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Abstract

In this paper, a graph representation model for the
reliable network designs is presented. A graph is said
to be hinge-free if the removal of any single vertez in
the graph resulls in no increase in distance between

any two remaining vertices. The advantages of the

proposed structure are not only residual connectedness
but also distance inheritance. Moreover, a property
related to the class of hinge-free graphs and its gener-
alization, called the k-GC graphs (a class of connected
graphs by removing at least k vertices is required to
increase the distance between any two remaining ver-
tices), is established. Base on this property, we show
that all the above classes of graphs can be recognized
in O(|V||E|) time in spite of the value of k. We also
provide some extensions of graphs with respect to the
hinge-free property (resp.. k-GC property) such that
a hinge-free (resp. k-GC) network on large scale can
easily be consiructed by using these operations. Fi-
nally, the relationships among hinge-free graphs and
other classes of graphs are discussed.

1 Introduction

Most of network designs and analysis usually model
their topologies as graphical representations in a nat-
ural way because that many relevant problems of net-
works can be solved by using graph theoretic results.
As usual, a communication network is modeled as an
undirected graph that nodes and edges in the graph
correspond to the communication sites and links, re-
spectively. Due to the consideration of immunity in
such a system, the designing of reliable graphs has
become a major issue. Recently, several variations of
invulnerable networks have been proposed but most of
them are based on the fundamental feature — all mes-
sages transferred among communication sites must be
able to complete despite the presence of certain faults
[4, 8, 10, 16]. It therefore led to that the reliability
measures are concerned mainly with residual connect-
edness [1, 3, 6, 13]. An important problem about net-
work analysis is how to find the more useful nodes
or links whose removal results in a great increase of
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communication cost to the remaining network. To ef-
ficiently design a network with high reliability and low
communication cost, in this paper we shall present
a class of graphs, called the hinge-free graphs, and
their corresponding networks that the advantages of
the proposed structures are not only residual connect-
edness but also distance inheritance.

All graphs considered in this paper are assumed to
be simple, undirected and connected. Let G = (V, E)
be a graph. The vertex set and the edge set of G are
denoted by V(G) and E(G), respectively. The cardi-
nalities of V(G) and E(G) are said to be the order
and the size, respectively, of G. Let u and v be two
vertices in a graph G. The distance between v and
v, denoted by dg(u,v), is the number of edges of a
shortest path from u to v in G. A shortest path be-
tween v and v is called a u-v geodesic. Two paths
between u and v are said to be vertez-disjoint (resp.
edge-disjoint) if they do not have any vertex excluding
u and v (resp. any edge) in common. The open neigh-
borhood (or simply neighborhood) Ng(v) of a vertex v
is the set {u € V(G) : uv € E(G)}; and the closed
neighborhood Ng[v] is Ng(v) U {v}. Let 7 = (u, ) be
a vertex pair of graph G, we say that 7 is a twin pair if
either Ng(u) = Ng(v) or Ng[u] = Ng[v]. Moreover,
T is a true twin if v and v are adjacent; a false twin
otherwise. Note that, the subscript G can be dropped
in the above definitions when no ambiguity arises. For
graph-theoretic terminologies and notations not men-
tioned here we refer to [15].

In [5], Chang et al. defined that a vertex v € V(G)
is a hinge-vertez if there exist two vertices z,y €
V(G ~ v) such that dg_y(z,y) > de(z,y), where
G — v is the induced subgraph of G with vertex set

V(G) — {v}. It is straightforward to see that the

problem of finding all hinge-vertices of an arbitrary
graph is polynomial solvable since the time complex-
ity of the well-known all-pairs-shortest-paths prob-
lem is polynomial [12, 19]. In fact, a point of view
proposed in [5] shows that we only need to inspect
the neighbors of vertices instead of examining the
distances among all the vertex-pairs to identify the
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hinge-vertices for an arbitrary graph. We include this
property in Lemma 2.1. Base on this property, the
linear time algorithms for finding all hinge-vertices of
strongly chordal graphs and permutation graphs can
be found in [5, 17].

In this paper, we shall introduce a specific class
of graphs characterized by the absence of hinge-
vertex. A graph without hinge-vertex is called a
hinge-free graph and its corresponding network is
called a hinge-free network. Another synonym of
hinge-free graph is called the self-repairing graph by
Farley and Proskurowski [11]. In this paper, we use
the more descriptive term — hinge-free. Obviously,
every hinge-free graph is a biconnected graph. By
definition, we know that a hinge-free graph permits
one node fault without increasing the distance among
all the remaining nodes.” Generally, the definition of
hinge-free graphs may be extended to a further per-
mission with k faulty nodes for £ > 2. In [9], En-
tringer et al. defined a graph G to be k-geodetically
connected (k-GC for short) if G is connected and
the removal of at least k vertices is required to in-
crease the distance between any pair of remaining
vertices. That is, G is a k-GC graph if and only
if dg—s(z,y) = dg(z,y) for every pair of vertices

z,y € V(G) — S, where S is any subset of V(G) with
|S| < k — 1 vertices. Clearly, the class of hinge-free
gra.phs is equivalent to the class of 2-GC graphs, and
.all the classes of GC graphs constitute a hierarchy by
set inclusion, i.e., (k + 1)-GC C k-GC. Besides, an-
other two interesting subclasses of k-GC graphs will
also be mentioned in this paper. A k-GC graph G is
minimal if the resulting graph of removing any edge
in G is not a k-GC, and G is minimum if G has the
minimum size when its order is given. Obviously, ev-
ery minimum k-GC graph must be minimal, but the
converse is not true. For the special case k = 2, we
use the terms minimal kinge-free and minimum hinge-
free.

Similarly, the notion of hinge-free may be con-
cerned in the edges for a graph. Let G be a graph.
An edge e € E(G) is said to be a hinge-edge if there
exist two nonadjacent vertices =,y € V(G) such that
dg—e(z, y) > dg(z,y), where G — e denotes the graph
by removing e from G. That is, every z-y geodesic
in G must pass through e. A graph is edge hinge-free
if it contains no hinge-edge. Generally, we define a
graph G to be k-geodetically edge-connected (k-GEC
for short) if G is connected and for any pair of nonad-
jacent vertices u and v in G, at least k edges must be
deleted to cut all u-v geodesics. Obviously, the struc-
ture of k-GEC graphs can folerate any k — 1 faulty
links without increasing the distance of any two non-
adjacent vertices.

In [9], Entringer et al. showed that G is a k-GC
graph if and only if every two vertices in G with dis-
tance 2 apart are joined by at least k vertex-disjoint
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geodesics. It is interesting to know that if there is a
similar property for the k&-GEC graphs. In this paper
we give another proof to acquire Entringer’s property
and show that the answer is affirmative. Moreover,
the proposed result exhibits that the above two classes
of graphs are equivalent and there are at least k com-
mon neighbors between any pair of vertices with dis-
tance 2. Base on this characterization, we will show
that all the k-GC graphs for arbitrary & can be rec-
ognized in O(|V||EY) time.

- Let G be a graph associated with a certain prop-
erty II. An eztension of G with respect to II is an
operation for constructing a supergraph G’ from G
by adding at least one vertex such that G’ satisfies
II. The study of graph extensions can be applied to
the real life applications of distributed network de-
signs because that it allows the- configuration of net-
works to expand in scale without destroying a given
property. In [11], several kinds of extensions with re-
spect to the hinge-free property have been defined. In
this paper, we will generalize their results to the k&-GC
property for arbitrary k. In addition, we shall intro-
duce another extension, called the cross eztension, for
combining two k-GC graphs to from a new one and
preserving the k-GC property.

The relationships among various classes of graphs
had been individually investigated by many researches
and can be referred to [7, 14, 20]. This, quite nat-
urally, has motivated the study of relationships be-
tween hinge-free graphs and other classes of graphs.
In [18], Howorka defines a graph G to be distance-
hereditary if every pair of vertices in any connected in-
duced subgraph of G inherits its distance from G. In-
tuitively, there is a similarity between the definitions
of hinge-free graphs and distance-hereditary graphs.
The discussion of relationships between (minimum)
hinge-free graphs and several classes of graphs includ-
ing distance-hereditary, biconnected, bipartite, and
(6,2)-chordal bipartite will be covered in this paper.

2 The recognition algorithm

Lemma 2.1 was provided in [5] to identify the
hinge-vertex of a general graph. A similar property
to identify the hinge-edge of a general graph is shown
in Lemma 2.2.

Lemma 2.1 For e graph G = (V,E), a vertez v €
V(G) is e hinge-vertez of G if and only if there exist
two nonadjacent vertices x,y € N(v) such that N(z)N

N(y) = {v}.

Lemma 2.2 Let G = (V,E) be a graph and uv €
E(G). uv is a hinge-edge of G if and only if at least
one of the following conditions hold:
(1) There is a vertez w € N(u) and w ¢ N(v) such
that N(w) N N(v) = {u}.
(2) There is a vertez w € N(v) and w ¢ N(u) such
that N(w) N N(u) = {v}.



Proof. The sufficient condition is obvious from
the definition. We prove the necessary condition as
follows. Suppose that e = uv is a hinge-edge of G. By
definition, there exist two nonadjacent vertices, say z
and y, in V(G) such that every z-y geodesic must
pass through e. Let P = z---uv---y be a geodesic
between z and y. Since £ and y are nonadjacent,
the two end vertices of e cannot be z and y. This
indicates that there is a vertex w on P adjacent to
u or v but not both. For the case wu € E(G) and
wv € E(G), we can see that u must be the only vertex
adjacent to both w and v; otherwise, there is another
z-y geodesic which does not pass through e. For the
case wv € E(G) and wu ¢ E(G), N(w)NN(u) = {v}
can be proved by a similar reasoning. (=]

Theorem 2.3 Let G be a graph and k > 2 be an
integer. The following statements are equivalent:

(1) G is a k-GC graph.
(2) Every pair of nonadjacent vertices in G are
Jjoined by at least k vertez-disjoint geodesics.

(3) Every pair of nonadjacent vertices in G are
Jjoined by at least k edge-disjoint geodesics.

(4) G is a k-GEC graph.
(5) Every pair of vertices u,v € V(G) with d(u,v) =
2 satisfies |N(v) N N(v)| > k.

Proof. The implications (2)=>(1) and (2)=(3)=>(4)
are trivial. To complete the proof we only need to
show (1)=>(4)=>(5)=>(2) as follows.

(1)=>(4) Assume that G is not a k-GEC graph.
By definition, there exist two nonadjacent vertices
u,v € V(G) and a set F C E(G) with |F| < k
such that dg_p(u,v) > dg(u,v). Let S C V(G)
be a minimum set of vertices which covers all the
edges of F'. Clearly, |S| < |F| < k and dg-s(u,v) >
de-r(u,v) > dg(u,v). Thus G is not a k-GC graph.

(4)=>(5) Let G be a k-GEC graph and assume that
there exist two vertices u,v € V(G) with dg(u,v) = 2
satisfying |Ng(u) N Ng(v)] < k. Let S = Ng(u) N
Ng(v) and F = {uw € E(G) : w € S}. Clearly,
|F| = |S] < k and dg-p(u,v) > dg(u,v) = 2. This
contradicts that G can tolerate any k — 1 faulty edges
without increasing the distance of any two nonadja-
cent vertices.

(5)=>(2) The proof is produced by induction on
the distance d between two nonadjacent vertices of G.
The case with d = 2 is trivial. Assume that every pair
of nonadjacent vertices with distance d < I 'in G are
Jjoined by at least k vertex-disjoint geodesics. Then,
we consider two nonadjacent vertices u and v in G
with distance d(u, v) = I4+1 and show that there are at
least k vertex-disjoint geodesics between u and v in G.
Let P be a u-v geodesic and z be a vertex on P adja-
cent to v. By the assumption, u and z are joined by at
least k vertex-disjoint geodesics with length I. So that
we can find a set of vertices {w; : 1 <i <k} C N(z)
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such that each w; is in a u-z geodesic. Also we can
see that each w; and v must be nonadjacent; oth-
erwise, d(u,v) < I+ 1. Thus, d(w;,v) = 2 and
[IN(wi) N N(v)| > k for i = 1,...,k. This indicates
that we have w;-v vertex-disjoint geodesics in G for
all ¢, and therefore u and v must be joined by at least
k vertex-disjoint geodesics with length I 4 1. a

Theorem 2.3 suggests that a k-GC graph recogni-
tion algorithm can easily be implemented as follows.
For an arbitrary input graph G and a given integer
k > 2, we explore the vertices of G from each vertex
v € V(G) as the root by using breadth-first search.
When a breadth-first search arrives at some vertex u
with d(v,u) = 2, an auxiliary counter of u is used to
record the times of u visited. An exploration is ter-
minated if all the vertices of distance 2 from v have
been visited. Thus, if there is a counter of some ver-
tex u whose value is less than k then G cannot be a
k-GC graph. After all the explorations completed, we
can determine if G is a k-GC graph. Besides, for each
iteration rooted at v, the counter of u is recorded by
1 if and only if the common neighbor of u and v is
a hinge-vertex of G. Assume that w is the common
neighbor of u and v in this case. By Lemma 2.2, uw
and vw are two hinge-edges of G. Since every vertex of
G is chosen as root for once, the approach can find all
the hinge-vertices and hinge-edges of G in O(|V]|E|)
time. Hence, we have following theorem.

Theorem 2.4 Given a graph G and an integer k >
2, there is an algorithm to recognize if G is a k-GC
graph in O(|V||E|) time.. Moreover, if G is not a
2-GC graph then the algorithm can identify all the
hinge-vertices and hinge-edges of G in the same time
complezity.

3 Some Extensions of k-geodetically
connected Graphs

In [11], the authors show that the class of hinge-
free graphs has an excellent property on extensions.
In this section, we will generalize their results to the
classes of k-GC graphs for arbitrary k.

3.1 The isosceles extension

Let (u,v) be a twin pair of a graph G. The follow-
ing properties must be satisfied: (1) for any other ver-
tex w € V(G), d(u, w) = d(v, w); (2) d(u,v) < 2; and
(3) both u and v are not hinge-vertices. Furthermore,
if (4, v) is a true twin of G then any geodesic between
two nonadjacent vertices in G cannot pass through
edge uv. So that every minimal hinge-free graph with
order > 4 contains no true twin. An #sosceles erten-
sion with respect to the twin pair (u, v) is a one vertex
extension that a new graph G’ is obtained from G by
adding an attaching vertex w to G and making w ad-
Jacent to u and v in G'. For example, Figure 1 (a)
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shows that a graph G has a false twin (vz,v3) and
a true twin (vs4,v5). Two isosceles extensions with
respect to (vz,v3) and (vs,vs) in G are shown in Fig-
ure 1 (b) and 1 (c), respectively.

m V2 V4 Vs
V3 Vs
(51 U2 v4 Vs (a) v V2 Vg Vg
v3 Vs v3 Vs
(b) ()

Figure 1: (a) an example to illustrate the twin pairs
of graph G (b),(c) the isosceles extensions of G.

Base on the result of Theorem 2.3, it is easy to
see that if G is a hinge-free graph then any isosceles
extension of G- must be hinge-free. In fact, Farley
and Proskurowski [11] have mentioned an interesting
result acquired from their recent works. They show
that all the minimum hinge-free graphs with order > 4
excluding Qs, a 3-regular cube graph on 8 vertices,
can be-generated from C4 by a sequence of isosceles
extensions. In their paper, the class of these graphs
together with C, are called twin graphs. Hence, we
have the following observations: (1) Every minimum
hinge-free graph with order > 4 is bipartite. (2) A
hinge-free graph G with order p > 4 is minimum if
and only if the size of G is precisely 2p — 4.

Now we expand the isosceles extension from two
edges increment to multiple edges increment to con-
struct the k-GC graphs on large scale. To simplify the
description we need following definitions: let G be a
graph and S be a subset of V(G) with k = |S| > 2
vertices. S is called a k-size multiplet of G if for any
two vertices u,v € S in G, either N(u) = N(v) or
N[u] = N[v]. For a special case with k = 2, S is called
a twin pair in the previous definition. A k-isosceles
extension of a graph G is a one vertex extension that
a new graph G’ is obtained from G by adding an at-
taching vertex w to G such that V(G') = V(G)U{w}
and E(G') = E(G)U {wu : u € S}, where S is a k-
size multiplet of G. In the above construction, we can
see that any pair of vertices with distance 2 in G' has
at least k common neighbors. Bases on the result of
Theorem 2.3, we have a natural extension as follows:

Theorem 3.1 The class of k-GC graphs is closed un-
der k-isosceles extension.

For example, the complete bipartite graph K, 5 is

108

an n-GC graph for n > 2 since every pair of nonad-
jacent vertices in K}, ,, are joined by n vertex-disjoint
geodesics. Clearly, every vertex in an n-GC graph
must have at least n neighbors. Thus the size of an
n-GC graph with order 2n cannot less than n?. It
is easy to see that K, , for n > 2 is a minimum n-
GC graph. Now we consider a graph G with order
p > 2n that is obtained from K, by a sequence of
n-isosceles extensions for n > 2. By Theorem 3.1, we
know that G is an n-GC graph. Moreover, the size of
G is precisely np — n?. It is easy to see that the class
of twin graphs is just a special case for n = 2.

3.2 The cloning extension and double ex-
tension

A cloning exlension is a one vertex extension that
the attaching vertex has the same neighbors with
some vertex of original graph. A double extension is
a composition of two copies of original graph by con-
necting a bridging edge between each corresponding
pair of vertices in these two copies. Figure 2 is help-
ful in visualizing these two operations. The following
two theorems were provided in [11] for constructing a
larger hinge-free network, and a routing scheme based
on these two operations can be determined.

G
v ,
h v
[ 02
v2
]
vﬂ"'lv ovn—l
[ O
Un v!

(b)

Figure 2: (a) cloning extension (b) double extension.

Theorem 3.2 If G is a hinge-free graph then any
cloning extension of G is hinge-free.

Theorem 3.3 If G is a hinge-free graph (resp. min-
imal hinge-free graph) then the double extension of G
is also hinge-free (resp. minimal hinge-free).



For example, K33 is a hinge-free graph. K33 is
also hinge-free since it can be obtained from K33 by
a cloning extension. In general, all the complete bi-
partite graph Ky, for n,m > 2 are hinge-free. Also
we can see that the cloning extension does not main-
tain the minimal hinge-free property. Clearly, K33 is
minimal hinge-free but K3 3 is not. In fact, the num-
ber of additional edges of a cloning extension is not a
constant. Besides, Q3 is a minimal hinge-free graph
which can be constructed from Cy by a double exten-
sion. Furthermore, iteratively carry out such an oper-
ation, the class of graphs known as hypercubes can be
generated. Thus, each @, for n > 3 is minimal hinge-
free which follows the result of Theorem 3.3. Note
that a minimum hinge-free graph with order p > 4
has size 2p — 4. For the case Q,, n > 4, is not mini-
mum hinge-free which can easily be verified. So that
the double extension does not maintain the minimum
hinge-free property.

Given two graphs Gy and G3, the Cartesian prod-
uct Gy x G is a graph with vertex set V(G1) x V(G32)
and any two vertices u = (u3,uz) and v = (v;,v3) are
adjacent in G; x G if and only if either u; = v; and
uzvy € E(G2) or uz = vz and uyv; € E(G1). Ob-
viously, for any graph G the double extension is just
the product graph G x K3 and K3 is trivially hinge-
free. In what follows, we will show that the result of
Theorem 3.3 can be generalized.

Theorem 3.4 If G; and G3 are two hinge-free
graphs (resp. minimal hinge-free graphs) then G1 X G2
is also hinge-free (resp. minimal hinge-free).

Proof. TFirst we show that G; x Gy is hinge-free.
Let v = (u1,u2) and v = (v1,v2) be any two vertices
of Gi x G3. By the definition of Cartesian product,
clearly, dg, xG,(u,v) = dg,(u1,v1) + dg, (uz,v2). We
then consider following two cases:

Case 1: u; = v; or us = v. In this case, both u
and v must be in one copy of G; or Gs. Since both G;
and G are hinge-free and every geodesic connects u
and v in G or G2 is still a u-v geodesic in Gy X G2, we
guarantee that there are at least two vertex-disjoint
u-v geodesics in Gy X G3. By Theorem 2.3, G1 x G2
is hinge-free.

Case 2: u; # vy and ug # va. Consider the two
vertices £ = (u1,vs2) and y=(vy,u2) of G; X G2. In
this case, we choose u-z and y-v geodesics from dis-
tinct copies of G and z-v and u-y geodesics from
distinct copies of G, respectively. Then, we have two
vertex-disjoint paths between u and v in G X G3. In
addition, the length of path between u and v passing
through z (resp. y) in G1 X Gz is dg,xq,(u, ) +
de,xGa(z,v) = dg,(uz,v2) + dg,(u1,m1) =
dg,xG,(t,v) (resp. dg,xG,(%,¥) + de,x6,(¥,v) =
dg, (u1,v1) + dg,(u2,v2) = dg,x6,(%,v)). Thus we
find that there are at least two vertex-disjoint u-v

109

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

geodesics in G1 X G2. So that the result follows from
Theorem 2.3.

Let G; and G2 be two minimal hinge-free graphs.
To show that the minimal hinge-free property is pre-
served in G x G2, we need to show that G; x Gz —e'is
not hinge-free for any e € F(G; x G2). Assume that
u and v are any two adjacent vertices of G; x Gs.
Then, we consider the removal of uv from G; x G; by
following two cases:

‘Case 1": u; = vy and upvy € E(G3). In this
case, uv must be contained in one copy of Gj. Let
H be such a copy of G and H' = H — uv. Since
H is minimal hinge-free, the removal of uv means
that H' is not hinge-free. Let w be a hinge-vertex
of H'. By Lemma 2.1, there exist two nonadja-
cent vertices £,y € Ny :(w) such that zwy forms a
unique z-y geodesic in H'. Also, it is easy to see
that the path joined z and y passing through another
copy of G3 adds the length at least 2 to the distance
dgi(z,y). This indicates that another z-y geodesic
in Gy x Gy — uv cannot exist. Thus G1 x G3 —uv is
not a hinge-free graph. Therefore, the edge uv within
G1 x G2 must be required to maintain the minimal
hinge-free property.

Case 2’: u3 = vy and u3v; € E(G1). The proof is
similar to the case 1. m}

Now we consider the cloning extension on a k-GC
graph G. Let G’ be the new graph obtained from G by
a cloning extension and let w be the attaching vertex.

Because that w has the same neighbors with some

vertex u of G, and every pair of vertices u, v € V(G)
with dg(u,v) = 2 satisfies |Ng(u) N Ng(v)| > k, this
implies that |Ng:(w)NNg(v)| > k for any vertex v €
V(G') with dg/(w, v) = 2. Thus, we can easily extend
the result of Theorem 3.2 to the following theorem:

Theorem 3.5 The class of k-GC graphs is closed un-
der cloning eztension.

To deal with the double extension and its general-
ization, the Cartesian product, on a k-GC graph for
k > 2, a surprising result shows that the closure prop-
erty cannot preserve. For example, K33 is a 3-GC
graph and not all the pairs of nonadjacent vertices in
the graph K33 x K, are joined by at least 3 vertex-
disjoint geodesics.

3.3 The cross extension

As we have seen that the cloning extension and
double extension cannot guarantee the minimum
hinge-free property preserved. Moreover, the use of
double extensions caused the number of vertex in-
crement to be a multiple of original graph. In gen-
eral, supporting irregular extensibility of topology de-
signs is a very essential and desirable property for
distributed networks. Hence, we shall introduce a
more adequate operation, called the cross extension,
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for combining two minimum hinge-free graphs to form
a large one. Generally, we may define this operation
on two k-GC graphs for £ > 2 and call the k-cross
extension. Let G1 and Gy be two k-GC graphs for
k > 2. Note that they may be not identical. As-
sume that S; and S; are any two k-size multiplets,
respectively, of Gy and G2. The k-cross extension
of G; and G2 connects these two graphs to form
a new graph G with V(G) = V(G1) U V(G2) and
E(G) = E(G;) U E(Gz)'U {uv :u € S1,v € Sz}
Figure 3 illustrates the operation for £ = 2. Thus,
the topological designs for network extensions using
cross extension is more flexible than using the double
extension.

Gs
G
~ 7”1
>
£ >‘Uz

Figure 3: The cross extension.

In the above construction, it is easy to see that
there are at least k common neighbors between any
pair of vertices with distance 2 in G. So that, the clo-
sure property of k-cross extension follows the result of
Theorem 2.3. Since every minimum hinge-free graph
with order p > 4 has size 2p — 4, if we restrict G; and
G to be two minimum hinge-free graphs that each
has order > 4, the result of Theorem 3.7 is immedi-
ately derived.

Theorem 3.6 The class of k-GC graphs is closed un-
der k-cross extension.

Biconnected
[1]

Theorem 3.7 IfG; end G are two minimum hinge-
free graphs each has order > 4; then the cross ezten-
sion of G1 and Gz is minimum hinge-free.

4. Relationships Between Hinge-free
Graphs and Other Graphs

In this section, the relationships among sev-
eral classes of graphs including hinge-free, minimum
hinge-free (MHF), distance-hereditary, bipartite and
(6,2)-chordal bipartite are considered. We illustrate
the relationships in Figure 4. In this figure, the cor-
responding region of each specific class of graphs is
indicated by a sequence of regional numbers which
are surrounded with parentheses. For more detailed
information, see Table 1. :

A graph G is called distance-hereditary if each con-
nected induced subgraph H of G has the property
that dg(u,v) = dg(u,v) for each u,v € V(H). The
class of these graphs was first introduced by Howorka
[18] and further characterized by Bandelt and Mul-
der [2]. A bipartite graph G is (k,[)-chordal if each
cycle of length > k in G contains at least ! chords.
The (6,2)-chordal bipartite graphs are precisely bi-
partite distance-hereditary graphs that has been in-
dependently proved in [2, 7]. Two interesting char-
acterizations related to the structures of these two
classes of graphs are stated as follows:

Theorem 4.1 graph G is distance-hereditary if and
only if it can be generated from Ko by a sequence of
the following extensions: .
(1) type o - adding a new vertez v’ and joining it
to one vertez v in G. _
(2) type p - adding a new vertez v’ and joining it lo
all the vertices of N[v] for some vertez v in G.
(3) type v — adding a new vertez v’ and joining it o
all the vertices of N(v) for some vertez v in G.

Distance-
Hereditary

4

(6,2)-chordal

Bipartite
[6]

Figure 4: Relationships among hinge-free graphs, minimum hinge-free graphs (MHF) and other graphs.
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Table 1: A summary table to illustrate the relationships of Figure 4.

regional | biconnected | hinge-free distance bipartite I (6,2)-chordal | minimum twin example
number ) hereditary bipartite hinge-free | graph '
1 v Cs
2 \/ \/ K3 > K2
3 v v v Ky —e
4 v Fig. 5(a
5 v v v K13
6 v Fig. 5(b)
7 v Y Ce
g v 7 v Fig_ 5(9)
9 v v v v v . Ka 3
10 v v Y 7 Cs
11 v v v v Q3
12 v v v v v v 4 Cq

‘A mark v indicates that a specific region is associated with the property of a certain class of graphs.

Theorem 4.2 A graph G is (6,2)-chordal bipartite if
and only if it can be generated from Ko by a sequence
of types o and v extensions.

Note that the 4 extension is just the cloning ex-
tension defined in the previous section. The defi-
nitions of hinge-free graphs and distance-hereditary
graphs seem to be similar by intuition, whereas they
are not properly contained to each other. However,
not all distance-hereditary graphs are biconnected. A
biconnected graph that is hinge-free but not distance-
hereditary can be seen in Figure 5 by considering G =
K3 x K and the induced subgraph H = G — {v3, v4},
where dg(v1,vs) = 2 < dy(v1,v3) = 3. Let v be any
vertex of a biconnected distance-hereditary graph G.
Clearly, G — v is connected and dg—y(z,y) = dg(z,y)
for any two vertices z,y € V(G — v). Thus we have
following observation:

V1 U2

U5 Vg

V4 V3

Figure 5: An example of hinge-free graph but not
distance-hereditary.

Observation 4.3 All the biconnected distance-
hereditary graphs are hinge-free.

Now we consider the relationships among minimum
hinge-free graphs and other classes of graphs. Clearly,
C, is a (6,2)-chordal bipartite graph. The following
theorem and corollary show that the characterizations
of distance-hereditary and (6,2)-chordal bipartite are
preserved under isosceles extensions. Recall that the
class of minimum hinge-free graphs with order p > 3
excluding Cs and Q3 is equivalent to the class of twin
graphs, and all the twin graphs can be generated from
C4 by a sequence of isosceles extensions [11]. This

1

1

implies that the class of twin graphs must be con-
tained in the class of (6,2)-chordal bipartite. In addi-
tion, it is easy to verify that Cj is distance-hereditary
but not bipartite, and @3 is bipartite but not distance-
hereditary. Therefore, the regions with number 10
and 11 shown in Figure 4 contain exactly C3 and Q3,
respectively.

Theorem 4.4 The class of distance-hereditary graphs
is closed under isosceles extensions.

Proof. . Let 7 = (u,v) be a twin pair of distance-
hereditary graph G. By definition, the induced sub-
graph G—v remains distance-hereditary. Now we con-
sider that a (u,v) isosceles extension adds an attach-
ing vertex w into G to form a new graph G’. Then,
G' may also be generated from G —v by following two
consecutive operations:

(1) join w and u by a. extension, and

(2) join v to the vertices of N[u] by 8 extension if 7
is a true twin, or join v to the vertices of N(u)
by v extension otherwise.

Therefore, G' is distance-hereditary. (m]

In the above proof, if we restrict 7 to be a false
twin and take (6,2)-chordal bipartite graph in place
of distance-hereditary graph, then following corollary
can be achieved.

Corollary 4.5 The class of (6,2)-chordal bipartite
graphs is closed under isosceles extensions.

To show that each region in the pictorial relation-
ships of Figure 4 is not empty, we provide some ex-
ample of graphs that each is contained in a bounded
region. Figure 6 (a) shows a graph that is distance-
hereditary but not biconnected and bipartite. Fig-
ure 6 (b) shows a graph that is bipartite but not
distance-hereditary and biconnected. Figure 6 (c)
shows a graph that is bipartite hinge-free but not
(6,2)-chordal and minimum hinge-free. We make a
summary of the above presentation in Table 1.
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Figure 6: ‘Some illustrating example of graphs in
- Table 1.

5. Conclusions

In this paper, a hinge-free topology applied to the
communication network designs is concerned. Finally,
two open problems are given as follows:

(1) The optimally hinge-free graphs completion
problem. For an arbitrary graph G, the optimally
hinge-free graphs completion problem is to find a min-
imum cardinality set E' C FE(G), where G is the
complement of G, such that a new graph with vertex
set V(G) and edge set E(G)U E’ results in a hinge-
free graph. In our recent works, we have known some
kinds of constructions to design the optimally hinge-
free graphs such as paths, cycles and trees, but if it is
in a more complicated structure then a comprehensive
approach of solving this problem is still open.

(2) The minimum hinge-free graphs enumeration
problesn. An interesting problem related to the com-
binatorial enumeration is how many minimum hinge-
free graphs exist when the number of vertices is
given. Let N, denote the number of p-vertex mini-
mum hinge-free graphs. Because that every minimum
hinge-free graph with order p > 4 excluding Q3 can
be generated from another minimum hinge-free graph
with order p — 1 and contains 2p — 4 edges, this sug-
gests that maybe N, can be derived from a recurrence
formula only with respect to p. Assume that this is
true, we conjecture that the ratio N, / Ny, for p even
or odd is converged into a fixed value when p tends
to infinity.
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