Joint Conference of 1996 international Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Parallel Flow-Constrained Multicast Algorithms

Longsong Lin, Lih-Chyau Wuu, Yin --Fu Huang

Department of Electronic and Information Engineering,
National Yunlin Institute of Technology, Toulin, Taiwan, RO.C.

Abstract

Multicast is an important operation in communication
networks and its attainment relies on the performance of
the underlying mutticast routing algorithm. The multicast
routing problem is well known to be NP-Hard and many
heuristic algorithms have been developed. Most heuristic
algorithms take time to compute the MST(Minimum
Spanning Tree) of some specified nodes. Thus, the
heuristic performance can be improved by exploiting
parallelism within the algorithms when executed in a
network node. In this article we investigate efficient
parallel implementations for four MST algorithms — the
Esau-Williams’s, Prim’s, Kruskal’s, and Sollin’s
algorithms. The optimization goal of these algorithms is
not only to construct a minimum cost spanning tree for a
designated group of nodes, but also to satisfy the maximum
flow constraint on each link. ~The corresponding parallel
programs. are = implemented with = message-passing
mechanism in the Parallel Virtual Machine (PVM)
environment,

1. Introduction »

Multicasting is the simulianeous distribution of data
to multiple destinations. To supporl multicast, many
communication algorithms have been extensively studied to
facilitate the delivery of data to a group of destinations
[2][9[11][12]. These algorithms are intended to solve this
concurrent data transmission problem by constructing a
spanning tree for the destination nodes in the given
network [7][10]. A basic performance guideline on
designing the type of algorithm is to deliver the data
within a specified time — with bounded delay for each
destination [3][12]. Furthermore, the cost of the spanning
tree is another objective to consider when the network has
only limited bandwidth. The cost of a spanning tree is
defined as the sum of individual link cost, which can be the
operation cost, the capacity of the link, type of connection
and line leased, or distance between the nodes, etc.
Developing a spanning tree by simultaneously optimizing
cost and time inevitably involves trade-off between network
cost and performance for the underlying application. This
thus entails careful consideration of the constraints imposed
by the limited network bandwidth and quality requirement
of the underlying application [8][12].

The optimization goals and constraints imposed by
an application determine different levels of computational
complexity in the tree-construction algorithm. For

113

instance, if the link delay is considered to be minimized, a
minimum delay tree for » nodes can be constructed in Oi’)
time using Dijkstra shortest path algorithm [4)[7]. If the
cost of the tree is the optimization goal, then the tree is a
minimum cost spanning tree called Steiner tree [10]. The
problem of finding such a Steiner tree is not tractable in
polynomial time. Heuristics for approximate Steiner trees
have been proposed that produce near-optimal trees quickly
[2][5](9)[10][12]. The algorithms take polynomial time,
ranging from "O@ir') to O@m’). Nevertheless, the cost
produced by these algorithms are almost twice the cost of
the optimal solution.

For most multicast problems, although time delay is a
common goal to be optimized, the time delay is
nevertheless difficult to quantify. Instead we shall focus
on a flow constraint: the flow in any particular link shall
not exceed a specified maximum value. This of course
implies a maximum link time delay on each link in the
network, Given such a network, we aim at devising the
multicast algorithm that constructs a minimum cost
spanning tree with the flow on each link not exceeding the
specified flow constraint. The cost of a link between any
pair of nodes is given by the a symmetrical cost matrix C.
Specifically, the traffic generated per unit time at each node
is represented by A/ where A is in unit of message/sec and
l/u is in bits/message. The constraint of link flow is
assumed to be A(in bits/sec). Hence the algorithm must to

ensure that A/u<A while minimizing the Z Cii where
(i.neT
the C;; is the cost of link (i, j) on the spanning tree T.

We shall introduce four algorithms to solve this
problem{6][13][14][16]. These multicast-tree
constructing algorithms require a multitude of
computations especially when the network scale is
extensive. In general, these algorithms requires four
major steps of computing in common: 1) initialize the
values of a trade-off function, 2) find the minimum from
these values, 3) check constraints, and 4) union links as
well as update trade-off values. We thus conceive that the
effort is mainly on computing the trade-off values and
finding the minimum among them. If the multicast tree
spanning n nodes, then there are potentially n(#:-1)/2 values
tobe examined. Apparently, for large » these steps can be
very time consuming. To reduce the computational work
in the algorithms, more efficient techniques are demanding.
Parallelizing the algorithm is a viable approach to shorten
the execution time by exploiting the parallclism within a
sequential algorithm, We shall focus on the

Proceedings of International Conference
on Algorithms

implementations of the parallel counterparts for the

algorithms in this work.
The parallel algorithms are implemented in a cluster

of SunSparc 10 computers that are interconnected through -

a 100-BaseVG Ethernet. The cluster of workstations is
installed 2 PVM (Parallel Virtual Machine) [1] library that
uses explicitly message passing -~ mechanism to
communicate between processes. PVM was originally
implemented for the design of task parallel programs in
distributéd memory parallel architectures. These multicast
algorithms are parallelized by explicifly inserting PVM's
message-passing . procedure calls whereupon
synchronization ~ and communication are needed.
Although in this cluster computing system the inter-process
communication is relatively “costly” than the overhead
incurred 'in a tightly-coupled processor system such as
shared-memory ‘parallel computing, we expect that the
advance of high-speed network has overcome this gap.
The rationality to employ PVM message passing method to
simulatc the inter-process communication in our research is
for fitting the algorithms into the distributed "network
applications in the future.

Primarily, therc are four classes of heuristics for
computing non-constrained minimum spanning tree of a
weighted graph in a serial computing environment. There
are Prim’s algorithm [14] and Esau-Williams’s [6]
algorithms based on the nearest neighbor method: the
Kruskal’s algorithm [13] based on the minimum weighted
edge first method; and the Sollin’s algorithm [16] based on
the minimum weighted edge from each node method.
Many works have concentrated on the complexity analysis
by assuming certain types of computing model such as
EREW. CREW, or TSC etc [15]. Our work instead
focuscs on the implementation techniques and quantifies
the overhead. Our goal is o envisage the significance of
parallel implementation [15] for the multicast algorithms
and to provide an insight to the suitability of the algorithms
to parallelize.

This article is organized as follows. Afier this
introductory section is a formal presentation of the
multicast algorithms to be discussed in the paper. In
Section 3, parallelized versions for the four algorithms are
proposed and the corresponding complexity results are
examined. In Section 4, the results of simulating the
parallel algorithms on the PVM architecture are described.
Finally in Section 5 a conclusion is drawn for this rescarch.

2. Flow-Constrained Multicast Algorithms
The problem considered in this paper is the
gencration of a sink-rooted multicast tree. Given a graph
G=(V, E), [V]=n, |El=m , a sink node sV, two functions
(1)Flow function F: V — N gives the traffic or average
number of data units per unit time generated at each
nodeveV,
(2)Cost function C: E — N gives the cost of each link e€E,

114

" depicted‘in Figure I..
‘the of sequential algorithms. We brief the property for

a sink-rooted multicast tree is a minimum cost spanning

tree T=(V, E’), E’cE, and the flow on each link does not
exceed the specified flow constaint.

‘In this section we shall examine four types of
multicast algorithms. The description of each algorithm is
‘It shows the pseudo code for each

each algorithm as follows.

1. Esau-Williams algorithm searches out the nodes that are
furthest from the source and connects them to
neighboring nodes that provide the greatest cost benefit.

2. Prim algorithm does the reverse: initially it select the
node closest to the source, then connects in those nodes
that are closest to those already in the network.

3. Kruskal algorithm simply connects the least-cost links,

~one at a time.

4. Sollin algorithm mmally treats each node as a forest.
Then each forest connects to its neighbor forest that
provide the best cost benefit regardless the distance of the
link to the source. The procedure repeats until all the
nodes are connected in the multicast tree.

Eachi of the four algorithms typify a type of multicast
algorithm in the way the multicast tree is growing. From
the view of a source node, the Esau-Williams algorithm
grows the tree outside-in until the source node is connected
lastly whereas the Prim algorithm grows inside-out until
the furthest nodes are connected. The Kruskal algorithm
connects links in increasing order of their costs; while
Sollin algorithm connects nodes without considering any
order on link cost.

Observing the algorithms, it is found that four
common operations are involved in the algorithm: INIT
initializes node weight and trade-off functions, MIN finds
minimum of the trade-off functions and checks the
constraint, UNION unions nodes and links into present
multicast tree, and UPDATE updates node weights and
trade-off functions. Remember the outer loop is a while
loop that executes theses four steps in at most Jog n times
for the Sollin algorithm and » times for the Esau-Williams
and Prim algorithms. ~ As for the Kruskal, the outer loop
executes m=O(n’) times at the worst case. The time
complexity of inner loop in each algorithm is presented in
Table 1. It is noted that the Kruskal algorithm nceds
m=0(ir’) steps to execute MIN operation owing to using a
sequential search method to find a minimum cost edge
among m edges.

Table 1. Complexities of inner loop for the sequential
" multicast algorithms

Operation INIT [MIN |UNION |UPDATE

EW ow’) logr) o) o)

Prim om |0 10) OMm)

Kruskal o) log) o) o)

Sollin om logr) lom) o)

It is therefore-not difficult to check the complexity for each
algorithm:

1. Esau-Williams: O(ir’)
2. Prim: O(r’)

3. Kruskal: OGr*)

4. Sollin: OGr’* logn)

3. Parallel Multicast Algorithms

Figure 2 delineates the parallel version for each
algorithm. The source of parallelism lay in the trade-off
function portion - of the code. The corresponding
complexity for each of the parallel algorithms is presented
in Table 2 by assuming there are p processes involved in
solving the problem.

Table 2. Complexities of inner loop for the parallel
multicast algorithms

[Operation INIT [MIN _ JUNION |UPDATE .

EW O)ip |0m*)p [0(Wip |0G)/p+fip)
/) He) e

Prim Om)ip+ [Om)ip [O(L)ip |O(m)/ip+/p)
)|+)

Kruskal O(D/p+ |Om)p |O(Dip |Om)/p+ip)
B +p |4e)

Sollin Om)ip+ 0@)p |Om)+ [Om)p+i(p)
@ vp Yy

Yoo [19] has found that the minimum-cost spanning
~tree of a weighted, undirected, connected graph with m
edges can be found in time O(m) on a UMA (Uniform
Memory Access) multiprocessor with log m processors.
For n nodes, there is at most n(i-1)/2 edges in the graph,
the complexity is thus O@°) for n processors. In our
implementations, the architecture is however a
multicomputer; each processor has its own private memory
and process interaction occurs through message passing.

Two points should be emphasized here. The
function f{p) is the overhead incurred in the message
passing between p processes. The function is varied in
according to the number of processors (computers) in the
PVM setup for a run. PVM can specify a number of
processes to be in a processor in which communication is
“cheaper” than that of processes between processors. The
factor p in the UNION operation accounts for the time, in
the worst cast, a processes wanting to lock a particular tree
A have to wait for every other processor to lock and unlock
tree A. This is a special scenario in the Sollin parallel
algorithm,

Consider the situation depicted in Figure3. Suppose
one process is attempting to connect tree 4 with closest
neighbor B, while another processes is atiempting to
connect tree B with its closest neighbor. A variable
edge[A] contains edge /vA, w4} with length £, Variable
edge[B] contains edge fvA. wB} also with length k. If
both processes perform the test function FIND for finding
the tree for node v and w before either process performs the
UNION operation, then both edges will be added to the
existing connected tree 7. Therefore, if the code is to be

115

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

made parallel, trees FIND(v) and FIND(w) must be locked
by one of the process and unlocked by that process so as to
let the other processes to access this critical section.

From the table we can summarize the.complexities of
the parallel algorithms as follows. We found that the
Sollin - algorithm seems to be the most suitable for
parallelization. We will verify this in later section.

1. EW:0(n@’p+nip+1ip)))

2. Prim: O(ntip +1(p)))

3. Kruskal: O@’(ir’/p + nip + f(p)))

4. Sollin: O(logn (' p+np+n+fp)))
4. Simulation Results

The greedy heuristics described in this article are
evaluated by simulation. The performance is evaluated
using random graphs as the network model, We atained
qualitatively similar results for different random graphs.
For a given number of nodes, the results presented here for
a fixed random graph as the network. The graphs used
were designed to be sparse with the average degree being
less than five to capture the flavor of realistic network
topology such as NSF backbone. Group members are
picked uniformly from the set of nodes in the graph.

The random graphs used in the simulation are
constructed using the method proposed in [18]. The n
nodes of a graph are randomly distributed on a Cartesian
coordinate grid with unit spacing, The (x,y) coordinates of
cach node was selected uniformly from integers in /0, n].
Considering all possible pairs of node, edges are placed
connecting nodes with the probability

P(u, v) =p exp(——d(i%‘g)

where d(u, v) is the Manhattan distance between nodes u
and v, and L is the maximum possible distance between two
nodes. The parameters a and f are in the range (0. /) and
can be selected to obtain desired characteristics in the
graph. - For example, a large 8 gives nodes with a high
average degree, and a small o gives long connections, 1t
has been observed that with appropriate parameters, this
method gives networks that resemble “real networks”.
The parameters o and £ are varied to obtain appropriately
sparse networks. According to our experiments, for a =
0.25 and 8 = 0.2, the random graph generated will have
average degree of node less than or equal to five, which is
the same result obtained in the work [5].

The cost of each edge was set lo the Manhattan
distance between its endpoints plus one. By adding one to
the Manhattan distance, the uninteresting case of zero edge
is eliminated. Our experiments were run on to the
maximum of 150-node graph.

Figure 4 depicts the algorithm for generating the
random graph. Initially the cost matrix graphf][] is
assigned a maximum cost MAXINT for each link. Then
for each link (x, y), a probability function probfiuncfx. y)
which is the equation mentioned above produce a value to

Proceedings of International Conference
on Algorithms

be test for connectivity. The cost of a link is computed by
a distance function costof(x, y). This value is assigned to
the link if and only if the value produced by the random
function random(100) falls in the range generated by the
~ function probfunc(x, y). For example, if the probfimc(l.
4) * 100 is 50 and the random(100)*100 is 30, then the cost
costof(1, 4) which is 14 is assigned to link (1. 4), ie.,
graph{ 1][4]=14.

Figure 5 shows the cost found by each parallel
algorithm. In the beginning of the graph wherein the
number of nodes is below 40, the tree found is a minimum
spanning. This is becausc that the constraint A=701is
high with respect to the small number of network nodes.
As the number of node increases, the cost increases
accordingly. The figure shows that the Esau-Williams
parallel algorithm obtains the lowest cost while the Kruskal
algorithm has the highest cost among them. ~The Kruskal
algorithm has highest cost in that the link costs in the
random graph have large variation,

Figure 6 shows the problem salability for each
algorithm. It is found that the only algorithm that scales
well is the Sollin algorithm. ~ As the number of nodes in
the random graph increases, the Sollin algorithm maintaing
the total execution time under certain level. On the other
hand, thé time by using the Kruskal algorithm increases
tremendously for the increase of problem size. The Esau-
Williams and Prim are about average among them, with the
Prim algorithm slightly better than the Esau-Williams
algorithm.

In Figure 7, the scalibility with respect to the number
of processes spawned is depicted. The figure shows that
except for the Sollin algorithm the other three algorithms
produce minimum total execution when the number of
processes in under 10. This is because using PVM incurs
costly inter-process communication. Even the number of
process increases, the speedup gained is still overwhelmed
by the communication overhead between these processes.
The Sollin algorithm produces optimal execution time
when the number of processes is around 20. The curve for
execution time is flat out in that the communication
overhead almost counteracts the speedup gained by the
increase of processes.

5.Conclusion

We have shown the suitability of parallelization for
four algorithms on the flow-constrained multicast problem.
Our experiments with the four parallel multicast algorithms
show that the Sollin algorithm is best candidate for parallel
implementation. The Sollin parallel algorithm scales best
with respect to the problem size and the number of
processes. The Esau-Williams and Prim- parallel
algorithms on the other hand are able to find smallest cost
spanning tree for a constrained multicast problem
providing that a feasible solution can be found. The
Kruskal algorithm has the worst time and cost among the
algorithms for parallel implementations with longest total
execution time and cost. -

116

As we pointed our earlier in this article, the cluster
computing system incurs larger inter-process
communication overhead than that of a tightly-coupled
processor system such as shared-memory parallel
computing. Although the speedup gain is relatively
limited by virtue of the message passing implementations,
we expect the performance can be further improved if using
high speed networks as the test bed. At any rate, this
study should provide - valuable insight for the
implementations of these network algorithms in the “real
world” message-passing distributed environment .

References

[1] Beguelin, B., Dongarra, J., Jiang, W., Manchek, R. and
Sunderam, V., PVYM 3 USER’S GUIDE AND
REFERENCE MANUAL, Engineering Physics and
Mathematical Science Section , May 1993.

[2] Chow, C.H., On Multicast Path Finding Algorithms. in
Proc. IEEE INFOCOM °91 New York. NY, pp. 1274
1283, 1991.

[3] Deering, S. and Cheriton, D., Multicast Routing in
Internetworks and Extended Lans. ACM Trans, on
Comp. Sys., vol. 8 , pp. 85-110 , May 1990

[4] Dijkstra , E., Two Problems in Connection with Graphs.
Numer. Math. 1 (1959), pp: 269-271

[5] Doar, M. and Leslie, L. , How bad is Naive Multicast
Routing. TEEE University of Cambridge Computer
Laboratory , New Museums Site, Pembroke Street,
Cambridge CB2 3QG. UK 1993.

[6] Esau, L. R. and' L. C. Williams , 4 Method for
Approximating the Optimal Network. IBM Systems J.,
5.n0.3, 1966, 142-47. '

[7] Floyd, R.W., Algorithm 97: Shortest Paths. Commun.
ACM, vol. 5, pp. 345, 1962.

[8] A . Frank, L.. Wittie, and A, Bernsstein , Multicast
Communication in Network Computers. IEEE Software,
vol. 2, no. 3, pp. 49-62 . 1985

[9] Garey, M. and Johnson, D., Computers and
Intractability: A Guide to the Theory of NP-
Completeness. New York : W.H Freeman and Co..1979

[10] Hakimi, S., Steiner’s Problem in Graphs and Iis
Implications. Networks, vol. 1 , pp. 113-133,1971

[11] Karp, R., Reducibility among Combinatorial
Problems. in Complexity of Computer Computations,
pp.85-103, New York: Plenum Press , 1972.

[12] Kompella, V., Pasquale, J. and Polyzos, G., Two
Techniques for Multicast Routing for Multimedia
Networking. Tech Report CSL-1005-91, Computer
Systems Laboratory, University of California, San
Diego, Dec 1991.

[13] Kruskal, J. B. Jr., On the Shortest Spanning Subtree of
a Graph and the Traveling Salesman Problem. Proc.
of the AMS, vol. 7, no. 1, pp. 48-50, 1956.

[14] Prim, R. C., Shortest Connection Networks and Some
Generalization. Bell System Technical Journal , vol.
36, pp. 1389-1401, 1957.

[15] Quinn, M.)., Parallel Computing Theory and Practice.
McGraw-Hill International Editions

[[6] Sollin, M. 1977 . An Algorithm Attributed to Sollin. In

S. E. Goodman and S. T. Hedeiniemi, eds. Introduction
io the Design and Analysis of Algorithms, McGraw-
Hill, New York, sec. 5.5.

[17] Wall, D., Mechanisms for Broadcast and Selective
Broadcast. Ph.D thesis, Elect. Engin. Dept., Stanford
University , Jun, 1980

[18] Waxman, B.M., - Routing of Multipoint Connections.
IEEE J. Selected Areas in Comm., Vol. 6 , No. 9,
December 1988.

{19] Yoo, Y. B. 1983. Parallel Processing for Some
Network Optimization Problems. Ph.D. dissertation,
Computer Science Dept., Washington State
University, Pullman.

1. BEGIN:

2 E<d

3 FORi¢1 TONn DO /*INIT ¥/

4 FORj&<1TONn DO

5. compute:fj= G- G1 .

6. WHILE (|E'}<n-1) DO

7 MinimumEdge €

8. FORi <1 TONDO /*MIN*/

9. FORj<1TONDO '
10 ~MinimumEdge ¢-min(MinimumEdge, £;)
11. IF add MinimumEdge has NoCycle and
12. NolnfeasibleFlowConstraint then
13. add MinimumEdge totree /*UNION*/
14. update flow of tree /* UPDATE"/

15. ELSE abort this MinimumEdge
16. ENDWHILE
17. END
(a) Sequential Easu-Willams Algorithm

. FOR =2 TO N DO /*INIT ¥/
NB[l] « 0
8. D[] «C[i,]
9. ENDFOR
10. WHILE |E’] < N-1 DO
11. select] (D[jJ=min{D[1] | NB[l]<>0}) AND /* MIN */

(TF + Flow[j] < F)
12. E' <« E’UNION{(j , NB[i])} /*UNION*/
13. TC «TC + D[j] "UPDATE?Y/

117

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

14. TF <« TF + Flowfj]
156.FOR =1 TONDO
16. IF(NB[I] <> 0) AND (C[l, j] < C[l , NB[Il]})
17. THEN{ N[l]<j
18. Dl «C[l,j] }
19 ENDIF
20. ENDFOR
21. ENDWHILE
22. END
(b) Sequential Prim’s Algorithm

1. BEGIN
2. E¢€d JMINIT*/
3. WHILE (|E'|<n-1) DO
4. findthe least costedge ein E /*Min*/
5. using one-by-one edge comparing method
6. IF add e has NoCycle and
7. NolnfeasibleFlowConstraint then
8. ADD einto E’; Delete e from E /*UNION*/
9. update flow of tree /* UPDATEY/
10. ENDWHILE
11. END
(c)Sequential kruskal Algorithm:
1. BEGIN
2. FORi€<1TONnDO INIT*/
3. vertex i is initially in set i.
4, T« J
5. WHILE [T|<n-1 DO
6. FOR every tree i DO close[i] €=
7. FOR every edge {v,w} DO /"MIN*/
8. IF FIND(v)<>FIND(w) THEN
9. IF weight{[v,w]<close[FIND(v)] THEN
10. close [FIND(v)] €weight{[v,wl}
11. edge[FIND(v)] <{v,w}
12. NDIF
13. ENDIF
14. ENDFOR
15. FOR every tree i DO /*UNION?*/
16. (v,w) €edgefi]
17. IF FIND(v)<>FIND(w) then
18. TE€TY{(v.w)}; UNION(v,w)
19. update flow of tree *UPDATE"/
20. ENDIF
21. ENDFOR
22 ENDWHILE
23. END

(d) Sequential Sollin Aigorithm

Figure 1. Four multicast algorithms.

Proceedings of International Conference
on Algorithms

all Tij of node .
number of processor
tree
Cij-Cit
BEGIN :
spawn (Nproc)
FORi<1 TONDO
FORj€1 TONDO
compute Tij
WHILE (JT|<N-1) DO
FOR every processor DO
send (Ti)
FOR every processor DO
MiniEdgeOfNode €receive(minimum-edge)
MinimumEdge €min(MiniEdgeOfNode)
IF add MinimumEdge has NoCycle and
NoinfeasibleFlowConstraint THEN
add MinimumEdge to tree
update flow of tree
ELSE abort this MinimumEdge
ENDWHILE
END
(a) Parallel Easu-Willams Algorithm

Ti
Nproc
T

Tij

—
CLINIOTALN =

—t
-

—t b b weh b
AN

17.
18.
19.
20.
21.
22.

. BEGIN
. FORj=1 TO Nproc DOPAR
FOR all nodes u€ Pj DO
IFu<>1
THEN NB[u] « |
ENDIF -
ENDFOR
. ENDDOPAR
.FOR I=1 TON-1 DO
FOR j=1 TO Nproc DOPAR
Pj finds x and y , x € Pj such that
' Clx,yl=min{C[p,q]|
(p € Pj but not yet in the tree) AND (N[p]=q)}
D[il=CIx , y] ; Alil=x ; Bj]=y
ENDDOPAR
find t (D[t}=min{D[j] | j=1,2,...,Nproc}) AND
(TF+Flow[A[t1< F)
E' <« E UNION (Af[i], B[i})
broadcast Aft] to all processors Pi , 1<i<Nproc
FOR j=1 TO Nproc DOPAR
IF Alf] € Pj
THEN mark Aft] as a node already in the tree
ENDIF .
FORv e PjDO
IF v is not in the tree
THEN IF C[v , Alt]]<Cl[v , N[v]]
THEN N[v] « A[i]
ENDIF
ENDIF
28. ENDFOR
29. ENDDOPAR
30.ENDDO
31.END

SmowoNOOR~LND S

e

-t
N

13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

(b) Parallel Prim’s Algorithm

118

PO

©N®o

12.

QU QT G G
N~

18.

—
©

20.
21.

— —
SO0 NOOA~LND =

BEGIN

S Z,

WHILE |E} <> [N|-1
find the least cost edge e in C among G
// use client-server model
first, divide graph into pnum pieces Cn’ and
send them to all children (servers actually), one
child one pieces, i.e. C=C1'UC2'.....Cpnum’
then, send commands to ask for least edge and
set masks to prevent replicated edge searching.
check whether cycle will happen after adding e
IF no cycle Then add e into E

ENDWHILE

END

(c) Parallel kruskal Algorithm

T
NProc

tree
Processor
BEGIN
i=1;j=1
WHILE (|T|<n-1) DO
spawn(SlavePro,NPrac)

FOR every NProc DO
send(cost,forest]i])
send(flow,forest[i])

i €it1

ENDFOR

FOR every NProc DO
receive(best-outgoing-edge, forest(j])
j €+ ‘
IF NoCycleCause then

Add best-outgoing-edge to Tree

ELSE abort this best-outing-edge

ENDFOR

update every forest’s total flow

ENDWHILE
END
(d) Parallel Sollin Algorithm

Figure 2 The four parallel multicast algorithms.

Joint Conference of 1996 International Computer Symposium’
December 19~21, Kaohsiung, Taiwan, R.0.C.

180
160
/
- :;?) / 5 —o— Sollin
a 100 Lo ‘/% —@— Prim
80 s —&— Esau-Willams
60 —w— Kruskal
40
20
0 N . L N " i
30 40 S0 60 70 80 90 100
Number of Nodes
Figure 3' LOCking critical Section Figure 5. Cost oth‘l);eFr‘:‘:lS:::(tlTZ:e for each of the parallel algorithms.
Random graph generator algorithm:
1 /fbegin of program
2 alpha=0.25; beta=0.2; 400 - '
3 graph]] € MAXINT 51350){/
4 /frefresh graph array into disconnected value 530 7 '
5 for all nodes on coordinator (x,y) { g 20 7 _‘:i","'"
6 if (x==y) graph{x]ly] = 0; // means no cost in g 200 Vi e Bl
’ self-loop o 190 ' N
7 prob € probfunc(x,y); 7 100
8. //probfunc(x,y)=beta*exp((-1)"dist(x.y)/ "
(alpha*2" # (node)))
9 if (prob==CONNECTED)
then graph[x][y] = COStOf(X,Y); Number of Nodes‘
For Flow Bound=200

10 //costof() measures the distance between (x,y)
11 if random(0..100) in [0..probfunc(x,y)*100]
then prob will return CONNECTED
12 make sure each column & each row has
at least one connected edge
13 //this can ensure G will be a connected graph
14 }// end of for-loop 120

15} // end of program
%0 2 \ : / —o— Sollin
o T w D

-~ Esau-Willam
40 §
—¥— Kruskal

20

Figure 6. Show the scalibility to problem size for each algorithm.

(=3
(=3

Figure 4. The algorithm for generating a connected random
graph.

awij uonndaxg [eloL

| 2 4 8 10 12 16 20 30 40 50
" Number of Processes

For Number of Nodes=150 , Flow Bound=200
Figure 7. Scalibility to the number of processes for each algorithm

119

