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Abstract- Real world continuous numerical optimization
problems are often heavily constrained conditions that
divide into linear constraints and non-linear constraints;
however, there exists no unique deterministic approach to
nonlinear optimization problems. This paper proposes a
technique, called family competition genetic algorithm
(FCGA), which incorporates the ideas of evolution
strategies(ESs) and family competition into GA. The
FCGA is similar to the rule of Olympic Games. The
family competition can be viewed as local competition of
each area, and selection is global competition in the
universal tournament. The family competition can reduce
the time complexity and maintain the diversity of
population. Eight nonlinear constrained optimization
problems are taken as benchmark problems. The results
indicate that the FCGA approach is a very powerful
- optimization technique.

1. Introduction

Real world continuous numerical optimization
problems are often heavily constrained conditions that
divide into linear constraints and non-linear constraints.
There are some unifying methods to solve linear
programming, but there exists no unique approach to
nonlinear optimization. Constrained global optimization
problems are widespread applied to many domains, such
as structural optimization, engineering design, VLSI
design and database problems, economies of scales,
allocation and location problems and quadratic
assignment[13,25]. The methods that determine the
solution of nonlinear constrained optimization problems
can be divided into deterministic methods and stochastic
methods. Traditional deterministic global search
methods ,such as feasible direction methods, generalized
reduced gradient method and penalty function
methods[25,13,14], typically make strong assumptions
regarding the objective function, such as continuity and
differentiability. In the recent year, there has been
growing effort to apply evolutionary algorithms,
including genetic algorithms(GAs) [11,15,16,17,24]
evolution strategies(ESs), and evolutionary
programming(EP) to general constrained optimization
problems in order to overcome these limitations. Without
loss of generality, we discuss minimization in this paper.
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The general nonlinear programming optimization
problem can be formulated as the following form:

Minimize [ (x) (1)
subject to
g{x)<=0,fori=1,..,n,
hj(x):O,forj:I,...,m |
xeW,

where W is a set of constraint,x € R"and n is the dimension,

(inequality constrainis)

(equality constrainis)

g..h_ can be linear or non-linear constrainted function,
L

if x satisfies all constraints then x is called as a feasible solution
else x is called as an unfeasible solution, and
ifany one of f(x),gi or hj is a nonlinear function

then the problem is called nonlinear programming problem
else the problem is called linear programming problem.

The traditional bit-strings GAs[4,20] applied to
numerical optimization problem have some limitations
and drawbacks[1,7]. The real coded genetic algorithms
(RCGA) [7] have proved to be more efficient than
traditional bit-string genetic algorithm in parameter
optimization, but the RCGA focuses on crossover
operators and less on the mutation operator for local
search. Therefore some research has[2,3] pointed out that
the crossover operators are not always suitable for local
search. Evolution strategies (ESs)[6,5,9] focus on
Gaussian mutation and allow the application of some
simple recombination operators. In the recent year, some
authors incorporated various modified crossover operators
in order to improve the power of ESs. Evolutionary
programming (EP)[2,3] only concerns the Gaussian
mutation operators.

This paper proposes a technique, called family
competition genetic algorithm (FCGA), by incorporating
the ideas of family competition and ESs into GA. We add
the family competition into the FCGA in order to reduce
the computing complexity and maintain the diversity of
the population. Automatically balanced the exploration-
exploitation can be represented by the FCGA. In early
search stage, the system is lack of available knowledge, so
FCGA uses crossover operators and bigger step size
Gaussian mutation operator to explore the search space.
Naturally, the more FCGA spent, the more information.
was accumulated. Therefore, FCGA will reduce the step
size of Gaussian mutation automatically in order to spend
more time on exploitation. Thus, FCGA will spend more



time on exploitation and less time on exploration
eventually. These policy that drastically improves the
performance will be discussed in this paper The similar
ideas of FCGA have been applied the function
optimization problems[10,27] and these results indicate
that the FCGA approach is a very powerful optimization
technique :

2. Constraint Handling methods

The global non-linear constrained optimization
problems belong to the class of NP-hard problem. Even
some problems of determining an approximate global
solution are NP-hard, unfortunately.

Any evolutionary computation technique applied to a
particular constrained problem should address the issue of
handling unfeasible solutions. Generally, a search space
consists of two disjointed subsets of feasible and
unfeasible subspaces respectively. It is very important and
non-trivial to deal with unfeasible individuals. The
penalty is too large to find the better solution because the
feasible areas are divided by the unfeasible solution areas.

- The evolutionary algorithm is very difficult to override
these unfeasible areas. This policy may cause EAs to find
a local optimal. The penalty is too small to find the
feasible solutions [25,21,18]. Presently, there are some
methods used to handle constraints with evolutionary
algorithms: stationary penalty function[11,21,28], non-
stationary penalty function[15], repair algorithm[22], co-
evolutionary algorithm|[23], reject the* unfeasible
solutions[16] and hybrid the stochastic and deterministic
method[26]. The general fitness function form based on
feasible solution and penalty for unfeasible solution can
be defined as following:

fitness(x) = a*fx) + n(g) *PF (x) (2)
where

g is the generation number in experimental design,

[x) is the original optimizing function and ‘

PF(c)is the penalty function for unfeasible solution,

Then, the general form of PF (c) defined as

PRO)=Y"" 00,00)) * 0.0

max(0,g,k))
absth (%)),
6 is the level weight function of penalty function,

h - 1<ign
where p,(X /=
Pi n+l<j<n+m
a is the weight of original function,
r is the power of the penalty function, and
J)g fe)h ) are defined in formula (1),
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3. The Family competition genetic algorithm

The FCGA technique combines the philosophy of ESs,
GAs and family competition. The FCGA views family
competition as local competition and deterministic with
elitist selection as global competition. Local competition
and global competition can reduce the computing tiome
of sectection operator and can keep the diversity of
population, so FCGA has more opportunity to find the
global optimal solution. FCGA is similar to the rule of
Olympic Games. Family competition can be viewed as
each country selecting a sportsman to participate with
tournament and the elitist selection as selecting the best
sportsmen in the Olympic Games. The detailed algorithm
is shown in Fig. 1. The basic idea of FCGA is similar to
the evolution strategies. However, there are three essential
differences between FCGA and ESs.

1) FCGA incorporates the family competition in order
to avoid the ill effect of greediness. The children,
generated from the same parent by -the crossover
and Gaussian mutation operator, compete with
each other, and only the best child can be selected
by the selection operators. That is, only (p+)
individuals have the probability to become
population of the next generation. Respectively,
both (p+A)-ES and (pA)-ES select from all
children which generated by the same parent.

2) FCGA incorporates simple self-adaptive and
decreasing rate, similar to temperature of simulated
annealing, to control the standard derivation size,
The big-step-size mutation, viewed as a global
search operator, explores the search space to avoid
the bias of initial population and loss of global
information. But the initial step-size and decrease
rate is depend on the population size.

3) FCGA views the crossover operator and mutation
operator as the same important operator. ESs view
the crossover as minor operator and the mutation
operator as main operator. '

The FCGA has other basic differences from traditional
GAs except above three characteristics

1). FCGA uses the real code representation not bit-strings.

2). FCGA uses Gaussian mutation as mutation operation
not bit mutation and the mutation rate is 1 for each
variable.

3). FCGA uses elitist and deterministic selection that
selects p best individuals out of the union of parents
and children. This strategy is (p-+p)-selection in ES.
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3.1 Crossover

Any operator that combines two or over two parents is
called a crossover operator. FCGA uses two different
crossover operators: discrete. crossover and blend
crossover with extended 0.5(BLX-0.5). In order to
explain the crossover operator we let two parents are
X=(X{,...Xp) and y=(yi,....yp) and the generated
offspring is ¢=(cy,....c,) Wwhere n is the number of
variables. B

The discrete crossover, the recombination operators of
ESs , is used in ESs widely and empirically has better
results on object variables[9]. Discrete crossover
generates the corners of the hybercube defined by the x
and y. This operator is similar to the uniform crossover of
GAs and works as follows:

Ci=Xi or yl

with equality probability 3)

The blend crossover with extended 0.5[1,7], used
successfully in GAs and ESs[8], generates a child on the
extended line defined by x and y . It can be formulated as
follows:

c=x;+B(y;x) P is chosen uniform randomly in [-0.5,1.5} )
3.2 Mutation

Generally, mutation operation yields a mutated
offspring from only one parent. In FCGA we use
Gaussian mutation, widely used in ESs and EP, to
generate a child by first mutating the standard
derivations(3) and then by mutating the object variables
according to the modified normal probability density
function of N(0,5). ESs use “self-adaptation"
technique[6,9] to control the standard derivations(3) but
this technique may not fit to our family competition
algorithm. Therefore, we use the annealing-like concept
to control the standard derivations(5). This is realized as
follows:

¢=x;15,*N,(0,1) 5)

6, =decease_rate * &,

3.3 Selection and family competition

FCGA uses elitist and deterministic selection  that
selects p best individuals out of the union of parents and
children. This strategy is (w+p)-selection in ES. The
family competition operator selects the best child to
survive and other children in the same family die; that is,
the children, generated from the same parent, must
compete with each other and only the best individual
survives. Family competition can avoid early superstar
domination of the whole population because exactly one
child in the same family can survive in FCGA but at most
A children can survive in ES respectively. Therefore
FCGA can avoid premature. To reduce the complexity of
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selection is another benefit of family competition. The
complexity of the selection is P2 where P is the population
size. The family competition reduces the population size
from 7u to 2p . Therefore, the local completion can
reduce the computing complexity of selection.

1 Set the strategy parameters: Competition_Length , and
GaussianMutationSize(8},), Population_Size(P)

2. Randomly generates 2*P candidates by uniform distribution form
the feasible range of Xi= (xu,.xn)), where n is the number of
variables. :

3. Compute the fitness based on penalty function of each candidates.
(fitness(Xi) ,i=1,...,2P)

4. Select X; .(i=] ,,,,, p chromosomes as parents by elitist and

with probability 0.8 or
BLX-0.5(X, Xrandom(P)<>i) with probability 0.2

6. Xy plius,.. %) =min(fitness(C ,}) )
(I<=i<=P, I1<=j<=Competition_Length)

7 & =decease_rate * &, (1<=k<=n n'is the number of variables)

8. Ifdiscovery sufficient solution or exhaust the available time then
terminate else goto step 4 '

parameters setting: (for all benchmark problems)
Competition_Length=6

8 : initial=B*abs(Max_Constraint;-MinConstrainty,)
where B=0.2

decrease rate = 0.95.

Poplation_size = 100.

Max_Function_Evalution = 150,000.

Fig. 1. The Family Competition Genetic Algorithm.
3.4 Fitness function

We use formula (2) as basis of fitness function, these
coefficients must be adjusted according to different
strategies . We construct two algorithm on all testing
problems. Algorithm 1 is based on the assumption that a
feasible solution is always better than an unfeasible
solution, that is , rejecting all unfeasible solutions.
Algorithm 2 uses a non-stationary -with multi-stages
penalty function that depends on evolutionary generation
number and level penalty, that is, the penalty coefficient
is according to the violated size of the solution. Table 2
shows these parameters of fitness function of algorithm 2.
~ We have discussed the influence of strategy variables,
including the crossover rate, the efficiency discrete
crossover and BLX-0.5, family search length, initial
standard derivation size and decreasing rate[27]. We
discovered that the hybrid discrete crossover and BLX-0.5
with probability 0.8 and 02 is best and the BLX-0.5 is the
worst. Other parameters are shown as Fig. 1.



4: Experimental:results

In the section, we apply the FCGA approach to some ,
general constrained optimization problems. We expected
that the collection of problems presented here was used
for purposes of comparing various evolutionary algorithm

for general nonlinear programming. These problems have "

been studied by some authors[18,13 147 11,28] .
collecting the eight problems we

When
‘consider many

important factors such as the type of the Ob]eCIIVB !
"the number of/

function, the number of variables,
constrains, the types of constraints and the practical factor
in application domain. Table 1 summaries all test cases.
Michalewicz[18] used six kinds of - evolutionary
algorithms to solve problem #1 to problem #5 and the
results were shown in Table 3. Homaifar{11] used
traditional GAs to studied the problem #6 to problem #8.
( there are some mistakes for problem #7 and problem #8
in their paper). The strategy parameters, including the
populatlon size, terminal conditions, decreasing rate of
the step size, and the initial step size, are defined in Fig.
1. Table 2 shows the setting parameters for each testing
problem when they are based on the non-stationary and
multi-stage assignments weight penalty function.

Problems #1: v

‘This problem was studied by Michalewicz [18]
comparing the performance of various evolutionary
algorithms. -

C(X)=5(x,+x,+ 1 +X4)—SZ:"X,2 —Z':sx, ,
subject to

2t 2ust gy S 10, ks 2u5tx 1, S10,

A2 X X, S10, —8x420, S0, —8xy#2x, <0,

— 8,420, <0, —2x,— x5+ %, S0, =21, — X, + X, S0, =25~ %, +x, <0,
0sx <Li=1,..9, 0<x<100,/=10,11,12

Prol;lems #2:

The problem is taken from Hock([14] ( problem no is

106) and was studied by Michalewicz [18] to compare the
performance of various evolutionary algorithms.

C,(X)=x +x,+x,,
subject to
1-0.0025(x,+x,) 20, 1-0.0025(xs+x,-x,) 20,
1-0.001(x, — +) 20, - x,x,-833.33252x,-100x,+8333.333 20,
X;%7-1250%,-%,%,+1250x,, 20, x;x4-1250000-x,%,+2500%5 2 0,
100 < x, £10000, 1000 < x, £10000,/=2,3, 10<x, $1000,/ =4,...8.

Problems #3:

The problem is taken from Hock[14] ( problem no is
100) and was studied by Michalewicz [18] to compare the
performance of various evolutionary algorithms.

Cy (X )= (x,~100+5(x, =12)"+ x," +3(x, —11)'+
10§ +7x} + x; —4x,x, —10x, —8x,,
subject to
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127 - 2073x0x, - 4x2-50, 2 0, 282=7x,-3x, - 1045-x,+x, 20
196— 23x,-x2 - 6x248x, 20, —4xl-x; +3x.x, - 215-5x6+11x, 20
-10.0<x, €100,/ =1,..7.

roblems #4:

The problem is taken from Hock[14] ( problem no is
80) and was studied by Michalewicz [18] to compare the
performance of various evolutionary algorithms.

C(X)=e"""",

subject to

xt+xi+al+xl+xl=10, xx,-5x,4,=0,
-2.3<x,£2.3 ,i=1,2, -3.2<x,<3.2

x+x; =-1
J=3,4)5

Problems #5:

The problem is taken from Hock[14] ( problem no is
113) and was studied by Michalewicz [18] to compare the
performance of various evolutionary algorithms.

CX) =2 + B +x,x —1x, - 167, + (5~ 10y +4(z, - 5F+
(4, 37+ 208 —14+52 +7(x, ~ 1Y+ 2(x, ~10F+ (x, ~ T +45,
suljed to .
1054x-55,#3%,9x, 20, -10x;8x:+17x,2%, 20,
(g~ 2040z~ 3F-28 + T #1020, 51 -8x, —(x,~6F+ 2244020,
X = 2(x - 2P+ 2%, - M6, 2 0, 05(x, -8 - 2(x, —4)- 3%+ xgH30 20,
3%, — 61, - 12(x, -8+ 7x, 20, -100< 1, <100, AL,.,10

Problems #6:

This problem that is taken from Colvilles is cited by
Hock[14] ( problem no is 14), Himmelblauf25] (problem
no is 1) and was studies by Homaifar[11] and by Fogel
[28] using traditional GA and evolutionary programming,
respectively.

G(X)= (x, - 2)2 +(x, - 1)2
subject to

x,=2%,-1, -x'/4-x"+1=0
Problems #7:

This problem that is taken from Colvilles is cited by
Hock[14] ( problem no is 87) and was studies by
Homaifar{11] using traditional GA.

C(X)= (X £(X)

By, 0<x <100
ron=Pn 0<%=30 L Ior 1005k <20
= = X, =

‘ N W0<x <40 2 2

Nx, 2A00<x, <1000

X, =300—(xx, 008( 1484TT)+0.90798% cos(1.47588))/131.078

x, = (= 4,x, 00s(LABATT+ 5, }+0. 907982 cos(L4T58B)/ 131078

X, = (X, sin(LABATT + x, J+0.90798 ] sin(1.47588)¥ 131.078

20— (x,x, S LABATT — x, 0907982 sin(L4T5BB)) 131078 =0

subject to

0<x 400, 0<x, <1000, H0< x,, x, $420,-1000 < x, <1000, 0<%, £0.5236
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Problems #8;

This problem that is taken from Colvilles is cited by
Hock[14] ( problem no is 83) and was studies by
Homaifar[11] and by Fogel [28] using using traditional
GA and evolutionary programming, respectively.

C, (X)) =15.3578547x7 +0.8356891x, x, +37.293239x, — 40792.141

subjectto

0 <85.334407+0.0056858x, x, +0.0006262x, x, —0.0022053x,.x, <92,

90 <.80.51249+0.0071317, x, +0.0029955x, x, +0.0021813x <110,

20 < 9.300961+0.0047026x,.x, +0.0012547x, x, +0.0019085x,.x, <25,
TB<x, 102, 33<x,<45, 27<x,,x,,x, <45

Table 1 The summary of the testing problems

the drawback of algorithm 1 but the parameters depend
on problem. Our FCGA approach is actually a
modification of GAs and ESs, thus we compare our
FCGA approach with various GA-based approaches and
EP method according to Table 3 and Table 4. Our FCGA
approach outperforms various GA-based methods and EP.

Table 3 The results were obtained from [18] ( The

violated tolerance is 0.001 )

method #1 uses GA and level-based penalty function[11]

method #2 uses GA and non-stationary penalty function[1 5]

method #3 uses GA and non-penalty function approach

method #4 uses GA and penalty function

method #5 uses GA and the assumption of feasible solution better than an
unfeasible solution

method #6 uses EP and rejects the unfeasible solution

Table 2: The parameters of fitness function (formula (2) )

notel : LI(Linear Inequality), LE(Linear Equation),NI(Nonlinear Inequality) and NE(Nonlinear !pro# method #1  |method #2 |method#3 |method [method #5 [method #6
Equation) #4
note2: There are some mistakes in reference {11] for problem 7 and problem 8. 1 -15.002*(b) |-15.00(b) ~15.00(b) -15(b) -15(b) -15.00(b)
pro # |Variables and[Con. |The x value of optimal solution fe fe -15.002*(m) |-15.00(mm) -15.00(mn) -15(@m) . {-15(m) -14.999(m)
Function  |yype optimal -15.001%w) |-14.999(w) [-14998(w) |-15(w)  |-14.999(w) |-13.616(w)
type solution 2 2282.723*  [3117.242%  [7485667  |7377.976 |2101.367* |7872.948
1 13 oD |@,LLLL,111,1,3,33.1) -15 [13,18] 2449.789%  [4213.497* 18271292 (8206151 [2101.411*  [8559.423
quadratic 2756.679%  |6056.211%  |9752.412  [9652.901 |2101.551*  |8668.648
2 8 3(LY) 1(597.3167,1359.943,5110.071, 7049.3309  [{14,18) 3 680.771 680.787 680.836 680.642 [680.805 680.847
linear 3(NI) |182.0174,295.5985,217.9799, 681.262 681,111 681.175 680.718  |682.682 681.826
286.4162,395.5979) 689.660 682.798 685.540 680.955 1685.738 689.417
3 7 4ND) ](2.330499,1.951372, 680.6300  |[14,18] 4 0.084 0.059 # 0.054  |0.067 #
polynomial -0.4775414,4.365726, J0.955 0812 0.064  |0.001
-0.624487,1.038131,1.594227) 1.0 2.542 0557 0.512
4 5 3(NE)|(-1.717143,1.595709,1 827247, 0.05394984  [[14,18) 5 24.690 25.486 # 18917* [17.388* 25.653
nonlinear -0.7636413,-0.7636450) 29.258 26.905 24.418* '|22.932* 27.116
s 10 (LD [(2.171996,2.363683,8.773926, 24,3062 [14,18] 36.060 42.356 44302 ]48.866 42,477
quadratic | 5(NI) |5.095984,0.9906548,1.430574, . *: the solution violates some constraints
é‘2%23%9828726’8'2800”’ #: the method was not applied to the problem.
6 2 1(LE) | (0.8228756,0.9114378) 13934651 (11,14} . )
quadratic | I(ND Table 4 Experimental results based on 10 runs
7 gayno mial AQNE) | (201.78,100,383.07,420,-10907,0.07314) [8953.44 (114 algorithm 1: based on the assumption that feasible solutions are always
kB 3(NID) [(78,33,29.99526,45,36.77581) -30665.538  |[11,14] better than unfeasible S°|““°n§ . ) .
polynomial algorithm 2: based on non-stationary with multi-stage penalty function

vv: the sum of the value of violated constraints.
notel: The violated tolerance is 0.00001 for algorithm 2 and 0 for

of algorithm 2 for the eight experimental problems

pro Y 6 m

H# .
1,23) jfp,<1then 61| (ifs, <0.01 then 610 g*sqrt(g)
5,8 else ifp, 0.1 then 620

else 6=2 else ifp, < 1.0then 6100
else 8=300

6 sqri(g)

4 1 0.0025%g

7 1 g

Table 4 indicates these experimental results, including
the best solution, mean value and standard deviation, Fig.
2 and Fig. 3 show the typical convergent curve of
algorithm 1 (based on the assumption that of feasible
solutions are always better than unfeasible solution) and
algorithm 2 (based on non-stationary penalty function).
Algorithm 1 has poor performance for problem #4 and
problem #7 because two problems have equality
constraints. Rejecting the unfeasible solution causes
algorithm 1 premature when the ratio, feasible solution /
search space, is very small. Algorithm 2 can overcome
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algorithm 1

algorithm 1 orithm 2 :
Ipro# |optimal best mean Std. Dev. [best mean(vv)  [Std. Dev.
solution solution solution(vv)
1 -15 -15 {-15 0 -15-(0) -150). . o
2 7049.3309 7383.589 [7488.04 |78.699 7176.176 7243.535 49.90
© ©
3 680.6300 680.6312 [680.6335 [0.0022 680.631 680.6333 0.003165
© ©)
4 0.053949 0.9875 1.0 0.01677 10,054 (0) 0.054. (0) 0
5 243062 24316t 24,3239 [0.0132 24319 2433673 0.02240
© ©
6 1.3934651 1393464 |1.39346 {0 1.393465 1.393464 1.39346
) ©
7 8953.44 B8989.897 19008.011 [15.1520 {8857.34 8879.184 14.2518
(0.0001) (0.000075)
8 -30665.538 {-30665.5 |-30665.5 {0 -30665.538 |-30665.538 |0
©) ©
10000000
8000000
6000000
4000000
2000000 k
0 T b
T O oSO v N AN
-2000000 a8 8 g v 0 e~ <
— — — —

Fig 2: The typical convergent curve of algorithm 1



The typical convergent curve of non-stationary penalty
function(problem 4)
0.25
o 02 F
=2
g
= 015
-3
g 01t
&
2 005 H
&
0 1 L L ! L ) L i 1 ) ‘l
T &8 ¥ © & 3 & <
-0.05 ===
function evalution (unit = 1000)

Fig 3: The typical convergent curve of algorithm 2
5 Discussions and conclusions

We obtain some important facts according to the

experimental results.

1). FCGA outperforms other evolutionary algorithms:
The FCGA technique combines the philosophy of
ESs,GAs and family competition. As demonstrated
with the use of eight general constrained global
optimization problems, the FCGA outperformed
other evolutionary algorithms, including the EP, ESs,
traditional GA and real-coded GA. These results
indicate that the FCGA is a powerful optimization
“technique. ‘

2). The non-stationary and level penalty strategy is
very useful to search the exact and feasible global
optimization solution and has better flexibility to
tune the parameter. -

3). Penalty function is very important for constrained
optimization with equality constraints: Algorithm 1
has very poor performance on problem #4 and
problem #7 because the two problem have equality
constraints. This indicates that rejecting the
unfeasible is not fit the equality constraint and
optimizing equality constrained problems must rely
on the information of unfeasible solution. Oppositely,

“algorithm 2 can get very closed to global
optimization solution.

4). Generally, strategy with non-stationary penalty
function is better than strategy with assumption that
feasible solutions are always better than unfeasible
solutions: Is very obvious that algorithm 2 is better
than algorithm 1 in all test problems. Above all, the
algorithm 1 can not find good performance of the
problem #2 that does not have any equality
constraints, but algorithm 2 can find better solution.
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5). Tuning the parameters of penalty function is
troublesome because they depend on characteristics
of the problem.

The main search power of FCGA comes from four
sources as follows:
1).The family competition preserves the advantages of
ESs, reduces the computing complexity, keeps the
diversity of population, and avoid premature trouble.

2). ‘The family competition can be viewed as local
competition and selection viewed ~as global
competition. Therefore, FCGA has two level
competitive power. ‘

3). The crossover operator searches with a larger jump
than Gaussian -mutation so that it can search the
approximate optimal area, yet it is mot suitable for
tuning solution when the solution is near the optimal.

4). The Gaussian mutation operator has excellent ability
for tuning the solution.

The traditional GAs rely on crossover and inversion
operators. These operators usually destroy the link
between the parents and children. In other words, these
operators focus more on exploration and less on
exploitation. This policy may causes GAs that do not suit
to local search. The EP focuses on controlling the step
size of Gaussian mutation only. This policy implies that
EP emphasizes more on exploitation and less exploration.
FCGA is able to balance the exploration and exploitation
dynamically. Table 5 describes the behavior and main
operators of FCGA ‘

Table 5 The behavior and main operators between
exploration and exploitation in FCGA search

Search Early time Adwvanced time
Time
behavi operators |behavi operators
or or .
Exploration High |1 big step size Low }1 smnall step size
Gaussian mutation Gaussian mutation
FExploitaﬁon Low {2 crozsover on low High |2 crossover on
information and high high information
diversity population and low diversity
population
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