aﬁer/

9/83 —él associate, 40K, 9/83{ ™M, ,27°87

AN
/85 ——>‘ full, 45K, 2/85 | ikt

2794 ——%lassociate, 40K. 2.*'87!

10786 ———)i full, 47K, 11/86 I

/85 }I" full, 45K, 2/85 I

10/86 ———él full, 47K, 11786 - |

(a) e-h-istory of Jane as of 11/86

(b) e-history of Jane as of 2/87.

Fig. 5. Multi-list E(Jane).

Shown below are two calls of V(d,e,t) for finding Jane’s
salary immediately before 10/83 as recorded on 1/84 and
1/88. The two retrieved pairs are also shown. '

VAL(d, e, t): . Retrieved pair (value, [e, ’]):

VAL(Jane, 10/83, 1/84) (associate, 40K, [9/83,10/83])
VAL(Jane, 10/83, 1/88 (assistant, 37K, [5/82, 10/83]).

4. Summary of comparison on design strategies and
Performance

187

A detailed performance analysis of our algorithms
ADD and INT and comparison with Sarda's algorithms
CORRECTION and ROLLBACK [14] have been carried
out in {1]. (Algorithm VAL is ignored because it is similar
to Algorithm INT.) However, because of space limitation,
only a brief summary of the results is reported here. We
have chosen Sarda’s algorithms for comparison for
tworeasons: (1) Sarda’s algorithms and ours are based on
quite different approaches. A comparison will illustrate the
pros and cons of the various strategies. (2) As far as we
know, Sarda’s algorithms are the only ones reported in the
literature with detailed description of their design strategies
and performance.

Proceedings of International Conference
on Algorithms -

Design Strategy:

Database supported:

Representation of
interval:

3. Data structure:

[N

4. Data storage method:
5. Data retrieval method:

Our Algorithms:

Bitemporal

Consecutive

By a single time value

Multi-lists

Attribute-value timestamping
(each key appears only once
in the entire database)

Fully-materializing

Direct indexed searching
over carefully-designed
multi-list structures

Sarda’s Algorithms:

Historical
Non-consecutive
By a pair of time values
Flat files
Tuple-timestamping
(each key appears in as
many tuples as there are
time intervals)
Partially-materializing
Indexed searching and
rollback over flat files

6. Operation handling: Time-driven

Name-driven

Table 3. Comparison on design strategies.

Selection of the above strategies has rendered the
following advantages for our approach:

a. Our algorithms are simpler. In our approach,
modifications are done simply by adding new data
units to the database and retrievals by direct indexed
searching; whereas Sarda’s algorithms, besides
indexed searching, involve storing and manipulating
the operations’ names and rolling back the tuples.

b. Our approach is easier for implementation and
integration into an existing database. In our approach,
the temporal information is all kept in a close unit (the
history) which may be stored separately from the
existing database. In each tuple, the fields for the time-
related attributes are replaced by a pointer pointing to
the relevant multi-list. Hence, modification to the
existing database is minimal. Sarda’s approach not
only lengthens a tuple with some time attributes but
also increases the number of tuples by as many as there
are time-intervals for each key instant.

c. Our modification algorithm has the capability in
‘recovering’ old values of a data object by just updating
it with a null value. (Section 3.)

B. Comparison on Performance of Modification
Algorithms ADD and CORRECTION

Comparison is based on two estimates: efficiency and
storage space requirement. They are obtained by calling
ADD and CORRECTION each to perform a set of
operations: update, insertion, deletion and change. The

188

average number of blocks accessed (for efficiency
estimation) and the total number of data units required
(for storage space estimation) are then estimated based on
certain formulas. For uniformity in comparison, we derive
the estimates based on e-time intervals for both ADD and
CORRECTION.

Difference in storage space requirement

Symbol: Meaning or assumption:

a total field size for all time-dependent data
attributes

b total field size for all time-independent data
attributes

k number of recorded e-time intervals
overlapping with [e, €')

p length of a time value or a pointer (assumed

to be of same size)

A formula showing the difference between the space
requirements of the two algorithms in terms of the
parameters b, a, p and k has been obtained in [1]. As
illustration, Table 4 shows the computational results from
this formula for some randomly chosen values of b, a, p
and k: : :

(S4 - space requirement of Sarda’s Algorithm

CORRECTION
S, - space requirement of Algorithm ADD proposed in

this paper)

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

b a p k Sg-5, bla]|p k Sg- S,
32| 8 4 1 301 40| 8 | 8 1 403
' 2 287 2 389
: 3 273 3 375
40| 4 | 4 1 323 4818 | 8 1 451
2 317 2 437
3 311 3 423
40 | 8 4 1 349 48116 | 8 1 503
2 335 2 473
3 321 3 443
40116 | 4 1 401 64 1161 8 1 599
2 371 2 569
3 341 3 539

Table 4. Difference in space requirements between CORRECTION and ADD.

REFERENCES

(1]
[2]
(3]

(4]

(5]

(6}

T. Y. Cheung and X. Ye, “Modification and
retrieval algorithms for bitemporal databases”,
Tech. Report TR-95-1, Dept. of Computer
Science, City Univ. of Hong Kong.

T. Y. Cheung, “Temporal databases -- their present
and future”, Proc. 5th Intern. Hong Kong
Computer Society Database Workshop, Hong
Kong, (1994), pp.29-46.

H. Gunadhi and- A. Segev, “Efficient indexing
methods for temporal relations”, IEEE. Trans. on
Knowledge and Data Eng., vol.5, no.3, (Jun.
1993), pp.496-509.

C. S. Jensen, L. Mark, and N. Roussopoulos,
"Incremental implementation model for relational
databases with transaction time", IEEE. Trans. on
Knowledge and Data Eng., vol.3, no4, (Dec.
1991), pp.461-473.

C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev,
and R. T. Snodgrass, “A glossary of temporal
database concepts”, SIGMOD Rec., vol.21, no.3,
(Sep. 1992), pp.35-43.

C. S. Jensen, M. D. Soo, and R. T. Snodgrass,
“Unification of temporal data models”, Proc.
Intern. Conf. on Data Eng., Vienna, (Apr. 1993).

189

(7

(8]

(9]

(10]
[11]
[12]
(13]

[14]

R. Langerak, “View updates in relational databases
with an independent scheme”, ACM Trans. on
Database Systems, vol.15, no.l, (Mar. 1990),
pp-40-66.

R. Maiocchi and B., Pernici, “Temporal data
management systems: A comparative view”, IEEE
Trans. on Knowledge and Data Eng., vol.3; no.4,
(1991), pp.504-524.

E. Mckenzie, and R. Snodgrass, “Supporting valid
time in an historical relational algebra: Proofs and
extensions”, Tech. Rep. 91-15, Dept. of Comp.
Science, Univ. of Arizona.

S. B. Navathe and R., Ahmed, “A temporal
relational model and a query language”,
Information Sciences, vol.49, (1989), pp.147-175.
M. A. Roth, H. F. Korth, and A. Silberschztz,
“Null values in nested relational databases”, Acta
Informatica, vol.26, (1989), pp.615-642.

N. L. Sarda, “Extensions to SQL for historical
databases”, IEEE Trans. on Knowledge and Data
Eng., vol.2, no.2, (Jun. 1990), pp.220-230.

N. L. Sarda, “Time-rollback using logs in
historical databases”, Information and Software
Technology, vol.35, no.3, (1993), pp.171-180.

R. Snodgrass, S. Gomez, and E. McKensie,
“Aggregates in the temporal query language
TQuel”, IEEE Trans. on Knowledge and Data
Eng., vol.5, no.5, (Oct. 1993), pp.826-842.

