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Abstract

Investigating the minimum weight triangulation
of a point set with constraint is an important ap-
proach for seeking the ultimate solution of the min-
imum weight triangulation problem. In this paper,
we consider the minimum weight triangulation of
a spare point set, and present an O(n*) algorithm
to computing a triangulation of such a set. The
property of spare point set can be converted into
a new sufficient condition for finding subgraphs of
mintmum, weight triangulation. Special point set
is ezhibited to show that our new subgraph of min-
imum weight triangulation cannot be found by any
currently known methods.

1 Introduction

Let $ = {p; | ¢=0,..,n—1} beaset of n points in
the plane, where each point p; has the coordinates
(z(p:), y(pi)). For simplicity, we assume that S is
in general position so that no three points in .S
are co-linear. Let P;p; for ¢ # j denote the line
segment with endpoints p; and p;, and let w(p;p;)
denote the weight of P;p;, that is the Euclidean
distance between p; and p;.

A triangulation of a planar point set S, de-
noted by T'(S), is a maximum set of line segments
in which no two line segments share any interior
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point of them, thus 7T°(S) partitions the interior
of the convex hull of S into empty triangles. The
weight of a triangulation T'(S) is given by

Ww(T(S) = 3. wlpipy)-

- Pip;eT(S)

A minimum weight triangulation,
MWT, of S is defined as

simply

MWT(S) = min{w(T(S)) | forall possibleT(S)}.

Computing an MWT(S) is an outstanding open
problem whose complexing status is unknown
[GJ79]. A great deal of works has been done to
seek the ultimate solution of the problem. Basi-
cally, there are two directions to attack the prob-
lem. The first one is to identify the edges inclusive
or exclusive to MWT(S) [Ke94, YXY94, CX96,
DM96]. Xu [Xu92] showed that the intersection
of all triangulations of S is a subset of MWT(S).
Recently, Dickerson and Montague [DM96] have
shown that the intersection of all local optimal tri-
angulations of S is a subgraph of MWT'(S). A tri-
angulation T(S) is called k-gon local optimal, de-
noted by Ti(S), if any k-gon attracted from T'(S)
is an optimal triangulation for this k-gon by the
edges of T'(S). Then, the following inclusion prop-
erty is hold: ‘

NTS) SNTu(S) € -+ S Tn-1(5)
C MWT(S).

However, it seems difficult to find the intersec-
tion as k increased, and only a subgraph of Ty(S)
has been found by [DM96]. Gilbert [Gi79] showed
that the shortest edge in .S is in MWT(S). Yang,
Xu, and You [YXY94] showed that mutual nearest
neighbors in S are also in MWT(S). Keil [Ke94]
presented that the so-called S-skeleton of S for

B =2 is a subgraph of MWT(S). Cheng and

Xu [CX96] extended Keil’s result to 8 = 1.17682.
It seems that to identify more edges in MWT(S)
is a promising approach. This is because the more
edges of MWT(S) being identified, the less dis-
joint connected components in MWT(S) existed.
Thus, it is possible that eventually all these iden-
tified edges form a connected graph so that an
MWT(S) can be constructed by dynamic pro-
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gramming method in polynomial time. Moreover,
even if such a connected graph is impossible to
obtain, a larger subgraph will lead to the better
performance of some heuristics [XZ96].

The other direction is to construct exact
MWT(S) with some constraint on S. Gilbert and
Klinesek [Gi79,K180] investigated the case that .S
is restricted to a simple polygon. An O(n3) time
dynamic programming algorithm was proposed to
obtain an MWT(S). Anagnostou and Corneil
[AC93] studied the situation that S is restricted on
k nested convex polygons. They gave an O(n®+1)
time algorithm to find an MWT(S). Meijer and
Rappaport [MR92] later improved the time bound
to O(n*) when § is restricted on k non-intersecting
line segments inside the convex hull of S. Xu
and Cheng etc. [Xu92, CGT95] showed that if
a subgraph of MWT(S) with k£ connected com-
ponents is known, then the complete MWT(S)
can be computed in O(nF*?) time. In addition to
the potential applications of constraint cases, it is
hope that the research on constraint cases would
reveal some inside of the solution for general case.

In this paper, we investigate the situation that
S forms a spare set, which informally speaking has
a property that the distance between two consec-
utive convex layers of the set is longer than the
diameter of the inner layer. We present an O(n?)
time algorithm for computing an MWT(S) for a
spare set S. Amazingly, unlike the most known
constrained MW T algorithms which are depended
on the number of disjoint connected components,
the time complexity of our algorithm is indepen-
dent on the number of convex layers k. Further-
more, we can convert the property of spare set to
a new sufficient condition for finding subgraphs
of an MWT(S). By demonstrating some spe-
cial point set, we show that our new subgraphs
cannot be found by any currently known methods
[GiT9,Xu92,Ke94,CX96,DMI6].

The paper is organised as follows. In Section 2,
we discuss some properties of a point set restricted
on its convex layers. In Section 3, we present an
algorithm that produces an MWT'(S) with convex
layers constraint. In Section 4, we define spare set
S and propose an O(n*) algorithm to compute an
MWT(S). We further describe a sufficient condi-
tion for some edges to be in MWT(S) and also
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demonstrate a point set whose MWT cannot be
found by any known method. In Section 5, we
make some concluding remarks.

2 Notations and Lemmas

The convex layers of a set .S of point in the plane,
denoted by CL(S), is the set of nested convex
polygons obtained by repeatedly computing the
convex hull of the remaining set after removing
the vertices of the current convex hull. Comput-
ing the convex layers of a planar point set was
discussed in many papers [Ch85]. An optimal §(n
log n) time algorithm was given by Chazelle.

Fact 1: [Ch85]. Convez layers CL(S) for| S |=n
can be found in. O(n log n) time and O(n) space.

Let CL(S) = (C1,Ca, ..., Ck) be the convex lay-
ers of S, where C; for ¢ = 1,..., k is the ith layer of
S. Let V(C;) be the vertex set of C; and R(C;) be
the interior region bounded by C;. Assume that
| V(C;) |= n;. The following relations hold..

k
zni =| S| and R(C;i11) C R(C;)

=1

1)

Let Tcr(S) be a triangulation of S with con-
vex layers constraint, i.e., CL(S) C T¢r(S). By
Euler’s formula, we have

| Ter(S) |=3n— | CH(S) | -3 (2)
where | Tcr(S) | denotes the size in terms of

the edges and the above equality holds for any
triangulation of S.

Lemma 1 Let CL(S) = (Cy,...,Ck), where |
Ci |= n; for ie{l,....k} and let R;;v1 = R(C;) —
R(Cit1) for ie{l, ...,k — 1}. Then, the number of
edges of Tcr(S) lying on R; ;4 is n; + njyg.

Proof By equations (1) and (2), the following
equalities hold

| TCL(S) |= 3n—ny —3, and [ TCL(S/V(Cl)) |=
3(n - nl) —Ng — 3.

The number of edges in Ty, (S) lying on Ry is

| Ter(S) | — | Te(S/V(C1)) | — | CH(S) |

=3n-n—3-(3(n—-n1)—n2—3)—n; = n; +ny.
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By applying the above analysis to any two con-
secutive convex layers, we can show that the num-
ber of edges in Tcr(S) lying on R; ;41 is n; +nit1,
for any ie{l, ...,k — 1}. O

Lemma 2 Let T(S) be any triangulation of S.
The number of edges in T(S) passing through the
region R; ;41 is at least ni+n;yq forie{l, ..., k—1}.

Proof If both C; and C;j.; belong to T'(S), then
by Lemma 1 the number of edges in T'(S) pass-
ing through R;;. is exactly n; + n;41. Other-
wise, some edges of T'(S) must cross C; U Ciy1.
Let L;;1 be the subset of edges in C; U C;4; and
not in T'(S), and let L;,; be the subset of edges
in T'(9) crossing some edges in L;;y1. Deleting
L};yy from T(S), adding Li+1 to T(S)/L};41,
and re-triangulating § with (T'(S)/L} ;1) U Liin
constraint, we have a new triangulation T*(S) in
which both C; and C;4; belong to T*(.S). By equa-
tion (2), we have that

IT*(S)/(T(S)/Lf,i+1) ULijipr |+ | Liis |

=| Lz | (3)

Since the number of edges in T™(S) crossing
R; i1 is ni + nit1, by equation (3) we have that
| L} |<| L; i+1 |- Thus, the number of edges in
T(S) passing through R; ;41 is at least n; +niyq.

0o

Note that Lemma 2 can also be proved by the

matching theorem between triangulations in paper
[AART95].

Lemma 3 Let CL(S) = (Ci,...,Cr) and let
Tcr(S) be any triangulation with CL(S) con-
straint. For each vertex p of C;, There ezists a
vertez q of C;—1 such that edge PG is belong to
TcL(S).

Proof Let p be a vertex of C;, 1 < i < k. Since
p is an interior point of R(C;_;) and since the
angle between any two consecutive edges with one
endpoint p in Tcr(S) must be less than 7, there
must exist an edge eeTcr(S) lying in R;_;; such
that p is an endpoint of e and the other endpoint
of e is a vertex of C;_;. O

Let MWTcr(S) denote the minimum weight
triangulation of S with convex layers constraint.

3 The algorithm for computing
an MWTer(S)

Let Tcr(S) be any triangulation of S with
CL(S) € TcL(S), and let w(Tr(S)) be its weight.
A minimum weight triangulation with convex lay-
ers constraint, MWTcr(S), is one which mini-
mizes w(T¢r(S)) among all possible Ty, (S). It is
obvious that to find an MW7 (S) is easier than
to find an MWT(S). This is because the convex
layers CL(S) are already known to be a subset
of MWTcr(S), a polynomial time algorithm for
computing an MWT¢(S) is possible.

Fact 2: [Li87] If L is a set of non-intersecting
edges with endpoints in S such that G(S,L) is a
planar connected graph, then an MWT of S with
L constraint, denoted by MWTL(S), can be found
in O(n?) time for | S |=n. :

P,
Py, 2 2
Py 14

Figure 1:

Xu [Xu92] analyzed the optimal cell triangula-
tion algorithm given by Heath and Pemmarajiu
[HP92] and obtained an O(n3) algorithm for com-
puting an MWTL(S), where L is a subset of non-
intersecting edges with endpoints in S and G(S, L)
is a planar connected graph. We denote this algo-
rithm as A — TYy,.

Since MWTcr(S) only minimizes the total
weight of edges between convex layers, we first
consider how to triangulate region R; 2 so that
the total weight of edges in R;2 is minimum.
Let p5 be the vertex in Cy with the maximum y-
coordinate (for convenience, we can assume that
no two points in S have a same y-coordinate), and
let N(p3) be the subset of vertices of C; whose
y-coordinates are greater than that of Pj, ie.,
y(p) > y(p3) for p € N(P3y). Figure 1 shows
the definition of p5 and N(Py), where N(FP3) =
(P1,1,P1,2,P1,3,P1,4,P1,5)- By Lemma 3, there ex-
ists at least one point pj eN(p3) such that edge
pip) isinan MWTcL(S). In order to identify such
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an edge, we have to check all possible edges end-
ing at p5 and N(p}) and their corresponding con-
straint MW T's. Vertex p} can be easily found in at
most O(| Cz |) time by scanning the y-coordinates
of the vertices of Ca, N(p5) can be computed
in at most O(| C; |) time by scanning the ver-
tices of Cy in upper half-plane above y(p3). For
each point peN(p}), add edge pp3 to form a graph
G(V(C1) U V(CQ), CiuCyU {p_p;}) Clearly, the
graph G is planar and connected. By Fact 2, an
MWT(V(C1)UV(C,)) with L(= CUC,U {pp3})
constraint can be found in O((n; + n3)3) time
by algorithm A — Tp. Then, an MWT(V(C;) U
V' (Cy)) with C1 UC5 constraint can be found in at
most O(] N(p) | (n1 +n2)3) time.

In the following, we describe an algorithm, de-
noted by A— MWTcy, to produce an MWT of S
with convex layers constraint.:

Let CL(S) = (Ci,- -+, Ck), and let p} denote the
vertex of C; with maximal y-coordinate. Let N(p})
denote those vertices of C;_; whose y-coordinates
are greater than that of p.

ALGORITHM A-MWT(;,
Input: S (a set of n points in general position).
- Output: MWTcr(S)

1. Find the convex layers CL(S) = (Cy, -, Cg).
2. Fori=2tok Do

(a)
(b)

Find p} and N (p}).
While N(pf) # 0 Do
i. p < attract(N(p*));
ii. Compute an M WTciuc,-_lu frrm)
- (V(G))UV(Ciy)) by A —Ty;
iii. Update MWTcuc,_, (V(C;) U
V(Ci-1))
iv. EndW hile

(c) EndDo
3. produce . MWTcr(S)

by combining MW Tc,uc,_, (V(C;)UV (Ci1))
for all ie[2, k].

The correctness and the time complexity of algo-
rithm A — MWT ¢y, are shown as follows.
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Theorem 1 An MWTcr(S) can be found in
O(n*) time, where S is a set of n points in general
posttions.

Proof We apply A — MWT(y, to S, which cor-
rectly computes an MW7T¢r(S) since A — Ty, cor-
rectly computes an MWT,, 0., ) (V) u
V(Ci-1)).. Consider the time complexity. Step 1
can be done in O(n log n) time by Fact 1 [Ch87].
Step 2 executed k(= O(n)) times, where Step (a)
takes O(n) time in the entire Step 2. By Fact 2,
an MWTc,uc,(Ri;i—1) can be found in at must
O((n; + ni—1)®) time for i = 2,---, k. Thus, Step
(b) takes O(n; + n;—1)® * N(p})) time. Since the
process ends at finding an MWT(Rg_1), then
the total computation in Step 2 is at most

k .
> O(N®!) | (ni+ni-1)?) <

=2

k.
Q_INE)) | 0(n?)

=2
< O(n*).
Step 3 takes O(n) time. 0

4 Computing an MWT of a
Spare set

We now show that when S is a ‘spare set’, then
MWTcr(S) is an MWT(S). The diameter of
a point set .S, denoted by D(S), is the maximum
Euclidean distance among the pairs of points in
S. The minimum set distance of two point sets
S1 and S;, denoted by d(S;, Ss), is the minimum
Euclidean distance between the points of S; and
the points of S,.

Let CL(S)(= (Ch,- - -, C)) be the convex layers
of a point set S. S is called spare if it satisfies
the following two conditions: , v

(i) d(V(C:), V(Ciy1)) > D(V(Ciyr)), for all i =
1,---k—1, and

(i) if P;pir1 crosses pq for P41 € C;, p,q € S,
and p € Cj for j < ¢, then

d(pv Q) > maz{d(p’ pi)a d(p7 pi+l) }

Theorem 2 If S is a spare point set, then CL(S)
C MWT(S)
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Figure 2:

Proof Let CL(S) = (Ci,...,Ck). Clearly,
the convex hull of S, Cj, is in MWT(S). We
shall first prove that Cs is in MWT(S) by con-
tradiction, that is suppose that there exists a
subset of the edge set of Cp, say E, which
does not belong to MWT(S), then we can con-
struct a new triangulation containing C; such that
whose weight is less than that of MWT(S). Let
{P1Pz,P2P3, " - - » PrPr+1} be such a subset E, where
the vertices {p1,p2,"*,Pr+1} are in clockwise or-
der around C;. Let E be the set of edges in
MWT(S) such that each of which intersects an
element of E. There are three types of edges in
as show in Figure 2(a). Deleting F from the edge
set of MWT(S) and adding E to MWT(S)/E, we
have (MWT(S)/E) U E. For each edge Pipi+1 of
E, let B’ be the subset of E crossing p;p;r1. We
connect all the endpoints of E' ending at C; to
form a convex polygon P;;.1, that is, P;;41 =
(Pi, P31, Pi2y "y Pikss Pis1,0i).  In general, let
these polygons be Pio = (p1,P1,1,P12" " 1PLk1>

Pr,r+1 = (Pr:pr,lapr,% te ,pr,kr,pr+1,pr)- Clearly,
they are convex polygons lying outside Cp and
inside Cy. (See Figure 2(b), where P;; ., =
(Pi, P1,1,P1,2,P1,3, P1,4, Pi+1,P5)-) By Lemma 3,
for every vertex p of Cp there exists an edge
PP1,:eMWT(S) for pi; € Cy (as matter of a fact,
this is true for any triangulation). Hence, all
those convex polygons are disjoint due to the sep-
aration of these edges Ppr;. By connecting all
these endpoints of E’ lying below p;p;41 and inside
R(C3), we determine a polygonal region, denoted
by P;;.;. (Refer to Figure 2 (b).) Let d(p1;,q)
denote the length of edge p1;q of E' i.e., the edge
ending at p j, and let w(p, ;) = d(p; jq). For each
vertex on polygon P ;11 for 1 <i<r,1<j <k,
we assign it a weight as follows.

(i) If P;;y; contains only three vertices, i.e.,

(pi;P1,1,pi+1), We assign p; with w(p1,1).

(ii) if P; ;41 contains more than three vertices,
ie., .(pi7pl,17 w3 D15y "°1p1,k1,pi+l)a we first asmgn
pi with w(py,1), then p1 2 with w(p12), ..., p1,; with
w(pl,j)) L) and Dk with w(pl,kl)‘ ‘

Figure 3: The light shaded area is P/; ., and the
darker shaded area are P13 U P/ 5 ;3.

It is clear that no two vertices matched a same
edge since each vertex (except p;1 and p;;1) is as-
signed a weight that equals to the length of an
incident edge. In more detail, we consider three
types of edges separately. It is obvious that a type
1 or a type 2 edge cannot be assigned to two dif-
ferent vertices in the sane convex layer. If the edge
in question is of type 3, then both two vertices of
this edge belong to the same convex layer, say C;.
However, since this edge crosses at least two con-
vex layers and this edge must be shared by two
triangles, there must exist more than one edge in-
cidents at each of these two vertices. Thus, the two
vertices can be assigned with two different edges.
Refer to Figure 3, where p; ; and p;  are such ex-
ample. Hence, p;,; and p; ; can be assigned with
different edges.

We re-triangulate each F;;y 1, for 1 < i < 7,
by adding edges E;' = {Pibit1, Pibi;} for j =
2,--+,k;. Since Pj;.1 is convex, the above re-
triangulation is always possible. Let Ej be the
set of such new edges in polygons Py o, < -+, Prry1.
Thus, each of Ej is matched to a vertex in C)
with an assigned weight. Thus, only the polygonal
region F/;.; inside R(C) remains to be triangu-
lated. Note that the number of new edges needed
to re-triangulate the interior of P; ;11 U Fj;y, is
the same as F/. By Lemma 2 and Lemma 3,
we need add | E'/E% | new edges to triangu-
late P;;,;. (In more detail, let us consider two
cases: E' does not contain any type 3 edge and
it contains some type 3 edges. In the former, the
polygonal regions P}, are disjoint with different
i, and the union of these regions is R(C2). In the
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latter, the two triangles sharing the type 3 edges
are shared by the corresponding polygonal re-
gions. For example in Figure 3, P; ;11 UF];,; and
Pit2i+3 U P 9;,3 share the triangle Apy1pip1k
and Apy 193,191 Thus, the type 3 edge, P1,171.£,
must be counted only once in P ;41 UF];,; for all
1 < i < r.) Let all these new edges be denoted
by E,. Thus, the resulting triangulation will be
(MWT(S)/E) U (E, U Ej). _

By inequality (ii) in the definition of spare set,
w(Ey) is less than the total weight of the assigned
vertices, and by inequality (i), the weight of any
edge in E, is less than the weight of any edge in E.
So we have that w(E) > w(E,UE}), which contra-
dicts the assumption that MWT(S) is a minimum
weight triangulation of S. Thus, C; € MWT(S)
must hold.

By removing all the vertices of C);, we
have an original problem with one less convex
layer. The above argument can be applied to
CL(S/V(Ch)) = (Cy,...,Ck) again, so that Cy €
MWT(S) must hold. This proof continues un-
til CL(S/V(C1)\Y,...,UV(Ck-1)) = Ck. Then,
Cr € MWT(S) must hold. m]

In general speaking, MWTcr(S) is not an
MWT(S). But from Theorem 1 and Theorem 2,
we have that

Theorem 3 If S is a spare point set, then
MWTcr(S) = MWT(S) and the MWT(S) can
be computed in 0(n?) times.

Figure 4:

By the analysis of computing an MWT(S) of
a spare set S, we can derive a sufficient condition
for new subgraphs of MWT.

Sufficeint Condition
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Let CL(S) = (Cy,Cy,...,Ck) be the convex lay-
ers of a point set S. Convex layer C; for 1 <i <k
belongs to an MWT'(S) if the following conditions
are satisfied:

(i) d(V(Cs),V(Cs41)) = D(V(Cs41)), for all
s=1,---1—1, and , .

(ii) if psps-1 crosses g for p;ps11 € Cs, p,g € S,
andpeCjfor1<j<s<i-1,then

d(p,q) > maz{d(p,ps), d(p, Ps+1)}-

The new subgraph (if it exists) is totally dif-
ferent from the known subgraphs given in [CX96,
Gi79, Ke94, DM96, YXY94]. Figure 4(a) gives an
example showing that our new subgraph is differ-
ent from all the known subgraphs of [Gi79, Ke94,
YXY94], where pg can be found by our method
but pg does not belong to the subgraphs identified
by any other method mentioned above. Clearly,
z lies inside the empty disk associated with pg in
Keil’s B—skeleton and z also lies inside the empty
double-circle in the condition of [YXY94]. pq is
not the shortest edge among the seven points,
thus, it cannot be found according to [Gi79]. Pg
is nota stable edge. Figure 4(b) shows that pg
cannot be in Ty(.S) of [DM96] since Ty belongs to
a local optimal triangulation as shown.

5 Concluding Remér_ks

In this paper, we presented an O(n*) algorithm
for computing an MWT(S) of spare set S with
n elements. We may regard that putting some
constraint on point set S or designating some par-
ticular edges that must belong to MWT(S) is a
natural extension of MWT(S) for a general point
set S. In the latter, forcing the boundary of a
simple polygon P to be in any MWT(V(P)) is a
well-known constraint [K180]. Convex-layers con-
straint seems to be a reasonable extension with
potential applications in this direction. It is quite
interesting to find other constraints for MWT. In
the former, restricting point set S to be on k con-
vex layers [AC93] or to be on k non-intersecting
straight line segments in CH(S) [MR92] is this
type of constraints. Spare set becomes another
example.

The subgraph identified by our sufficient condi-
tion in section 4 is different from all the known
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subgraphs. It is interesting to see some experi-
ment result based on our result.
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