Joint Conference of 1996 Internationai Gomputer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Linear-Time Algorithms for Unspecified Routing in Grids *
(Extended Abstract)

Wun-Tat Chan

Francis Y.L. Chin

Department of Computer Science

The University of- Hong Kong, Hong Kong
E-mail: wtchan@cs.hku.hk, chin@cs.hku.hk

Abstract

We give optimal algorithms for an unspecified
channel routing problem which can be formulated as
follows: Given a rectangular p x q grid, two sets
of boundary vertices, S and T, of equal size, i.e.,
|S| = |T| =n, the problem is to find n edge-disjoint
or vertez-disjoint paths joining vertices in S with ver-
tices in T. For both edge-disjoint and vertez-disjoint
cases, we can test the existence of feasible solution in
O(p + q) time and find the disjoint paths in O(pq)
time.’

Keywords. Channel Routing, VLSI Routing,
Edge-Disjoint Paths, Vertex-Disjoint Paths, Two-
Dimensional Grids, Linear-Time Algorithm.

1 Introduction

When the underlying graph of a planar routing
problem is a grid, this problem has direct applica-
tion on VLSI routing. Routing problems have been
studied widely by many researchers [4, 7, 9, 10, 13,
14). Most of the efforts are spent on “specified”
routing [4, 7, 9, 10], that is, given a set of nets,
{(slrtl)v (.32;t2)a sty (sn’ t‘n)} where (siy ti) is a net of
terminals such that s; e Sand ¢; € 7T for 1 <i < n.
The “specified” routing is to find n pairwise disjoint
paths joining s; to t;, where 1 < i < n. There
are two different interpretations of pairwise disjoint
paths, edge-disjoint paths [4, 7, 9, 10] and wvertez-
disjoint paths [13, 14].

Channel routing assumes the region to be routed
is in the form of a p X g rectangle and the terminals
of the nets lie on its boundary. Frank [4] gave some
necessary conditions for the existence of edge-disjoint
paths in the channel. Nishizeki et al. [10], Lai and

*The research is partially supported by an RGC grant
338/065/0022.

79

Sprague [7] applied the conditions and showed that
the problem can be solved in O(N) time where N =
Pq.
In this paper, we are interested in an unspecified
channel routing problem which can be formulated as
follows:

Given a rectangular p x ¢ grid, two sets of
boundary vertices as terminal sets, S and 7,
of equal size, i.e., |S| = |T| = n, the problem
is to find n edge-disjoint or vertex-disjoint .
paths pairing vertices in S with vertices in
T.

In the unspecified routing problem, a vertex in S can
be connected to any vertex in 7 which forms an one-
to-one correspondence between S and 7, while in the
specified routing, each vertex in S has to connect to
a specified vertex in 7. We shall show in this paper
that, for the edge-disjoint and vertex-disjoint prob-
lems, we can test the existence of feasible solutions in
O(p+q) time and can find the disjoint paths in O(N)
time.
Our main contributions of this paper are:

(a) Although the unspecified routing problem seems
to be simplier than the specified routing prob-
lem and the conditions for testing existence are
similar, these two problems are different. For
instance, in the edge-disjoint or vertex-disjoint
cases, there are examples where there exists no
solution for the specified routing problem, but
not for the unspecified routing problem (Fig-
ure 1).

(b) Unspecified edge-disjoint and vertex-disjoint
path routing problems on a grid have not been

studied previously.

Proceedings of International Conference
on Algorithms

S, — U

Figure 1: S = {s1,82} and T = {t3,12}.

(c) The algorithms given in this paper are simple,
easy to implement and time-optimal.

Throughout this paper, we shall assume that all
the routing problems will be unspecified unless stated
otherwise. The edge-disjoint routing problem can be
solved by reducing it to a multiple-source, multiple-
sink flow problem [8] on a grid network, where all
those boundary vertices in S are sources with unit
supply, all those boundary vertices in 7 are sinks
with unit demand and every grid edge has unit ca-
pacity. As the grid is planar, it can be shown in [8]
that ‘this multiple-source, multiple-sink problem on
a planar graph can be solved in O(N*/3logN) time
when making use of a fast shortest-path algorithm
for planar graph [6]. Alternatively, we can reduce
a multiple-source, multiple-sink problem to a single-
source, single-sink MAX-FLOW problem by connect-
ing the sources to a super-source and sinks to a super-
sink. However, this reduction may destroy the pla-
narity of the graph.

The vertex-disjoint routing problem can also be re-
duced to MAX-FLOW problem. In particular, each
grid vertex in the grid is “split” into two and the two
vertices are then connected by a directed edge with
unit capacity which restricts that only one path can
pass through the grid vertex [2]. The reduction also
destroys the planarity property of the grid but results
in a simple network [11] with unit capacity which leads
to an O(N'®) time algorithm for the vertex-disjoint
routing problem. .

Another relevant unspecified routing problem in a
grid was introduced in [12], where the n vertices in S
are inside the grid instead of the boundaries and the
set 7 includes all the boundary vertices of the grid.
Note that the number of vertices in 7 is not necessary
n in this problem. If the routing paths are restricted
to straight lines and vertex-disjoint, an efficient algo-
rithm with O(nlogn) time complexity, independent
of the grid size, is given in [1}. However, the general
problem is much more difficult and the best known
algorithm takes O(n®) time. In the forthcoming pa-
per [3], we can use the results in this paper to improve
the general edge-disjoint and vertex-disjoint routing
problem in a grid to O(n?®) time.

80

The rest of this paper is organized as follows. We
propose for the edge-disjoint case and vertex-disjoint
case of the unspecified routing problem, in Section 2
and Section 3 respectively, the necessary and sufficient

_condition for the existence of feasible solutions and

method of constructing the set of disjoint paths in
the grid if exists. Section 4 concludes this paper.

2 Edge-disjoint routing in grid
2.1 Necessary and sufficient condition
Given a rectangular p x g grid denoted by [1 :
p] x [1 :: g], vertices in the grid can be represented by
(i,7) for 1 < i < p,1 £ j < q where ¢ is the number
of row from the top and j is the number of column
from the left. The boundary -of the grid comnsists of a
set of vertices B = {(1,j) |i=1,i=p, j=1lor
7 = q}. In the unspecified routing problem, we have
S,7 C Band |S| =|T|. A set of n edge-disjoint paths
satisfies S and T if each of the n paths joins a vertex
in S with a vertex in 7. WLOG, we assume each of
the edge-disjoint paths is directed and starting from
a vertex in S to a vertex in 7. ' ‘
We define a cut (edge cut) as a set of grid edges
whose removal will partition the grid into two com-
ponents. In particular, an h-cut(i) is a horizontal
cut which denotes the ith row of grid edges and v-
cut(j) is a vertical cut which denotes the jth col-
umn of grid edges. We further define hc(i) and ve(3)
as the capacities (number of edges) of h-cut(i) and
v-cut(j) respectively. For example in a rectangular
px q grid, h-cut(i) = {((5,5), i + 1,b) | 1 <b < g},
v-cut(j) = {((a,4), (a;5 +1)) | 1 < a <p}, he(i) = ¢
and ve(j) = p. The demand of a cut represents the
least number of paths needed to pass through the cut

.in order to satisfy S and 7. In particular, hd(¢) and

vd(j) denote the least number of edge-disjoint paths
needed to pass through the edges from top to bot-
tom and from left to right in h-cut(i) and v-cut(j)
respectively. If the value of the demand is nega-
tive, it represents the least number of paths passing
through the cut in the other direction. For instance,
hd(3) = k1 —k2 where k; and k are numbers of bound-
ary vertices, above the (i + 1)th row, in & and 7 re-
spectively. Similarly, vd(j) = k3 — k4 where k3 and k4
are numbers of boundary vertices, on the left of the
(§ + 1)th column, in S and 7 respectively. We say,

N saturated if |hd(?)| = he(i)
hreut(i) is { overflowed if |hd(i)| > he(s)

N saturated if [vd(j)] = ve(j)
v-eut(j) is { overflowed if |vd(j)| > ve(F).

Intuitively, if we compiite the capacities and de-
mands of all the cut in the grid, we can deduce if
there is a set of edge-disjoint path satisfies S and 7.
The following lemma shows that the set of cuts h-
cut(?) and v-cut(j) are sufficiently large that can be
able to determine if the feasible solution exists.

Lemma 2.1 Given a rectangular p X q grid and two
sets of boundary vertices S and 7 with |S] = |7},
there exists a set of edge-disjoint paths satisfying S
and 7 if'and only if all the h-cut(i) for 1<i<p-1
and v-cut(j) for 1 < j < g — 1 are not overflowed.

Proof: Only if part: Obviously, if one of the h-cut(i)
or v-cut(j) is overflowed, then the set of edge-disjoint
.paths satisfying S and 7 cannot exist.

If part: (sketch) We can transform this edge-
disjoint routing problem into an integral MAX-FLOW
problem by connecting those vertices in S to the
source of the network and those vertices in 7 to the
sink of the network. By the max-flow-min-cut the-
orem, if a set of n edge-disjoint paths satisfying S
and T does not exist, a cut-set in the network will
exists with capacity less than n. Moreover, we can
show that that cut-set can be transformed to another
cut-set with same capacity which contains one of the
h-cut(?) or v-cut(j) which has to be overflowed. [

We have the following theorem directly from
Lemma 2.1.

Theorem 2.2 Given a rectangular p x ¢ grid and two
sets of boundary vertices § and 7 with [S| = |7,
we can determine if there exists a set of edge-disjoint
paths in the grid satisfying S and 7 in O(min{p +
g,n}) time.

- Proof: It takes O(p + ¢) time to compute the de-
mands of all the h-cut(i) and v-cut(j) in the grid.
However, for an h-cut(k), if there is no terminal on
row k, we have hd(k) = hd(k —1). It is similar for the
demands of v-cut(j) for 2 < j < qg—1. Therefore, it is
necessary to compute only the demands of h-cut(z) for
2 <1 < p—1and v-cut(j) for 2 < j < g—1 when there
are terminals on row ¢ and column j respectively. [J

2.2 Paths construction

In this section, an efficient algorithm is proposed
to find such a set of edge-disjoint paths in the rect-
angular gird. Lemma 2.1 gives the condition which
ensures the existence of a set of edge-disjoint paths

81

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

satisfying S and 7. In fact, we can easily general-
ize the rectangular grid in Lemma 2.1 to an L-shape
grid. An example of an L-shape grid is shown in
the shaded region of Figure 2. The idea of our al-
gorithm is that grid vertices will be considered row
by row, one at a time from top to bottom, and each
row from left to right. When vertex (4, j) is consid-
ered, the sum of values of the flows (paths with di-
rection) through its top edge ((¢ — 1,), (4, 7)) and its
left edge ((,5 — 1),(4,5)) is computed, and then the
flows through the its right edge ((i, 7), (¢,4 + 1)) and
its down edge ((¢,5), (¢ + 1,7)) will be determined.
After the vertex is considered, the edges connected to
it and itself are removed from the grid. An L-shape
grid is formed. Throughout the algorithm, we make
sure that the flow at each vertex is conserved, i..,
the number of paths entering the vertex is equal to
the number of paths.leaving the vertex, and all the
h-cut(i) and v-cut(j) in the subsequent L-shape grids
are not overflowed. This guarantees that there still
exists sets of edge-disjoint paths in the subsequent L-
shape grids. : ‘ :

Let us consider the ith row of vertices in Figure 2
and assume the set of vertices {(3,1),...,(i,5 — 1)}
have been considered, f(a), the flow on edge a =
(G = 1,7),(,5)), and f(b), the flow on edge b =
((¢,4 — 1),(¢, 7)), would have been determined. Ini-
tially, when i = 1, f(a) for vertex (1,;) may be 1, -1
or 0 depending on whether vertex (1,5) isin S, in 7
or not in & nor 7. Similarly, f(b) can be defined for
J = 1. Note that f(a):> 0 (f(b) > 0) indicates a flow
along the direction on edge a (b) while a negative f(a)
(f(b)) indicates a reverse flow. Consider vertex (s, j)
and base on the net flow f(a)+ f(b), we can determine
the flows f(c) and f(d) on edge ¢ = ((3, 5), (¢ + 1, 7))
and edge d = ((¢,5), (3, j+1)). The assignment of f(c)
and f(d) should ensure that the flow at vertex (s, 5)
is conserved, and the v-cut(j) and h-cut(Z) in the new
L-shape grid, after removing the vertex (Z, j), are kept
from overflowed. A detailed description of the assign-
ment the flows f(c) and f(d) under the 5 cases of the
net flow f(a)+ f(b) can be found in Appendix A. The
proof of correctness of the assignment is omitted here.

Theorem 2.3 Given a rectangular p x ¢ grid and two
sets of boundary vertices S and 7T with |S| = |T],
and all the h-cut(i) for 1 < i < p— 1 and v-cut(j)
for 1 < j < ¢ — 1 not overflowed, we can find a set of
edge-disjoint paths in the gird satisfying S and 7 in
O(N) time, where N = pq.

Proof: (sketch) We shall prove the correctness of

Proceedings of international Conference
on Algorithms

- h-cut(i)
(i+1,1)

¢.D .9

v-cut(j) :

Figure 2: Finding edge-disjoint paths through vertex

(2, 4)-

the algorithm by induction on j, for 1 < j < ¢. Hy-
pothesis: after we consider the vertex (¢,7), (1) the
h-cut(i) and v-cut(j) in the new L-shape grid are not
overflowed, i.e., |hd(i)| < he(3), and |vd(5)| < ve(y)
and (2) the flow at vertex (4, j) is conserved. The as-
signment of flow at each edge takes constant time and
thus the whole algorithm takes O(N) time. 0

3 Vertex-disjoint routing in grid
3.1 Necessary and sufficient condition
The vertex-disjoint case is similar to the edge-

disjoint’ case. However, considering two sets of cuts,
h-cut(¢) and v-cut(j), are not enough. We define a

cut (verter cut) as a set of vertices in the grid whose

removal will partition the grid into two components.
The cut can be uniquely defined by specifying two
boundary vertices of the grid and by having the least
number of vertices in the cut. Suppose the two bound-
ary vertices are u and v, cut(u,v) specifies the cut,
cap(u,v) (the capacity of the cut) is the number of
vertices in cut(u,v), d(u,v) (the demand of the cut)
is the least number of paths needed to pass through
the cut from left to right (or top to bottom) in order
to satisfy S and 7. We can see that d(u, v) is actually
the difference in the number of boundary vertices in S
and in T on the left (upper) part of the cut. Assume
the numbers of boundary vertices in & and 7 on the
left (upper) part of the cut are k; and k; respectively
excluding u and v, d(u,v) would be k; — kg + 4, the
value of § = |S N {u,v}| or —|7 N {u,v}| depends on
which of values will lead to a larger absolute value of
d(u,v).

Although the number of cuts in a grid could be
O(pq), we shall show that actually a linear number
O(p+q) of cuts are needed to determine whether there
exists a set of vertex-disjoint paths satisfying S and
T. In fact there are only two types of cuts needed

82

to be considered, adjacent and opposite. cut(u,v) is
called adjacent if it contains two boundary vertices u
and v on two adjacent boundaries in which the cut
separates a single corner v, from the grid, and u,v
are equally distant from v.. If u,v are not equally
distant from v., we can determine if the cut(u,v) is
overflowed by consider the adjacent cut(u,v') assum-
ing the distance from u to v, is less than or equal to
the distance from v to v, and ' is on the same row or
column of v. cut(u,v) is called opposite if it contains
two boundary vertices u and v on two opposite bound-
aries, and the horizontal or vertical distance between
u and v is less than p or ¢ depending on whether u
and v lie on the top and bottom boundaries or on the
left and right boundaries respectively. If the vertices
u and v are on the top and bottom (left and right)
boundaries, and the horizontal (vertical) distance be-
tween them is more than p (g), we can determine if
the cut(u,v) is overflowed by consider the opposite
cut(u,v') assuming the vertices v, v’ are all on the left
or right (upper or lower) side of « and the horizontal
(vertical) distance between v and v' is p — 1 (g — 1).

Lemma 3.1 Given a rectangular p x ¢ grid and two
sets of boundary vertices S and T with-|S| = |7,
there exists a set of vertex-disjoint paths satisfying
S and 7 if and only if |d(u,v)| < cap(u,v) for all
adjacent and opposite cut(u,v) in the grid.

Proof: (sketch) Similar to the proof of Lemma 2.1,
Only if part is straightforward.

If part: assume the contrary, we show that there
always exists a minimum cut in the transformed net-
work N (as given in Lemma 2.1), containing one of
the adjacent or opposite cut(u,v) which has its ab-
solute demand value greater than its capacity, i.e.,
|d(u,v)| > cap(u,v). 0

3.2 Computing the cuts with maximum
demand

By Lemma 3.1, it is sufficient to compute the ca-
pacities and demands of all the adjacent and opposite
cuts to determine if S and 7 can be satisfied. For a
p x q grid, the number of adjacent cuts is O(p+¢q) but
there are still O(pg) opposite cuts. For any opposite
cut(u,v), since cap(u,v) is fixed to p if u and v are
on the top and bottom boundaries, and fixed to ¢ if u
and v are on the left and right boundaries, it is suffi-
cient to find the opposite cut with maximum absolute
demand in each of the above two cases to determine
if there is any overflowed cut.

WLOG assume p < ¢, let us describe how we can
find the vertical opposite cut(u,v), for u,v on the
top and bottom boundaries, with maximum absolute
demand. For each top boundary vertex v = (1,1),
1 £ ¢ < g, we compute the cumulative sum top,
as the difference in the number of boundaries ver-
tices in S and in 7 from the corner vertex (1,1) to
(1,7 —1). Similarly for each bottom boundary vertex

‘v =(p,i),1 < i< gq, we compute the cumulative sum
bot, as the difference in the number of boundary ver-
tices in S and in 7 from vertex (2,1) to the corner
vertex (p,1) and then to (p,i — 1). Then the prob-
lem of finding the maximum absolute demand among
the opposite cuts would be equivalent to finding the
pair (u,v) having the maximum absolute value of
topy+bot, +d with [u—v| < p—1. Since the sequences
top, and bot, along the top and bottom boundaries
are consecutive in the sense that the difference be-
tween two consecutive members in the sequence is zero
or one, the maximum absolute value top, + bot, + &
with |u — v| < p — 1 can be computed in O(p + ¢)
time. This can be done by computing for each ver-
tex w = (1,4),1 < 1 < ¢, the maximum absolute value
topy +bot,+6 with |lw—v| < p—1. In general, a sorted
list of bot, for |w—v| < p—1 is maintained, the maxi-
mum absolute value of top,, + bot, +J can then be de-
termined by finding the maximum/minimum bot, in
the sorted list. When vertex (1,7+1) is considered, we
only need to “insert” the element bot(, ;,4), “delete”
the element bot(p,i—g+1), and then find the new maxi-
mum/minimum in the sorted list. Since the sequence
is consecutive, the above three operations can be done
in constant time. As a result, the maximum absolute
value top, + bot, + 4, i.e., the maximum absolute de-
mand can be found in O(p + g) time. Finding the
horizontal opposite cut cut(u,v) with maximum ab-
solute demand is easy because the vertical distance
between u and v is always less than ¢q. Therefore, no
“insert” and “delete” is needed.

Theorem 3.2 Given a rectangular px q grid and two
sets of boundary vertices S and 7 with |S| = |7, we
can determine if there is a set of vertex-disjoint path
satisfying S and 7 in O(p + q) time.

Proof: Checking all the adjacent cuts and finding
the vertical and horizontal opposite cuts with maxi-
mum absolute demand take no more than O(p + q)
time. 1]

83

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

3.3 Paths construction

After computing the maximum demand among
cuts involving each grid vertex (1,5) for 1 < j < gand
the maximum absolute demand among the horizontal
cuts (Section 3.2), and confirming that none of these
cuts are overflowed, our next step is to find the vertex-
disjoint paths satisfying S and 7. Similar to the
construction of edge-disjoint paths, the vertex-disjoint
paths are constructed by considering each vertex one
by one row-wise from top to bottom. WLOG, let us
assume that the flows for vertices in the first (i — 1)
rows have been determined. The flow f(a;) through
the edges a; = ((i — 1,7),(i,J) for 1 < j < g, should
have been known and they can be treated as sources
and sinks on the top boundary of the (p—i + 1) x ¢
lower subgrid [¢ :: p] x [1 :: g]. Before considering
the vertices in the ith row, we apply the algorithm
in Section 3.2 on the (p — i + 1) x ¢ lower subgrid
to obtain the maximum demand and capacity among
cuts involving each grid vertex (¢,5) for 1 < j < q.
With this information, the direction and amount of
flow passing through each vertex (i, 5), in particular
f(c) and f(d) will be determined. The assignment of
f(c) and f(d) has to observe the flow conservation rule
and depends on whether the cut involved with vertex
(4, 7) is saturated or not. If the cut at vertex (i, j) is
saturated, we have to ensure that there is flow going
through vertex (¢, j). Moreover, it can be proved that,
in general, the assignment of flow at edge d is always
advantageous in our algorithm as long as there is no
more than one path passing through vertex (i, 5 + 1).
A detailed description of the algorithm can be found
in Appendix B.

®.D

Figure 3: Finding vertex-disjoint path through vertex
(i,4)-

Theorem 3.3 Given a rectangular px g grid and two
sets of boundary vertices S and 7 with |S| = |7, and
the absolute demand value of all adjacent and oppo-
site cuts not greater than their corresponding capac-

Proceedings of international Conference
on Algorithms

ities, we can find a set of vertex-disjoint paths in the
grid satisfying & and 7 in O(V) time.

Proof: (sketch) We shall prove the correctness of
the algorithm by induction on j, for 1 < j < gq.
Hypothesis: after we consider the vertex (i,j), (1)
the absolute demands of the adjacent and opposite
cuts involving vertices (7,7 + 1) and (7 + 1, 5) are not
greater than their corresponding capacities. (2) the
- flow at vertex (%, j) is conserved and at most one path
passes through (%, 7). The assignment of flow at each
edge takes constant time and thus the whole algorithm
takes O(IV) time. 0

4 Conclusion

We have found the necessary and sufficient con-
ditions for the existence of a set of edge-disjoint or
vertex-disjoint paths in a rectangular p x g. grid pair-
ing a set of sources with a set of sinks. Based on the
conditions, we have devised efficient algorithms to de-
termine its existence in O(p + ¢) time and to find the
disjoint paths in O(pq) time. Related results on spec-
ified routing was given in [7, 10]. In those papers,
the rectilinear graph does not have to be rectangular
grid, in fact, similar results are applicable to convex
grids, grids of T-shape or X-shape. Extending our
unspecified edge-disjoint routing problem to convex
grids and grids of different shapes is straightforward,
and we have strong feeling that similar extension of
unspecified vertex-disjoint results is also possible.

References

[1] Y. Birk and J.B. Lotspiech. A Fast Algorithm
for Connecting Grid Points to the Boundary with
Nonintersecting Straight Lines, Proceedings of
the Second Annual ACM-SIAM Symposium on
Discrete Algorithms (1991) 465-474.

J.A. Bondy and U.S.R. Murty. Graph Theory
with Applications, North-Holland Amsterdam
(1977).

W.T. Chan and F.Y.L. Chin. Efficient Al-
gorithms for Finding Non-Intersecting Paths
in Grids, Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms
(1997), to appear.

A. Frank. Disjoint Paths in e Rectilinear Grid,
Combinatorica 2(4) (1982), 361-371.

L.R. Ford and D.R. Fulkerson. Flows in Net-
works, Princeton University Press, Princeton,
NJ.

(2]

[3]

[4]

[5]

84

[6] P.Klein; S. Rao and M. Rauch. Faster Shortest-
Path Algorithm: for Planar Graphs, Proceedings
of the 26th Annual ACM Symposium on Theory
of Computing (1994) 27-37.

T-H. Lai and A. Sprague. On the Routability of a
Convez grid, Journal of Algorithm 8 (1987) 372-
384.

(7]

'G.L. Miller and J. Naor. Flow in Planar Graphs

with Multiple Sources and Sinks, Proceedings of
the 30th IEEE Symposium on Foundations of
Computer Science (1989) 112-117.

(8]

[9] K. Mehlhorn and F.P. Preparata. Routing

through a Rectangle, J. ACM 33(1) (1986) 60-85.
[10] T. Nishizeki, N. Saito and K. Suzuki. A Linear-
Time Routing Algorithm for Convex Grids, IEEE
Trans. Comput.-Aided Design 4(1) (1985) 68-76.

[11]- C.H. Papadimitrious and K. Steiglitz. Combina-
torial Optimization: Algorithm and Complezity,
Englewood cliffs, NJ: Prentice Hall, (1982).

[12] V.P. Roychowdhury, J. Bruck and T. Kailath.
Efficient Algorithms for Reconfiguration in
VLSI/WSI Arrays, IEEE Trans. on Computers
39(4) (1990) 480-489.

[13] H. Ripphausen-Lipa, D. Wagner, K. Weihe.
The Vertez-Disjoint Menger Problem in Planar
Graphs, Proceedings of the Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms (1993)
112-119.

[14] A. Schrijver. Finding k Disjoint Paths in a Di-
rected Planar Graph, SIAM Journal of Comput-
ing 23(4) (1994) 780-788.

Appendix A: Algorithm for construct-
ing edge-disjoint path

Here are the cases when paths are going through
the vertex (i,7), i.e., assigning flows f(c) and f(d)
for edges ¢ and d respectively. f(a) and f(b) are the
flows in the vertex (i, §) which have been determined.
he(i), ve(j) and hd(2),vd(j) are the corresponding ca-
pacities and demands of the h-cut(?) and v-cut(j) re-
spectively. hd'(i) and vd'(j) are the demands in the
new L-shape grid after assigning flows f(¢) and f(d).
These flow functions on the grid edges are graphically
represented in Figure 2.

1. fla)+ f(b)=2:
fle)—1,f(d) <1
(vd'(§) « vd(j) — 1, hd'(i) < hd(i) — 1),

2. f(a)+ f(b) = —2:
fle) = 1,f(d) « -1
(vd'(§) « vd(j) +1,hd'(i) < hd(i) + 1),

3. fa) + f(b) = 0:

(a) vd(j) = ve(j) or hd(i) = —he(i):

fle) = -1,f(b) —1

(vd' () « vd(j) — 1, hd'(¢) « hd(3) + 1),
(b) vd(j) = —ve(j) or hd(i) = he(i):

fle) < 1,f(d) « -1

(vd'(§) « vd(j) + 1, hd' (i) « hd(i) — 1),
(c) Otherwise:

f(c) «0,f(d) ~0

(vd'(j) « vd(j), hd' (i) — hd()),

4. f(a) + f(b) = 1:

(a) vd(j) = ve(j) or hd(i) = —he(i) + 1:
fle) < 0,f(d) 1
- (vd'(j) « vd(j) — 1, hd'(§) — hd(3)),
(b) Otherwise: :
fle) =1L f(d <0
(vd'(§) + vd(j), hd' (i) < hd(i) — 1),

5. (@) + f(0) = -1

(a) vd(j) = —ve(jg) or hd(i) = he(i) — 1:
fle) < 0,f(b) — -1
(0d'(§) — vd(j) + 1, hd'G) — hd()),
(b) Otherwise:
fle) = -1,f(d) <0
(vd' () « vd(j), hd'(3) — hd(i) + 1).

Appendix B: Algorithm for construct-

ing vertex-disjoint path

Here are the cases when path is going through the
vertex (i,7), i.e., assigning flows f(c) and f(d) for
edges c and d respectively. f(a;) and f(b) are flows
at vertex (i,j) which have been determined. f(aj41)
is the flow on edge a;+1 at vertex (¢,7 +1). cap(u,va)
and d(u,v,) are the capacity and demand of adjacent
cut(u, v,) respectively. cap(u,v,) and d(u,v,) are the
capacity and demand of the opposite cut(u,v,) with
maximum absolute demand involving vertex u. These
functions are graphically represented in Figure 3.

1. f(a) =1,§(%) = —1or f(a;) = ~1,f(b) =1:
f(e) <0, f(d) «— 0.

85

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

2. fla;) = £(B) = O:

(a) |d(u,va)| < cap(u, va)
and |d(u,v,)| < cap(u, vo):
f(e) < 0,5(d) < 0.
(b) d(u,va) = cap(u,va)
or d(u,v,) = cap{u, v,):
fle) = -1, f(d) ~1.
(C) d(u7'ua) = —ca,p(u,va)
or d(u,v,) = —cap(u,v,):

fle) < 1,f(d) = -1
3. f(a;) =1, f(®) =0or f(a;) =0, f(d) = L:

(8) ld(u,va)| < cap(u, va)
and |d(u, v,)| < cap(u, v,):
@) fjq) <1:
flc) <0, f(d) — 1.
(i) f(bj4) = L:
f(e) < 1,f(d) < 0.
(b) d(uava) = cap(u,'va)
or (d(u,v,) # —cap(u,va)
and d(u,v,) = cap(u,v,) and f(bj11) #1):
f(c) < 0,f(d) — 1.
(c) Otherwise:
fle) < 1,f(d) < 0.

4. f(a) = =1, F(8) = O or f(a;) =0, F(B) = ~1:

(a) ld(u,va)| < cap(u,va)
and |d(u,v,)| < cap(u, vo):
(i) f(bj+1) > —1:
f(e) «0,f(d) «— —1.
(i) f(bj41) =—1:
fle) < -1,f(d) < 0.
(b) d(u,vs) = —cap(u,v,)
or (d(u,v,) # cap(u,v,)
and d(u,v,) = —cap(u,v,) and f(bj11) #
-1):
f(e) < 0,f(d) — -1
(c) Otherwise:
f(e) « —1,f(d) < 0.

