Proceedings of International Conference
on Algorithms

An Appr0x1matlon Algorithm
for Bounded Length Tree Linear Broadcast Routmg

H.F. Ting, W.H. Wong
Department of Computer Science
The University of Hong Kong
Email: hfting@cs.hku.hk, whwong@cs.hku.hk

Abstract
In this paper, we study the problem of bounded
length tree linear broadcast routing (BLTLB). Chou
and Gopal [2] proved that this problem is NP-
" complete. Our contribution is to present the first ap-
prozimation algorithm which achieves a constant per-
formance ratio.
Keywords. Fiber Optic Communication Net-
work, Broadcast Routing, Approximation Algorithm,
Lower Bound.

1 Introduction

With the advance of fiber optic technology, the
bandwidth of communication network has increased
tremendously. However, the pace of enhancing the
processing power of the computers lags far behind.
Hence, we can no longer assume that the processing
time is negligible compared with the communication
time and this violates the fundamental assumption
of the traditional packet-switched network. To relay
a message in a packet-switched network, a process-
ing node needs to replicate the message and choose a
suitable outgoing link for the message. The replica-
tion involves hundreds or even thousands of machine
instructions and memory accesses. So the processors
waste too much time in relaying messages. To solve
this problem, new hardware (e.g., ATM switch) is de-
signed to implement the switching function automat-
ically and efficiently. The processors need ot be in-
volved in relaying the message.

With this new hardware, the network becomes very
different from the traditional packet-switched model.
To capture the characteristics of this new develop-
ment, a new model was proposed by Gopal, Cidon,
and Kutten [1]. In the model, every node has two
components: a network control unit (NCU) and a
switching subsystem (SS). The NCU is a general-
purpose processor and the SS is a high-speed special-
purpose hardware to off-load the packet-switching
function. In each node, the NCU is connected to the
SS by a link. The SS of different nodes are connected

98

by communication links and there is no direct link be-
tween the NCU of different nodes. Every node has a
unique address. These addresses will be used for rout-
ing messages. Suppose we send a message from node
A to node B through some intermediate nodes. The
addresses of the destination node B and all the inter-
mediate nodes are placed in the message as a prefix.
Whenever an SS receives a message, the first address
information is removed from the message and it is
used to determine the outgoing link. The message,
with the first address information removed, is relayed
to the appropriate link. Moreover, the message can
be forwarded to the corresponding NCU so that all
the NCUs along the routes can also read the message.

The new telecommunication technology has great
impact not only on the model of the network but also
on the algorithms for network problems. In this pa-
per, we study one of the basic network applications,
message broadcasting, i.e. sending messages from a
source node to every other node in the network. In
this problem, we assume that, for every link, there
is a positive cost for sending a message through that
link. We are to find a -way to send the message from
the source to all the nodes in the network such that
the total induced cost is minimum. In the traditional
packet-switched network, the problem can be solved
by finding a minimum-cost spanning tree of the net-
work and the message is forwarded over the edges of
the tree. But this is not a solution for the new model
because the SS does not support replication of mes-
sage and simultaneous sending of the same message
to all neighbors of a node. Instead, every copy of the
same message to be broadcasted should be generated
by the source and follow a linear route to the desti-
nations. Hence, to broadcast a message in the new
model, we have to find a set of paths (not necessary
simple) starting from the source node and covering
all the nodes in the network so that the total induced
cost is minimized. Moreover, there may be some con-
straints on the path-set because of the limitations of

the network, e.g., bandwidth limitations on the com-
munication links, the space constraint on the header
of the message. With bandwidth limitations, every
communication link e has a capacity c(e) and there
can be at most c(e) paths passing through e simul-
taneously. With a limit on the header space of the
message, the number of nodes along a route is limited
and so the path length should not exceed a predeter-
mined value £. Given any set of paths emanated from
the source, we say that it is a feasible broadcast path-
set if every node is covered by at least one path in
the set and all the paths satisfy the above mentioned
constraints. The constrained linear broadcast routing
problem is to find a feasible broadcast path-set with
minimum weight. However, this problem is very diffi-
cult. In fact, to determine whether there is a feasible
broadcast path-set for a network with tree topology
is already NP-complete.

1.1 Previous work

In [2], Chou and Gopal studied the problem with-
out the path length constraints and the capacity con-
straints (i.e. £ = oo, and for every edge e, c(e) = co).
They proved that this simplified problem is still NP-
complete for general network topologies. They gave
an O(N?) time algorithm solving the unconstrained
problem for tree topologies, where N is the number of
nodes in the tree. The algorithm was improved by Bi-
tan and Zaks [3] to O(N) time. The next step towards
the problem is to find a minimum weight broadcast
path-set satisfying only one of the constraints. In [4],
Bitan and Zaks studied the problem with the capacity
constraints and designed an O(N?) algorithm which
returns a minimum weight broadcast path-set. Later,
we [5] improved the time complexity of their algo-
rithm to O(N log’:m) time, where d is the maximum
degree of the tree, m = min(h,n.), h is the height of
the tree, and n. is the number of distinct capacities
in the network. In this paper, we study the problem
with the other constraint, namely path length con-
straint. However, this problem is NP-complete even
for tree topologies. It is unlikely to find a polynomial
time algorithm for the problem. Hence, it is desirable
to find an approximation algorithm which returns a
near-optimal solution. In this paper, we present an
approximation algorithm which returns a broadcast
path-set whose total weight is at most three times
the weight of the optimal solution.

2 Problem formulation

The problem studied in this paper is called the
Bounded Length Tree Linear Broadcast Rout-
ing (BLTLB) problem. The input of the problem is
specified by a tuple (T, w, £) where

99

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

e T = (V,E) is a rooted tree where V represents
the set of processors and E represents the set of
bidirectional communication links;

e w: E — R* is a weight function which measures
the communication cost of sending messages over
the links;

e L is a bound on the maximum length of the
routes allowed. (Note that £ must be no less
than the depth of the tree.)

We formalize the concept of feasible broadcast path-
set with path length constraint £ as follows. Given
any set ¥ of paths (not necessary simple) on T rooted
at s, we call it an L-cover for (T, w, £) if

1. all the paths start from the root;

2. for every node v € V, there exists at least
one path p € ¥ which covers v (i.e. p =
(sv1v2 .. -v .o vk));

3. for every path p € ¥, the length of p < L.

The size of an £L-cover is defined to be the number of
paths in the cover. For any path p = {(vv2--- ;) in
¥, the weight of p is equal to 3, ;x5 w((vi,vi41)).
The weight of ¥ is defined to be the sum of the weight
of all the paths in ¥.

The BLTLB problem is to find an L-cover
for (T, w, £) with minimum weight.

To emphasize the fact that all the paths in any £-cover
start from the root, are not necessary simple and their
lengths are no greater than £, we call this kind of
paths L-trails in the rest of the paper.

3 Our result

In [2], Chou and Gopal proved that the decision
version of the BLTLB problem is NP-complete. It
is very unlikely that there exists a polynomial time
algorithm for-the problem. However, due to the prac-
tical significance of the problem in network applica-
tions, it is too important to abandon merely because
obtaining an optimal solution is intractable. It is de-
sirable to design an approximation algorithm which
returns a provable good though not optimal solution.
A straight forward heuristic may be to cover each leaf
by a separate L-trail. Then all the nodes in T are
covered. However, the performance of this heuristic
may be very poor because the ratio of the weight of
the L-cover to the weight of the optimal one can be as
bad as O(|V|). In this paper, we present the first ap-
proximation algorithm for the problem which achieves
a constant ratio. To be specific,

Proceedings of International Conference
on Algorithms

we present an approximation algorithm
which finds a solution to the BLTLB prob-
lem and prove that

W (T, w, L)
BRAM ot Rk Snd B
(;{lﬁ) Wopt (T7 w, c) = 3,

where W(T,w,L) is the weight of the
L-cover returned-by our algorithm on input
instance (T,w, L) and Wy (T, w, L) is the
weight of the optimal L-cover for (T, w, £).

The crux of the algorithm is to partition the leaves
of T into groups such that (1) a single £-trail cannot
cover all the leaves in a group; (2) all the leaves in a
group can be covered by two L-trails. The first prop-
erty implies a lower bound on the number of L-trails
required to cover all the nodes in T', and this further
implies a lower bound on the weight of any L-cover.
The second property suggests a way to find an L-cover
with good performance ratio.

4 L-Partition

In this section, we define a special partition, called
L-partition, of the leaves and proved that if the leaves
of T have an L-partition of size n, they can never be
covered by less than %n L-trails. From this constraint,
we derive a lower bound on the weight of any £L-cover
of T.

First of all, let us have some notations. Let T =
(V, E) be any rooted tree. For any node v in T, we
denote by d, the depth of v in T (the root has depth
zero, its children have depth one and so on), T, the
subtree rooted at v, and L, the set of leaves in Tj,.
Given any subset of leaves, G, let T|g = (V|g, Elc)
denote the subtree of T induced by G, where the root
of T|g, w, is the least common ancestor of all the
leaves in G; V| is the set of nodes in T' which are
descendants of w and have leaf descendants in G; E|g
is the subset of edges (u,v) of E where both v and v
arein V|g. Note that, contrast to the usual definition,
we do not contract any node with degree two in T|g.
(We cannot contract any edge because it changes the
length of the paths.)

Definition 4.1 Let G be any subset of leaves of T
and P = {G1,Ga2,...,Gn} be a partition of G. We
say that P is an L-partition for T if

1. all the E|g,’s are disjoint;

2. for every G, no single L-trail can cover all the
leaves in G;.

Given any tree T, it is (L, n)-difficult if and only
if it has an L-partition of size n.

100

Given any set of leaves H, define gd(H) =
meaf.}:{d,,}, and Len(H) = 2d,.+2S —gd(H), where r is
v

the root of T'|y and S is the number of edges in T'|g.
For every e = (u,v) in T, define cp(e) to be the num-
ber of G; that is a subset of L,,. Consider the tree T in

Figure 1: T and T|g.

Figure 1, if H = {d, e, f}, the tree on the right hand
side is T|g. Suppose £ = 7. We have gd(H) = 3,
d. =1, S =4 and Len(H) = 7. We can cover all the
leaves in H by an L-trail, (s,v, f,v,e,v,w,d). How-
ever, if H' = {e¢,d,e, f}, then Len(H') = 9 and a
single L-trail cannot cover all the leaves in H'. Fol-
lowings are some important facts.

Fact 4.2 For any set of leaves H, H can be covered
by a single L-trail if and only if Len(H) < L.

Fact 4.3 Let P={G1,G2,...,G,} be an L-partition
for T. We have Y cpcp(e) = Y1, dr,, where r; is
the root of T'|g;, :

Proof (Sketch): For each Gj, it contributes one
unit to cp(e) for every edge e along the path from
the root of T to r;, and nothing to the other edges.
Hence, G; contributes d,; units to), cp(e). The
fact follows. 0

Lemma 4.4 Let P={G1,G2,...,Gp,} be an
L-partition for tree T. For every edge e = (u,v), T
is (L—dy, cp(e))-difficult.

Proof: We claim that P' = {G; | G; € Pand G; C
L,} is an (L-d,)-partition for T,. Then it follows
immediately that T, is (£-dy, cp(e))-difficult. (Note
that |P'| = cp(e).) First, we see'that T,|q,; are edge
disjoint because T'|g, are edge disjoint. Second, we
argue that for any G; , there is no (£—d,)-trail starting
from v which covers all the leaves in G;. Otherwise,
we can extend this (£-d,)-trail from v to the root
of T and form an L-trail starting from the root and
covering all the leaves in G;. This contradicts the fact
that G; is in an L-partition for T'. 0

4.1 Lower bound on the size of any
L-cover

In this section, we prove that, for any constant £,
if T is (£,n)-difficult, then the size of any £-cover of
T is more than -g-n To simplify our discussion, we
assume that the root of T', u, has degree at least two.
If, contrast to our assumption, there is only one edge
(u,v) coming out of the root, then we can restrict our
attention to T, which is, from Lemma 4.4, (£-1,n)-
difficult. It should be obvious that any lower bound on
any (L-1)-cover of T}, is a lower bound on any £-cover
of T.

We first consider the case when there is some re-

striction on the £-cover. Then we handle the general
case. Let P={Gy,...,G,} be an L-partition for T
For any L-cover of T', we say that it is an £-cover that
is simple w.r.t. P if and only if, for every Gj, there is
at most one L-trail stops at some node in T'|g,. Oth-
erwise, it is an L-cover that is complex w.r.t. P. We
first show that the size of any L-cover of T that is
simple w.r.t. P is at least n+1. Note that the bound
does not hold for £-cover that is complex w.i.t. P (See
Appendix). For £-cover that is complex w.r.t. P, we
derive a bound of £n on its size.

Theorem 4.5 If a tree T is (L,n)-difficult and
P={G1,Gs,...,Gn} is an L-partition for T, then the
size of any L-cover of T that is simple w.r.t. P is at
least (n+1).

Proof: We prove the theorem by induction on n.
Consider the case when T is (£, 1)-difficult and P =
{G1} is an L-partition for T'. By definition, G; cannot
be covered by an L-trail. So at least two L-trails are
required to visit all the leaves in G, i.e. the size of
any L-cover of T that is simple w.r.t. P is at least
2 (for any constant £). Therefore, the hypothesis is
true for n = 1.

Assume that the hypothesis is true for n = k.
In other words, for any constant £, if tree T is
(L, k)-difficult and C is an L-cover that is sim-
ple w.r.t. some L-partition for T, then the size of
C is at least k + 1. Now consider any tree T
which is (£, k+1)-difficult with an L-partition P =
{G1,...,Grs1}. We are going to show that for any
L-cover of T that is simple w.r.t. P, its size is at least
k+2.

Let r; be the root of T|g, and S; be the num-
ber of edges in T|g,. Consider any L-cover C of T
that is simple w.r.t. P, we claim that for any edge e,
at least (cp(e) + 1) L-trails pass down e. Note that
0 < cp(e) < k because we assume that the root has
degree at least two. Consider any edge e = (u,v).

101

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

'

From Lemma 4.4, T, is (£~d,, ¢p(e))-difficult. More-
over, PP = {G; | Gi € PandG; C L,} is an
(£-d,)-partition for T,,. As |P'| = cp(e) < k, from
the induction hypothesis, any (£-d,)-cover of T, that
is simple w.r.t. P’ has size at least cp(e)+ 1. It is obvi-
ous that the L-trails in C passing down (u,v) induce
an (£-d,)-cover of T, that is simple w.r.t. P’. This
implies that there must be at least cp(e) + 1 L-trails
in C passing down e.

Now, we prove that the size of C is at least k4 2.
Assume to the contrary that the size of C' is less than
k + 2. For every L-trail t € C, let E(t) be the set
of edges covered by t, and v(t) be the node where ¢
terminates (v(t) may be a leaf or an internal node).
We can see that ¢ visits all the edges in E () twice ex-
cept for the edges on the path from the root to v(t).
Remember that all the £-trails of a cover that is sim-
ple w.r.t. P stop at nodes in different T|g,. This
implies the v(t)’s are located in different T'|g,. If
v(t) € Tlg;, then dyz) < gd(G:). Hence, the sum
of the length of all the L-trails in the simple cover
C is at least twice the sum of (cp(e) + 1) of all the
edges e € T minus the sum of gd(G;), 1 <i<k+1.
Because the T'|g,’s are edge disjoint, the sum of the
number of edges of T'|g, is no greater than the num-
ber of edges in T. By Fact 4.3, the sum of cp(e)
of all the edges in T is equal to the sum of dy;, for
1 < i < k+1. So the total length of C is at least
Trcich1(2dr +28i—8d(G)) = X<k Len(Gi)-
By Fact 4.2, Len(G;) is greater than L and the total
length of C is greater than (k+1)L. This contradicts
the assumption that C is a simple £-cover of T of size
< k+1. Therefore, the size of C must be greater than
or equal to k+2. The hypothesis is true forn = k+1
and the theorem is proved. : |

Theorem 4.6 If a tree T is (L,n)- dzﬁficult then any
L-cover of T has size > 3n

Proof: Let P = {G1,Gs,...,Gr} be an L-partition
for T and C is an L-cover of T. We divide P into
two sets P; and P, where

P, = {G;| at most one L-trail in C stops in T|g,}

P, = {G;| at least two L-trails in C stop in T|g;}

The size of P, is at most half the size of C. This im-
plies the size of P; is no less than n—1 |C|. Obviously,
P, is an L-partition for T and T is (£, | P, |)-difficult.
Furthermore, by the definition of P;, C is an L-cover
of T that is 51mple wrt. P;. By Theorem 4.5,
|C| > |Pi| > n — 1|C| and hence |C| > 2n. O

Proceedings of International Conference
on Algorithms

4.2 Lower bound on the total weight of
any L-cover
A lower bound on the weight of any L-cover can

be derived by using the result in the previous sec-

tion which has proved the size of any L-cover of an
(L, n)-difficult tree is at least Zn + 1. This is used
to calculate the minimum number of times an edge is
visited by an L-cover of T and the sum of this number
is a lower bound on the total weight.

Theorem 4.7 Let P={G1,Gs2,...,Gn} be an
L-partition for tree T. The total weight of any
L-cover of T is at least 3,1 (2cp(e) + 1) w(e).

Proof: Let C be any L-cover of T. Consider any
edge e in T with cp(e) = 0, e is visited by at least
one L-trail in C, i.e. it is visited at least cp(e) + 1
times. For edges e = (u,v) with 1 < cp(e) < n,
Ty is (L-dy,cp{e))-difficult. By Theorem 4.6, any
(L-dy)-cover of T, has size at least Zcp(e) + 1. In
other words, e is visited at least 2cp(e) + 1 times.
So the total weights of L-trails in C is at least the
sum of (Zcp(e) + 1) w(e) over all edges e in 7, ie.
Y eer(3cp(e) + 1) wle). 0

5 Approximation algorithm

In this section, we describe an approximation al-
gorithm which constructs an L-cover of T. We also
give a proof of correctness of the algorithm and show
that its performance ratio (i.e. the ratio of the weight
of the L-cover found by the algorithm to the optimal
one) is no greater than three.

Basically, the execution of our algorithm is divided
into two phases. First, it finds an £-partition of leaves
P = {G1,G,,...,Gy} (for some n) for T. Then,
based on this partition, it constructs an £L-cover of T'.
5.1 Partition of the leaves

Our algorithm finds the G; one by one, starting
from G;. Assume that the algorithm has found G,
Go, ..., Gi—1. Let us explain how it finds G;. We
need to define some notations first. Denoted by R
the set of leaves of T' not in J; ¢4; Gn- For any node
veT, lee R, = RN L, We say that node v is
heavy if Len(R,) > L, else it is light. Note that all
the leaves of T are light. Hence, if there is a heavy
node in T, there must exist a heavy node with no
heavy children. To select G;, the algorithm checks if
there is any heavy nodes. If not, the execution enters
the phase of constructing L-cover (See Section 5.2.)
Otherwise, it chooses a heavy node w where all its
children w, ws,..., wy are light. From the definition,
we have, for 1 < j < k, Len(Ry;) < £ and Len(R,,) =
Len(U, ¢j<t Bw;) > £. Hence, there exists an integer

102

m, 1 <m <k, such that Len(U, ¢;<,, Buw;) > £ and
Len(Us¢jcm Ru;) < £. G is set to be U, ¢, Ru;-
We call, for 1 € j < m, the subtree T'w; a “chosen
subtree” for G;, and for ease of referencing, we also
let H; = R,,,. Following is an important fact about
the leaves in a chosen subtree.

Fact 5.1 If Ty; is a chosen subtree for G;, then
L, € Ulghsi Gh.

Proof: If T,; is a chosen subtree for G;, R,; C

G;. Moreover, since R, is the set of leaves not 1?1
Ul<h<i Gh’ we have (L’w,‘ _R10,) g U1<h<i Gh. Thus,
Lu; € Uigngi Ga- 0

Procedure PARTITION
i=1
R is the set of leaves in T
while there are heavy nodes in T de
Find a heavy node w such that all of its sons

w1, Ws, ..., Wy are light.

j =07 Gi = g5

while Len(G;) < £ do
J=i+1
Ry; =RNLy,;, R=R— Ry,
G; =G1Uij;

1=1+1;

Let P = {G1,G2,...,G,} be the final partition
of leaves found by the algorithm and R be the set of
leaves of T' not in any G;. The following two lemmas

capture some important properties about the G;’s and
R.

Lemma 5.2 For 1 < i < n, all the leaves in G; can
be covered by two L-trails but cannot be covered by one
L-trail.

Proof: From the algorithm, we have Len(G;) > £
and both Len(G; — H;) and Len(H;) are less than or
equal to £. By Fact 4.2, the lemma follows. 1}

Lemma 5.3 A single L-trail can cover all the leaves
in R.

Proof: The algorithm enters the phase of construct-
ing L-cover only when there is no heavy node left.
This implies that the root of the tree is light, and
hence, Len(R) < £. The lemma follows. 0

Theorem 5.4 P={G1,...,G,} isan L-partition for
T- .

Proof: From Lemma 5.2, all the G;’s cannot be cov-
ered by one single L-trail. Hence, to prove that P is
an L-partition, it suffices to prove for 1 < 4,7 < 7,
i # j, Elg, N E|g; = @. We prove this by contra-
diction. Assume that there exist ¢ and j such that
E|g, N E|g; # @. Suppose that i < j. According
to the algorithm, the set G; is constructed before G;.
Let (u,v) be an edge in the intersection and w be the
heavy node selected by the algorithm for construct-
ing G;. From the definition of E|g,, v has leaf de-
scendants in G; and is not a common ancestor of the
leaves in G;. As w is the least common ancestor of all
the leaves in G;, we can conclude that v is a proper
descendant of w. Hence, v is in some chosen subtree
for G;. Consequently, no leaf in L, can be in G; (be-
cause j > 4) and (u,v) cannot be in E|g;. This leads
to a contradiction. 0

5.2 Constructing an L-cover

The two lemmas in Section 5.1 suggest a way to
construct an L-cover of T with size at most 2n + 1.
From the proof of Lemma 5.2, we know that each G;
can be divided into two sets H; and G; — H; such that
both of them can be covered by a single £-trail. To
cover all the leaves in G;, we use one L-trail start-
ing from the root and traverses T'|y; inorderly stop-
ping at the deepest leaf of H;; the other covering the
leaves of G; — H; in a similar way. From Lemma 5.3,
we have Len(R) < £ and we use an L-trail to tra-
verse R inorderly. Hence, the size of the L-cover is at
most 2n + 1. (In fact, 2n L-trails are sufficient if R is
empty.)
5.3 Time complexity

Given P = {G1,G2,...,Gn}, it is easy to con-
struct all the T|g,’s, as well as T|gr, in O(|V]) time
(see, e.g., [6]). Then, it takes O(|E|) = O(|V]) to
construct the £-cover. To construct P, we know that
there are at most |V| different G;’s. To find each
G, we need to decide, for every node v, whether v is
heavy or light. We also need to calculate Len(G;) in
the inner while loop of the procedure PARTITION.
All these can be done in O(|V|) time if we know, for
every v, the value of gd(L,). All these gd(L,)’s can
also be computed in O(|V|) time. Hence, the total
time complexity of our algorithm is O(|V|?). Note
that by a careful implementation, we can reduce the
time complexity of our algorithm to O(|V]).
5.4 Performance ratios

In this section, we prove that the performance ra-
tio of our algorithm is no greater than three. Let
P = {G1,Ga,... ,Gn} be the L-partition found by
our algorithm and R be the set of remaining leaves.
Let C be the L-cover constructed by the algorithm.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

From the construction, it follows that, for every Gi, .
two L-trails are used to cover it. Hence, every edge
e along the path from the root of T to the root of
T|g, is traversed by two L-trails. So e will be tra-
versed 2cp(e) times by these L-trails. For any edge in
T|g;, it is traversed at most twice by the two L-trails
covering G;. For the last group R, an L-trail is used
to cover it and so the edges in T'|r are also traversed
at most twice. As a result, the total weight of C
is upper bounded by _.c7 2(cp(e) + 1) w(e). Since
P = {G1,Ga,...,Gp} is an L-partition, by Theo-
rem 4.7, the size of any L-cover of T is greater than
> ecr(3cp(e) + 1) w(e). It follows immediately that
the performance ratio of the algorithm is less than or
equal to three. '

References

[1] 1.S. Gopal, I. Cidon, S. Kutten. “New Models
and algorithms for future networks.” in Proceed-
ings of the Tth Annual ACM Symposium on Prin-
ciples of Distributed Computing, 75-89, Toronto,
CANADA, August 1988.

[2] C.T. Chou and I.S. Gopal. “Linear broadcast rout-
ing.” in Journal of Algorithms, 10(4):490-517,
1989.

[3] S. Bitan and S. Zaks. “Optimal linear broadcast.”
in Journal of Algorithms, 14:288-315, Marc
1993. .

[4] S. Bitan and S. Zaks. “Optimal linear broadcast
routing with capacity limitations.” in Proceedings
of the 4th International Symposium ISAAC ’93,
287-296, Hong Kong, December 1993.

[5] H.F. Ting, W.H. Wong, M.H. Yau. “An efficient
algorithm for optimal linear broadcast routing.”
in Proceedings of the Fifth Italian Conference on
Theoretical Computer Science, 235-249, Rawello,
ITALY, November 1995.

[6] D. Harel and R. Tarjan “Fast algorithms for find-
ing nearest common ancestor.” in SIAM Journal
on Computing, 13:338-355, 1984.

Appendix

Below is an example showing that an
(£,n)-difficult tree can be covered by a com-
plex L-cover of size strictly smaller than r. Let us
consider the tree T' in the following figure.
There are two kinds of leaves u; and v; in T".

du,
d,

1 1 <2< 15m,
2m 1<4<K8,

where m > 8

103

Proceedings of International Conference
on Algorithms

If £ = 6m — 2, we have an L-partition P =
{Gy,...,G5,GY,...,G} for T where

Gi'= {uj|3m(i—1)+1<j<3mi}

Gi = {vai-1,va}
The minimum length of trails to cover G; and G are
6m—1 and 6m respectively. Note that |P| = 9 and the
tree T' is (£,9)-difficult. However, T can be covered

by eight L-trails as follows: we divide the set of leaves
into Hy,..., Hg such that

H;, = {’Ui}U
 {wlG-DEm -1 +1<) <iem 1)

Obviously each of the H; can be covered by a single
L-trail.

104

