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Abstract

This paper addresses the problem of automated sup-
port for software maintenance from the viewpoint of
research in belief revision and default reasoning. We
argue that formal specifications should be viewed as
mutable specification theories, which we treal as de-
fault theories in a variant of default logic called PJ-
default logic [3]. We show that this approach to ana-
lyzing formal specifications provides benefits not only
wn terms of a more powerful representation language,
but also because it permits us to define a specifica-
tion revision framework which supports reuse-oriented
software maintenance. QOur approach views specifica-
tion revision as a process of mapping between default
theories and provides us the ability to explicitly record
retracted specifications and take them into account in
deciding the outcomes of the specification revision pro-
cess, the ability to retain specifications which would
otherwise be discarded in a semantically well-founded
manner in anticipation of future reuse. We argue that
our approach is a language-independent method of an-
alyzing and revising specifications in any formal spec-
tfication language.

1 Introduction: Software maintenance

A simple method of modelling the dynamics of soft-
ware systems is to view the process as a mapping be-
tween states, where each state consists of three enti-
ties: :

e A contert, representing the environment in which
the software system is situated.

e A specification, representing an abstraction of the
software system design and functionality. Soft-
ware specifications, unlike contexts, are repre-
sentable artifacts. Specifications may be repre-
sented in a formal language, or via a collection
of informal tools, often involving graphical inter-
faces. This second category of specification tech-
niques are more user-friendly by insulating the
programmer or analyst from the need to use a
mathematically demanding formal specification
language. This advantage comes at a high cost,
however. In addition to losing the ability to make
precise yet abstract definitions, informal specifi-
cations also lose out on the benefits of early defect
removal, coding guidance and derivation of test
data enjoyed by formal specification techniques.
In this paper, we shall focus only on formal spec-
ification techniques.
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e A implementation representing the implemented
software system.

Software maintenance tasks are usually of three kinds:

e Corrective: This is driven by validation failures,
i.e., situations where the specification does not
correctly reflect the context, or by verification
failures, i.e., situations where the implementation
does not adequately reflect the specification.

e Perfective: This form of maintenance is usually
undertaken to improve the performance of the
software system, leaving system functionality un-
changed.

e Adaptive: Adaptive maintenance -is driven by
changes in the context. A context shift neces-
sitates a revision of the specification, and corre-
spondingly, a change in the implementation. Ide- .
ally, the change in the implementation is mini-
mal, permitting maximum reuse of existing soft-
ware components.

In this paper, we shall focus on the corrective and
adaptive maintenance tasks. Within the set of cor-
rective maintenance tasks, we are interested only in
those driven by validation failures (which result in
specifications which do not correctly or adequately re-
flect the context). The common feature of all of these
tasks is a process of specification revision, i.e., a pro-
cess of updating the specification to reflect changes in
the environment in which the software system is situ-
ated. Our goal in this paper is to propose a language-
independent framework for specification revision. In
other words, we shall define a set of specification revi-
sion techniques which can apply to any formal specifi-
cation language which includes notions of consistency
and logical consequence. An interesting consequence
of this exercise will be the observation that the logical
framework that we develop for this purpose is also a
viable formal specification language in its own right.

We shall use the notion of mazimizing re-use of
software components as the guiding principle in our
effort to develop a framework for specification revi-
sion. We shall make the simplifying assumption that
maximal re-use can be achieved during the mainte-
nance process by making minimal change to the speci-
fication. While this alone does not guarantee maximal
re-use, it is well-recognized that this is an important
contributing factor, and our assumption is therefore
a useful one to malke.
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2 A framework for specification revi-
sion
Our work is motivated by the following observa-
tions: ‘

e Current approaches to formal specifications pro-
vide little or no account of what it means to min-
imally revise specifications in the light of new in-
puts from the context.

o Existing work does not address the question of
mutable specifications (with the possible excep-
tion of [13]). Informally, mutable specifications
are tentative, default or defeasible specifications.
Mutable specifications correspond to E-type pro-
grams in Lehman’s [12] classification of programs
as E-type or S-type. Roughly, S-type programs
are those which are correct with respect to spec-
ifications which remain invariant over time. E-
type programs, on the other hand, are those
which are correct with respect to specifications
which may, in fact, vary over time. Mutable spec-
ifications are useful in a variety of ways:

— They can be used to represent specifications
which are known a priori to be assumptions
that may be potentially violated.

— They can be used to complete specifications
via the application of a set of default specifi-
cationg relevant to the domain. Consider for
instance the domain of software systems for
cherical reactor control. It is possible to de-
velop a set of system-independent specifica-
tions for such control systems which would
include, for instance, assumptions that the

. system receives sensor inputs from temper-
ature, pressure and pH sensors. Such as-
sumptions could however be violated in spe-
cific systems, such as ones in which pres-
sure sensors are redundant. Default specifi-
cations can thus be used to obtain complete
specifications by taking a potentially incom-
plete set of specifications generated by sys-
tem developers and applying all of the rele-
vant defaults.

— They can be used to represent, and retain, in
a semantically well-founded manner, speci-
fications which become questionable as a re-
sult of specification revision. A major role
for mutable specifications in the framework
we shall develop in this paper will be in this
capacity.

e Two kinds of change can take place during spec-
ification revision: new specifications may be
added and existing specifications may be with-
drawn or retracted. Specifications that are added
can be represented in an obvious manner in a
formal specification framework. Existing work,
however, provides no account of how retracted
specifications may be represented, given that re-
tracted specifications are as important as newly
added specifications in determining the outcome
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of a specification revision process (as an example
later will show). :

e A guiding principle in re-use oriented software
maintenance is the need to maintain repositories
of software components not currently in use in
anticipation of future re-use. Similar considera-
tions apply to specifications. Specifications that
become invalid as a result of specification revi-
sion should be retained in a semantically mean-
ingful way in anticipation of future use. Current
frameworks for formal specifications provide no
support for this.

Our approach to specification revision will draw on
results from the closely related areas of belief revision
and default reasoning. We shall establish this connec-
tion in two stages. First, we shall argue that results
from the area of belief revision provide a sound seman-
tic notion of minimal change in specification revision.
Second, we shall argue that specifications need to be
viewed as default theories in order to account for mu-
table specifications, and in order provide an adequate
account of re-use oriented specification revision.

Alchourrén, Géardenfors and Makinson have un-
dertaken a systematic study of the dynamics of be-
lief change, resulting in what is currently popularly
known as the AGM framework for belief change [1],
(5], [?], [4]. In the AGM framework, the belief state of
an agent is represented by a deductively closed, log-
ically consistent set of propositional sentences called
a belief set. They define three kinds of belief change
operations: ezpansion, in which the new belief being
added is guaranteed to be consistent with the existing
body of beliefs; contraction, in which an existing belief
is retracted; and revision, in which a new belief, which
may possibly be inconsistent with existing beliefs, is
added. The operations of contraction and revision can
be defined in terms of each other, as shown by the
Levi identity below (here, K%,K; and K} denote,
respectively, the revision, contraction and expansion
of K with A): K% = (KZ,)}. The Harper identity
[11] (K; = K*, N K) similarly defines contraction in
terms of revision. We decsribe only contraction oper-
ators in this section, since the corresponding revision
operators follow via the Levi identity. Alchourrdn,
Gardenfors and Makinson define a set of rationality
postulates for each of the operations of expansion, re-
vision and contraction. The postulates for contraction
are listed below. : '

1- For any sentence A and any belief set K, K is a
belief set.

2 K; CK.

3-If A¢ K, then K = K.
4 If = A, then AE K.
5-1f A€ K, then K C (K3)}.

6-If = A & B, then K] = K.



T K3 NKp CKzap.
8 If Ag Kjnp, then K3,5 C K7.

Postulate (1-) requires that beliefs be represented in
the same form before and after a belief change step.
(2-) requires that no new beliefs be held as a result
of a contraction. (3-) requires that if the belief to
be contracted is not held, then no change should be
made. (4-) requires that every contraction operation
succeed, unless the belief being contracted is a log-
ical truth. (5-) is the priniciple of recovery, which
requires that if a belief held in a given belief state
is retracted and then added back to the belief state,
the outcome contains the initial belief state, i.e., the
initial belief state is recovered. (6-) is the priniciple
of irrelevance of syntax, which requires that the out-
come of a contraction operation be independent of the
syntactic form of the beliefs being contracted. (7-) re-
quires that the retraction of a conjunction of beliefs
should not retire any beliefs that are common to the
retraction of the same belief set with each individual
conjunct. (S-Lrequires that, when retracting the con-
junct of two beliefs A and B forces us to give up A,
then in retracting A, we do not give up any more than
. in retracting the conjunction of A and B.

Our work on defining a semantically well-founded
approach to specification revision will take this for-
malization of minimal change as its starting point.
We shall therefore view specification revision as a pro-
cess of minimally changing specification theories (note
that we shall use the term revision to denote the gen-
eral operation of theory change, as opposed to the spe-
cific form used in the AGM framework). However, we
shall not treat specification theories as classical theo-
ries, in a significant departure from the AGM frame-
work, as we shall see later in this section. We shall
use a simpler repertoire of belief change operations
for specification revision. Given that ezpansion is a
purely theoretical artifact (one rarely has a guaran-
tee in real-life situations that the new input will be
consistent with the existing theory) we shall only con-
sider the following two kinds of specification revision
operations:

1. Specification addition: This involves adding a
new specification to a specification theory, and
admits the possibility that the new specification
might contradict existing specifications in the
specification theory.

2. Specification retraction: This involves forcing a
specification theory to not commit fo an asser-
tion, and may involve withdrawing existing spec-
ifications from the specification theory.

Although our work shall take the AGM framework
as its starting point, our approach shall involve a sig-
nificant departure from the AGM account of belief
change. Listed below are five reasons why the AGM
approach to belief change cannot be directly applied
for the purposes specification revision. We shall use
these observations to motivate the need for an alter-
native framework for specification revision.
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First, the AGM representation scheme uses classi-
cal propositional theories, which does not permit mu-
table specifications to be represented in a meaningful
way.

Second, retracted assertions cannot be represented
in the AGM framework. This results in a form of
pathological behaviour illustrated in the following ex-
ample.

Example: Consider the AGM framework. Let
{b, f} be the alphabet of our language. Let the initial
theory be K0 = Cn{b — f}. After contracting f, let
the outcome be K1 = Cn{b — f} (since f is not a
consequence of K0, no changé is made to K0). Re-
vising K1 with b results in the theory Cn{b,b — f}.
Thus, the assertion f returns to the theory, although
the only new information (the assertion &) obtained
since being told to retract f does not in itself require
that f be held again. A more detailed analysis reveals
that when K1 is revised with b, three different entities
need to be considered:

A: b— f and its consequences hold.
B: f is retracted.
C: b holds.

Prioritizing these entities informally using a relation
>, where © > y denotes that z has higher priority
over ¥, a variety of outcomes are possible.

e IfC'> A> B then K1} = Cn{b,b— f}.
e If A>C > B then K1} = Cn{b,b — f}.
e If A> B> C then K1} = Cn{b— f}.
e If B> A> C then K1} = Cn{b— f}.
e IfC > B > A then K1} = Cn{b}.

e If B> C > A then K1} = Cn{b}.

Clearly the three distinct entities and their relative
prioritization need to be considered in gemerating an
outcome. O

We therefore need a language where retracted spec-
ifications can be explicitly recorded. Third, in the
AGM framework, assertions which are contradicted
by the new input are irretrievably discarded, i.e., the
only way such assertions can be recovered is if they are
provided as input to the specification revision process.
Consider the situation where an assertion z ceases to
hold on account of another input assertion y, which is
subsequently retracted. Common-sense dictates that-
z should be held again since the reason it ceased to
hold has been removed. In the context of a framework
for specification revision which supports re-use, such
behaviour is specially important. We need a frame-
work where specifications are never irretrievably dis-
carded, but can be recovered without having to ex-
plicitly assert the specification again.

Fourth, the AGM framework uses a choice function
to select amongst multiple candidate outcomes of the
revision/contraction process (we have ommitted de-
tails of these operators in our description of the AGM
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framework for brevity). This choice function is not
context-sensitive; it is determined entirely by the the-
ory currently held, and in later accounts of iterated
belief change, by the sequence of inputs as well 14].
If theory preference must be performed as part of the
specification revision process, one would require the
theory preference criteria to be context-sensitive since
the revision process is driven entirely by the context
(as opposed to the epistemic attitudes of an agent, as
is often the case in situations covered by the theory
of belief change). The AGM framework cannot there-
fore be directly applied to the problem of specification
revision.

Finally, the AGM framework insists that every in-
put to the belief change process be accepted (in the
case of revision, the resulting theory must contain the
input assertion while in the case of contraction, the
resulting theory must necessarily not contain the as-
sertion being retracted). In the case of specification
revision, certain inputs may be deemed (by the con-
text) to be of low priority relative to the other spec-
ifications in the specification theory, and may not be
immediately accepted, or may be rejected. We there-
fore need a framework which does not automatically
accept every input (a process sometimes referred to
as non-prioritized belief change [10]).

We shall utilize an alternative approach, which uses
a nonmonotonic logic instead of classical logic as the
representation language, as the basis of a framework
for specification revision. As a first step, we shall
argue that specifications need to be represented as
mutable specification theories. Formally, we shall de-
fine a mutable specification theory to be a set A =
{S1,82,...,5,} where each S; is a classical theory
referred to as a specification theory as defined earlier.
We shall say that S; is supported by A iff S; € A.
The intuition is that every specification theory rep-
resents a different set of mutable specifications-being
assumed to hold. We shall defined specification addi-
tion and retraction for mutable specification theories
in the following manner:

e Addition: This involves a mapping to a new mu-
table specification theory such that every specifi-
cation theory it supports includes the input spec-
ification as a consequence.

e Retraction: This involves a mapping to a new
mutable specification theory such that every
specification theory it supports does not include
the specification being retracted.

Note that the above defines successful revision. In the
framework we shall define, these operations will not
always succeed, the outcome being determined by a
choice function based on the priority accorded to the
input specification relative to the existing ones. For-
mally, we shall treat mutable specification theories as
default theories, specifically theories in a variant of
Reiter’s default logic [16] called PJ-default logic [3].
In PJ-default logic, default rules are restricted to be
prerequisite-free and semi-normal (i.e., a PJ-default

rule is of the form -,? such that 8 |= ). PJ-default

logic improves over Reiter’s default logic [16] by avoid-
ing cases where Reiter’s logic is too weak, preventing
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the derivation of ”reasonable” conclusions (such as in
the disjunctive default problem) as well as cases where
Reiter’s logic is too strong, permitting the derivation
of unwanted conclusions %for a detailed discussion of
these issues, see [3]2 This approach has other use-
ful properties as well, such as semi-monotonicity, the
guaranteed existence of extensions, weak orthogonal-
1ty of extensions and a constructive definition for ex-
tensions. PJ-default extensions are defined as follows:

Definition 1 [3] Let (W,D) be a prerequisite-free

semi-normal default theory. Define:

Ey=(Ej, Er,) = (Cn WC%, Cn(W))

f"z-i-; = EJ-'+15ET€+1) =( n(EJ-'U{:B/\'Y}):Cn(ETiU
£8}))

where

i(%)‘i GD,
_'(ﬁ/\'/) ¢ EJi‘

Then E is a PJ-extension for (W,D) iff
E = (Ej, ET) = (Uzo.o—.o Ey;, Uz?io Er,).

In the rest of the paper, whenever we refer to an exten-
sion, we shall refer to the Ep part of a PJ-extension.
We shall use E(A) to denote the set of extension of a
PJ-default theory A. We shall identify the set of spec-
ification theories supported by a mutable specification
theory with the set of extensions of the corresponding
PJ-default theory.

Definition 2 A semi-normal default theory (W, D)
is said to be uniform if for any two default rules

2"—%@", ﬁ%—’}—/\—h € D,yvi =% (if| D |= 1, then the
theory is trivially uniform).

In the paper, we shall be interested only in a special
class of PJ-default theories, specifically that of un:-
form PJ-default theories.

In the next section we shall specification revision
procedures based on this framework.

3 Specification revision procedures

We shall base the specification revision procedures
presented in this section on our earlier work on belief
change operators in [7] (some of these results are in
turn based on results in [8] and [9]), but we shall have
to deviate from the original belief change operators in
several significant ways.

Until now, we have focussed on mutable specifica-
tions. Practical situations usually also involve a set of
immautable specifications which must necessarily hold
in every context. In our approach we shall account for
this by assuming a preprocessing stage in which every
addition or retraction is tested against the set of im-
mutable specifications for viability. If a specification
addition operation involves a new specification which
is inconsistent with the immutable specifications, then
the input is rejected. If a specification retraction oper-
ation involves retracting an immutable specification,
then too the input is rejected. :

Formally we shall define a generic specification re--
vision (addition or retraction) operator to be a func-
tion of the following kind:



R:MSTxBPXxTPXxOPxL —+ MSTxST

where M ST is the class of mutable specification the-
ories, ST is the class of specification theories, OP =
{addition, retraction}, L 1s the language and BP and
T'P are two special classes of choice functions to be de-
fined below. Intuitively, a specification reivison takes
as input a mutable specification theory, two choice
funtions, a boolean indicator denoting whether the
operation is an addition or a retraction, and a sen-
tence to be added or retracted, and produces as out-
put another mutable specification theory and distin-
guished specification theory supported by the new
mutable specification theory which represents the new
preferred set of specifications.

Let us first analyze the representation language of
mutable specification theories in greater detail. Given
a mutable specification theory A = (W, D), we can
identify the following distinguished sets of specifica-
tions:

e Accepted specifications: These are the specifica-
tions contained in W. Necessarily, the set of ac-
cepted specifications is contained in every speci-
fication theory supported by the mutable specifi-
cation theory.

e Retracted specifications: These are the assertions

contained in 7, where -p‘TA'l € D, treating v to be

the set of its conjuncts if 4 were written in con-
junctive normal form. Necessarily, the negations
of the elements of the set of retracted specifica-
tions are not contained in any of the specification
theories supported by the mutable specification
theory.

o Tentative specifications: This is comprised of the
consequents 3 of every default rule —'["TAA‘ € D.

A tentative specification may or may not be con-

tained in a specification theory supported by the
mutable specification theory.

A successful specification addition will result in the
new specification being included in the the set of ac-
cepted specifications of the resulting mutable speci-
fication theory. Similarly, a successful specification
retraction operation will result in the negation of the
retracted specification being included in the set of re-
tracted specifications.

We shall define a specification base to be any set
consisting of accepted and retracted specifications.
We shall syntactically disntinguish accepted and re-
tracted specifications in the following manner: ac-
cepted specifications will be written as literals of the
form ¢ while retracted specifications will be written
as —¢ where ¢ is a literal; the — symbol denotes that
the negation of ¢ does not hold. Given the special sta-
tus of retracted specifications as constraints used for
testing consistency, as opposed to actual assertions,

we cannot refer to the consistency of a specification.

base. We shall use a notion of compatibility instead.
Straightforwardly, a specification base is compatible if
the set obtained by treating each retracted specifica-
tion —¢ as the literal ¢ (other things being the same)
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is consistent. We shall define a M azcomp operator as
follows:

Mazcomp(b) = {¥/ | b C b,V is compati-
ble and for all b s.t. ¥ C " C b, b is
incompatible}

where b, b’ and b’ are specification bases. The
Mazcomp operator thus identifies maximal compati-
ble subsets of specification base, given a possibly in-
compatible specification base as input. Given a speci-
fication base b, s, (b) denotes the set of accepted spec-
ifications in b while s, () denotes the set of retracted
specifications

Recall that the specification revision operator takes
as input two choice functions. The first of these be-
longs to the class of base preference (or BP) func-
tions. Formally a base preference choice function ¢
is defined as follows:

c:282 4+ B

where B denotes the class of possible specification
bases (given a formal specification language). Thus
¢p takes a set of specification bases and selects one.
The second choice function provided as input to the
specification revision function belongs to the class of
theory preference (or TP) functions. Formally a the-
ory preference choice function ¢; is defined as follows:

CtZQT-—}T

where T denotes the class of possible theories (given
a formal specification language). Thus ¢; takes a set
of theories and selects one.

We can now provide a precise definition of the spec-
ification revision function R. We assume that the ini-
tial mutable specification theory is given by the PJ-
default theory (W, D) where both W and D are fi-
nite. We assume that the dummy default % € D for
any (W, D) representing a mutable specification the-
ory (this permits us to record retracted specifications
even when there are no tentative specifications. First
we define $;,51:a1, @ function which generates the spec-
ification base consisting of the initial set of accepted
and retracted specifications, given the initial mutable
specification theory as follows:

Sinitiat (W, D)) = WU{y | there exists some
£ ¢ D}

We then define a function 8;pt.r which generates the
intermediate specification base by adding to the initial
specification base a new accepted specification (in the
case of addition) or a retracted specification (in the
case of retraction).

inter (0P, b, in) = bu {in} if op = addition
Sinter\OP, 0 1) = 1 py {~=in} if op = retraction

where op denotes the operation (addition or retrac-
tion), b denotes a specification base, and in denotes
the 1nput sentence &o be added or retracted).
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Let A = (W, D) be the initial mutable specification
theory. Let ¢; and ¢; be the base preference and the-
ory preference choice functions provided as input. As
before, let op denote the revision operation (addition
or retraction) and in denote the input specification
to be added or reiracted. Let A’ denote the resulting
mutable specification theory. ¢ denotes the preferred
specification theory supported by A’ after the revision
step.

R(A, ey, ¢t 0p, in) = (A1)
where Al = (w’', D", with
W' = s, (Cb(Mazcomp(Sintevj (op, Sz'm'tial(A); 271))))
D= {:6;/\(/\ sr(co(Mawcomp(sinter(0p,3initiat(4),in))))) I
= T

& € (W" = W) Ju
{ :ﬁi/\(/\ 3a(Cb(Mai'comP(f’inter(opy"initial (A)ﬂn))))) I

Bi
%‘P—' € D } where W” = W if op = retraction
and W = W U {in} if op = addition.
= (B

Here A b stands for the conjunction of all the elements
of b.

For brevity, we shall not provide a detailed exam-
ple of specification revision here. We shall, however,
rework the example used in Section 3 to motivate the
need for explicit representations for contracted asser-
tions to show how our approach addresses this issue.

Example: Let the initial mutable specification
theory be given by:

(W1, D1) = ({b— f}{F})

The mutable specification theory obtained by con-
tracting f is given by:

(W2, Ds) = ({6 — £}, {T4=LY)

The mutable specification theory obtained by further
revising with b is given by:

(Ws, Dg) = ({8}, {Lqllpd Taatyy

if ¢y (M azcomp(sinter(addition,
sinitiat ((Wa, D2)), b)) = {b, — f}

(Ws, D3) has a single extension, given by Cn({b}).
Notice that the contraction of f persists since f 1s
in no extension of (Ws,D3). b — f is demoted in
status from an accepted specification in (W2, Ds) to
a tentative specification in (W3, Ds). Notice also we
would get a different outcome:

(W3, Ds) = ({b — f}, {*5L, T42LY)
if ep(M amcompSs;nte,.(addition,
sinitial (W2, D2)),b))) = {b = f,——f}

and yet another outcome:
(Wg, Dg) = ({6,b = ), {})

if ep(M a;vcompgsmter(addition,
3initial((W27 D, )vb))) = {b) b— f}
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We can thus get each of the three distinct outcomes
discussed in our motivating example, depending on
the outcome of the base preference choice function c;.
[m]

4 Properties

In Section 3, we presented a set of desiderata for
specification revision systems. In this section, we shall
establish that our approach does, in fact, satisfy these
requirements. First, we shall examine how our ap-
proach measures up againsi the requirements for min-
imal change presented in the AGM framework. Sec-
ond, we shall establish that specifications are always
recoverable in our framework. Together, these prop-
erties will show that our approach provides a good
basis for a reuse-oriented software maintenance.

Let us consider the AGM criteria for minimal
change first. Our formalization cannot be evaluated
using the AGM postulates directly, for the following
two reasons. First, the AGM postulates consider tran-
sitions between belief states represented as a single
deductively closed propositional theory. Our opera-
tor maps between collections of theories (the multiple
possible extensions of the PJ-default theories). Sec-
ond, since the AGM postulates consider belief change
as a single step process, it is difficult to evaluate min-
imal change over iterated steps. It is possible, how-
ever, to articulate a reformulated version of these pos-
tulates, and show that our framework satisfies them
under certain conditions. We shall formulate these
conditions first. The following defines the class of im-
perative specification revisions.

Definition 3 A  specification revision operation
R(A, ¢y, ct,0p, in) is imperative iff:

¢ in € co(Mazcomp(sinter (0, sinitiat (A), in))) if
op = addition.

@ f"‘in € Cb(Mamcomp(Sinter (OP, sinz‘tial(A)s zn)))
tf op = retraction.

The following result establishes that imperative oper-
ations always succeed.

Theorem 1 If a specification revision operation
R(A, ¢y, c,0p,in) = (A',t') is imperative:

e Ve:e€ E(A'), e = in if op = addition.
e Ve :e € E(A'), el in if op = retraction.

Since every belief change operation succeeds in the
AGM, and since our specification revision operator
avoids this in the general case, we can only establish
connections between imperative specification revision
operations and the AGM framework,

We shall also find it useful to establish the following
technical result. ‘

Lemma 1 Let R(A, ¢y, ¢, 0p,in) = (A',¢'). Then A’
s a uniform PJ-default theory if A s uniform.

We need to further constrain the specification revision
operation to make connections with the AGM frame-
work. Specifically, we need to rule out cases where a



specification which is suppressed (i.e., it does not ap-
pear in any specification theory supported by the cor-
responding mutable specification theory) on account
of a retracted specification reappears as a result of
the retracted specification being discarded by a sub-
sequent specification revision operation.

Example: Consider a mutable specification the-
ory given by W = {} and

D = {:—'a’\“_/.\a(“"*b), TAMa=8)})  There is a single,

empty, supported specification theory, corresponding
to Cn(T), which is the only extension of (W, D). Let
the specifcation base corresponding to this mutable
specification theory consist of a single retracted spec-
ification —(a A (a — b)). Let us now retract b via
an imperative retraction operation. The new muta-
ble specification theory will be given by W’ = {} and

D' = {nahnb :TA20}  This default theory has one

extension, Cn(—a). Thus we get a mutable specifi-
cation theory supporting a single specification theory
consisting of the specification —a as a result of retract-
ing b from a mutable specification theory supporting
a single, empty specification theory. This clearly vi-
olates the AGM contraction postulate which requires
that the contracted belief set should be a subset of
the original belief set, yet the behaviour is perfectly
rational. The tentative specification —a reappears in
a specification theory as a consequence of the removal
of the retracted specification that caused this tenta-
tive specification to be supressed.O

Clearly, only operations which do not display such
_behaviour can be related to the AGM framework.

Definition 4 A

specification  revision  opera-

tion Ré(W, D), ¢p, ct,0p,in) is called conservative iff

r € cp(Mazxcomp(sinter(0p, Sinitiqlgw D))a?n))) Jor
any v € s;(Sinitiat (W, D)) for which there exists some

i}.‘ﬂ. € D where § and v are incompatible.

We shall interpret postulate (1-), as one of way
of articulating the following principle of categorical
matching stated by Gardenfors and Rott in [6] which
requires that the representation of a belief state after
a belief change has taken place should be of the same
format as the representation of the belief state before
the change. For postulates (2-) through (8-), we re-
formulate every condition on knowledge sets to apply
to every extension of the PJ-default theory represent-
ing a mutable specification theory. For postulates (7-)
and (8-) we can actually prove a stronger condition in
the case that the antecedent in (8-) is satisfied. If
the antecedent is not satisfied, there appears to be no
obvious way to reformulate postulate (7-).

Theorem 2 Let the following specification revision
operations be imperative and conservative.

o R(Ar1,cp, e, retraction, A) = (Aa,t2)

e R(Ay,cp, e, retraction, B) = (As, t3)

e R(Aq,cp1,c1,retraction, AN B) = (Ag,ts)
¢ R(As, cpo, cro, addition, A) = (As,ts)
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These operations satisfy the following properties.
1. The principle of categorical matching.
2. Ve € E(As), there erists some e € E(Ay)) s.t.
e Ce.
3. If = A, thenVe : (e € E(A2) D (e £ A).
4. If Ve' . (¢ € E(A1)) D (¢ |E A) then for

every ¢ € E(Ay), there exists some e where
e € E((As)) s.te Ce.

5. If E A & B then E(A2) = E(As).

Our final result establishes that specifications are
always recoverable in our framework.

Theorem 3 If:
e Je:e € F(A) st e=x.

e /3Je : e € EA) st e
R(A, e, e, 0p1,in1) = (A, ).

E = where

e iny & cy(Mazcomp(sinter (0P2, Sinitiat(A), inz)))
of opy = addition.

@ —~—~in1 ¢
ch(Mazcomp(sinter (0p2, Sinitial(A), in2))) if
op1 = retraction.

then Je : e € E(A") st e
R(A, ¢y, ¢}, 0p2, ing) = (A", 1").

Thus, if a specification z is contained in some specifi-
cation theory supported by the initial mutable speci-
fication theory, but is therafter suppressed (i.e., it is
not contained in any extension of the resulting mu-
table specification theory) on account of a revision
operation op; involving input in;, & will reappear if
a later operation ops causes in; to be removed.

E = where

5 Conclusions

In this section, we shall summarize the major con-
tributions of this work, and shall point out connec-
tions to related work. Our major contributions are as
follows: '

¢ We have presented a language-independent
framework for revising formal specifications. To
our knowledge, this is the first time such an effort
has been attempted.

e We have presented a high-level method of analyz-
ing formal specifications as mutable specification
theories. Once again, this method is language-
independent - any formal specification scheme
can be analyzed in this fashion. By viewing mu-
table specification theories as default threories,
we are able to apply a large corpusof results from
AT to problems in software maintenance.

e We have argued for the use of a semantically well-
founded notion of minimal change in specification
revision to support reuse-oriented software main-
tenance. We have shown that the AGM frame-
work for belief change provides a good starting
point for such work.
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® We have shown how mutable specification theo-
ries can be used to provide a compact and for-
mally appealing representation of retracted spec-
ifications so that previously retracted specifica-
tion are taken into account in determining candi-
date outcomes of the specification revision pro-
cess. This represents a major departure from
research in belief change inspired by the AGM
framework.

e We have shown how specifications need not be
discarded as a consequence of specification revi-
sion, but can be retained in a semantically well-
founded manner in mutable specification theo-
ries. This is of special importance to reuse-
oriented software maintenance.

e Our framework utilizes choice functions, like
most other work in belief change. However, in a
significant departure from existing methods, we
treat the choice functions as inputs to the revision
function, instead of coding the choice functions
into the revision function itself. This permits
context-specific choice, which is of crucial impor-
tance to context-driven software maintenance.

e Our appraoch to specification revision is non-
prioritized; we do not accord any special priority
to input specifications over existing ones. This
makes our approach more practical than exist-
ing work in belief change, where the new belief
is always accorded a higher priority over existing
beliefs. '

o An interesting consequence of our use of default
logic is that the version we use (PJ-default logic)
emerges as a formal specification language in its
own right.

e Our approach is implementable. A prototype
implementation is currently underway using the
THEORIST system [15] (which effectively imple-
ments the subset of PJ-default logic we use in this
work).

There has been previous work on using nonmonotonic
representation formalisms for detecting inconsisten-
cies in specifications during software maintenance [13]
[2], but none of these have considered the problem of
revising mutable specification theories using semantic
notions from the AGM framework.
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