Joint Conference of 1996 international Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

High—Lével Flow Model for Anomaly Detection in Object-Oriented Programs

Jiun-Liang Chen

Feng-Jian Wang

Department of Computer Science and Information Engineering
National Chiao Tung University
HsinChu, Taiwan, R.O.C.

Abstract

In this paper, a High-Level Flow model representing flow
information of an object-oriented (O0) program for data flow
analysis is presented. This model introduces to conventional
data flow additional properties which are made by object
abstraction, encapsulation, inheritance, and polymorphism. In
an OO program, an object encapsulates both component data
(attributes) and operational functions (methods). The model
employs method path expression to represent .the flow
information of a method, where a method path expression is a
set of path expressions of which each describes the accesses of
an attribute in the method. The flow information of an OO
program can be derived by concatenating method - path
expressions related. Due to OO features, there are two

additional types of data flow anomalies, a message-sequence

anomaly and a class-definition anomaly, described in this paper.
These anomalies can help indicate programming errors for
debugging an OO program. The algorithms of detecting these
anomalies can be implemented efficiently with bit-pattern
computation.

Keywords:
orientation.

data flow analysis, anomaly detection, object

1. Introduction

Recently, object-oriented (OO) paradigms, associated with
class libraries with high-level modularity, reusability, and
extendibility, have been widely applied for developing software
[2]. Comparing with conventional programs, OO programs are
introduced with the features of object abstraction, encapsulation,
inheritance, and polymorphism; they use different languages and
thus program structures from conventional ones. In past decades,
a number of program analysis techniques, such as anomaly
detection [9, 10], program dependency graphs [4, 8], and
program slicing [16], have been developed based on data flow
analysis [1, 12]. These techniques are useful for testing,
debugging, and maintaining conventional programs. However,
most of the analysis models they used seem insufficient for OO
programs since the models lack OO features.

A data flow anomaly is often an indication of the existence of
a programming error. The detection of anomalies might help
users to debug a program and improve the quality of a program
[5]. In an OO program, an object encapsulates both component

331

data (attributes) and operational functions (methods). When
receiving a message, an object achieves its responsibility by
invoking a method operating. on attributes. Rather than a
variable associated with a data operation, a message passed to an
object results .in a sequence of operations on the object]
attributes according to the invoked method defined in the
object’s class. The OO features embedded in a program make
the data flow analysis complicated.

In the paper, we propose a High- Level Flow (HLF) model
which introduces OO features.into a conventional data flow for
program analysis. The HLF model employs a method path
expression to represent the flow information of a method in a
class. A method path - expression consists of a set of path
expressions [5], of which each is a regular expression describing
the sequences of data flow operations on an attribute. When an
object receives messages, its flow information can be obtained
by computing the method path expressions of invoked methods.
Based on conventional data flow anomalies, two additional
types of anomalies, a message-sequence anomaly and a class-
definition anomaly, are specified. These anomalies can help
users to examine an appropriate invocation sequence of methods,
and indicate programming errors in a class. The algorithms for
efficiently detecting these anomalies were developed. They can
be implemented with bit-pattern computation.

The rest of this paper is organized as following: Section 2
reviews the related work of data flow analysis. The HLF model
for OO programs is presented in Section 3. Then, Section 4
illustrates the anomaly detection in OO programs with the HLF
model. Section 5 draws a conclusion and suggests future work.

2. Related Work

Data flow analysis is a technique to ascertain and collect
information about the define, use, and kill operations on
variables in a program [1, 12]. Various applications of data flow.

* analysis can be found in [11].- The data flow information is the

basis for the traditionz}l program analysis techniques such as
program dependency graphs [4, 8], program slicing [16], ripple
effect analysis [17], and so on. In an OO program, data are not
obvious since they, as well as procedures, are encapsulated in an
object. One can not apply traditional data flow analysis to an
OO program.

Sudholt and Steigrier in [14] extended an interprocedural data

- flow analysis algorithm for OO languages. In their approach,

one first decomposes an object into a set of procedures and
global variables in detail (i.e., primitive statement and variables).

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

He/she can then apply Cooper’s and Kennedy’s algorithm (see
[3D) on these procedures and variables to perform traditional
data flow analysis. This approach was emphasized on low-level
data flow information for compilers. It is used in the field of
compiler optimization and parallelization, but might be not apt
to detect high-level anomalies for debugging OO programs.

Hierarchical Data Flow Analysis, HDFA, was proposed by
[15] for analyzing data flow information in OO programs. The
hierarchical data flow consists of three layers: classes, objects,
and attributes. The HDFA exploits data flow information by
identifying class flow, object flow, and attribute flow. The
operations, kill, define, and use, are defined for each layer of
flows. The attribute flow is similar to traditional data flow
analysis [7]. The class flow and the object flow can be used to
analyze anomalous message sequences. The flow information to
which the class flow and the object flow contribute is restricted
because the two flows are abstracted from the attribute flow. In
addition, HDFA does not investigate the data flow introduced
by some OO features, such as inheritance and polymorphism.

3. High-Level Flow Model

We now present the High-Level Flow (HLF) model that
introduces OO features into the data flow of an OO program. In
an OO program, an object may encapsulate other objects as its
attributes. The most primitive form of an object is a data item
(such as an integer or a char) which can not be decomposed
further. The HLF model defines the flow for simple and
complex objects separately. In the HLF model, an object is a
simple object if it is nothing but a data item; it is a complex
object otherwise. That is, a complex object contains at least one
object inside.

3.1 Flow Model for Simple Object

A simple object in the HLF model is similar to the traditional
data flow model [5]. To access a simple object is to modify or to
reference the value of the object. There are two kinds of
operations to access a simple object: a data-define operation and
a data-use operation. When -accessing a simple object, a data-
define operation (d) modifies the value of the object, while a
data-use operation (1) references its value without modification.

The flow of information of a simple object in a program is a
sequence of operations working on the object during execution.
The operations working on an object include d, u, and I: d is a
data-define operation, u is a data-use operation, and I is a null
operation (no operation working the object). The sequence of
operations can be represented as a path expression, a regular
expression of the operations on a simple object along all the
possible execution paths of a program [5]. ' .

Definition 3.1 Letxbea simple object, and F be a program
which accesses object x. The flow information of object x in
program F, denoted as P(F; x), is defined as the path
expression of object x in program F.

Each string in P(F; x) represents the sequence of operations
working on -object x in one execution path of program F. For
example, a simple object x is accessed in the following program.

332

foo(int x, int y){
if (x> 0)
X =Y;
else y =

// use x
//. define x, use y
//. define y, use x

}

Within program foo(), the sequence of operations working on
object x is either ud or uu. Note that initiating a formal
parameter with an actual parameter is not regarded as a data-
define operation in this model. Since the jnitialization is done by
a compiler, it does 1ot represent the intention of a
programmer/debugger to define a formal parameter. The path
expression of x in foo() is

P(foo; x) = ud + uun = u(d + u), where symbol + means ‘or’.

Flow information may help detect potential errors in a
program such as an abnormal usage of an object (a data flow
anomaly). The abnormal usage of a simple object can be defined
in terms of path expressions as following:

Definition 3.2 Let x be a simple object and have its life time
within a program F. The usage of x in F is said to be
abnormal if P(F; x) = up + p', pddp'+ p" or pd + p', where
p, p', and p! are arbitrary path expressions.

In the definition, #p means that an object is used before being
defined, pddp’ means that an object is consecutively defined
twice, and pd means that an object is defined but not used.

3.2 Flow Model for Complex Object

The flow information of a simple object is the basis of the
flow model for a complex object, since the latter is composed of
simple objects. In light of object abstraction, message passing
scheme, inheritance, and polymorphism, here we explore the
flow information of a complex object by means of its component
objects.

Object abstraction

A class is the abstraction of objects of the same kind.
Attributes and methods defined in a class represent the state and
behavior of an object. In other words, the flow information of a
complex object can be defined from the context of its defining
class. The structure of a class is defined as:

Definition 3.3 The structure of a class, C, is denoted as {4,
Azy ey Ay My, M, ..., M} where A;, 1 € i < m, is an’
attribute (object) of class C; M;, 1 <j < n, is a method of
class C with M; and M,, the constructor and destructor of
class C respectively.

To simplify the discussion, attributes Aj, A;, ..., and A,, in
Definition 3.3 are regarded as simple objects through this paper.
. The flow information in a class involves the sequences of
operations working on the objects in its method(s). The flow
information of object x in method M; can be described by a path
expression, P(Mj; x). To represent the flow information within a
method, we define a method path expression, the union of path
expressions in the method for the objects accessed.

Definition 3.4 Let M; be a method of class C, and P(Mj; x)
denote x’s path expression in M;. M;s method path
expression, MP(M)), is defined as MP(M)) = {P(M;; x) |

object x is a component object in class C}

In Definition 3.4, object x can be M;’s local variable, or the
attribute in ¢class C. The life time of local variables of a (instance)
method is the same as that of the method. To the method owner,
these variables are (and their corresponding objects may be)
killed when their method execution completes. For inter-method
flow analysis of an object, only the attributes are thus
considered “in a method path expression. A method path
expression for a 1\ method invoking other methods can be obtained
by expanding the invoked methods in the invoking method
(which is similar to interprocedural data ﬂow analysis [11]).

With object abstraction, an znstance-type property defined in
a class, such as an instance attribute or an instance method,
belongs to an individual object. A class-type property, such as a
class attribute or a class method, is common to all objects of a
same class. To distinguish the properties between instance-type
and class-type, we attach an object identifier to the method path
expression of an instance method, but not to that of a class
method. Similarly, we attach an object identifier to the path
expression of an instance attribute, but not to that of a class
attribute.

Definition 3.5 If object O is instantiated from class C, then
O’s method path expression of instance- method M; is
denoted as MP(O.M)), and the path expression of instance
attribute A; in method M; is denoted as P(O.M}; 0.A)).

Each attribute or method encapsulated within an object is
associated with an access specifier, private or public, to indicate
the scope of access. The access of a private attribute is under the
scope of an owner object, while that of a public attribute is not.
Similarly, a private method can be invoked only in the scope of
* its owner object, but the invocation of a public method is not
restricted.

Message passing scheme

When a sequence of messages are passed to an object (a
receiver), the flow information of the receiver can be described
by concatenating the corresponding method path expressions.
Let a sequence of messages passed to object O invoke methods
O'Mfl’ O.sz, ., and OMJk sequentially. The flow information

of object O can be represented by MP(O.MjI) MP(O.M,-Z)
MP(O. -) MP(0.M;) MP(O.M;) . MP(O.M,

of the path expressions of O’s component objects accessed in
0. M 0. M »and O. M sequentlally

;) contains a set

Definition 3.6 Let a sequence of messages invoke methods
M,—l, sz, ..., and Mfk of object 0. O’s flow information for

the sequence of messages, denoted as MP(O'Mfz)

MP(O.M,—Z) MP(O.MJ-k), is {P(O.Mjl, O.sz, Q.M,-k; x) 1

object x is O’s component object}, where P(O.Mj’, O‘Mfz’ vens
Mjk; x) is equal to P(O.M,-l; X) P(O.sz; x)...P(O.Il'!,-k; x).

The method path expressions of an object can also represent a
number of message sequences passed to the object like a regular
expression. For example, given an instance, O, of class C, the
method path expressions representing the flow information for
all possible message sequences received by object O is denoted

1333

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

as MP(O.M)) (MP(O.MJ-I) + MP(O.sz) + ..+ MP(O.Mjk))*
MP(0.M,), where methods M; r sz, ..., and M,-k are O’s public

methods, symbol * denotes repeating zero or more times for a
method, and symbol + denotes operator ‘or’. Each method
invocation sequence begins with constructor O.M,, and ends
with destructor O.M,,.

Inheritance

The inherited properties, attributes and methods, of a class are
defined in its superclass(es). To obtain the flow information of
the inherited attributes, one has to consider the properties of
superclasses. The method path expressions of a class’s
constructor/destructor include the path expressions of the
inherited attributes in the constructor/destructor of its superclass,
respectively. This can be expressed as below. To simplify the
discussion, if object x is a class-type attribute, its flow
information includes the path expressions in the methods of all
class B’s instances that access x.

Definition 3.7 Let class C be a subclass of class B. The
method path expressions of class C’s constructor and
destructor are
MP(M)) = { P(MB SMpx) | object xis an inherited attribute

from class B} U {P(M;; x) | ObjCCt xisa component object
in class C}, and .
MPM,) = {P(M,, Mg ;x) | object x is an 1nher1ted attribute

from class B} U {P(M,,, x) | object xis a component object
in class C}.
Here, MB and My , fepresent the constructor and destructor

of class B invoked by class C, respectively.
Polymorphism

A virtual method may have multiple implementations, of
which each is defined in different classes of an inheritance.
hierarchy. The uncertainty. about which implementation will be
invoked by a virtual method call arises from the existence of
polymorphic object references. It is determined by the class to
which the object reference is bound to at run-time. Definition
3.8 shows that all of the multiple implementations have to be
taken into consideration for a virtual method call.

Definition 3.8 Let B be a super class with a -virtual method
m, and C;, C, ..., C, be the subclasses of B with their
lmplementatlons, m!, mz, .., and m®, of m. Let O be an
object reference of class B. When O.m is invoked, its
method path expression includes the - method = path
expressions of m!, m? .., and m". That is, MP(O.m) =
MP(. m’)+MP(0 m?)+...+ MP(O.1),

3.3 An Example

To demonstrate the HLF model, we give an example shown in
Figure 1. The program in Figure 1 is the definition of class Stack -
written in. C++ [Stro91]. There - are six methods, Stack
(constructor), ~Stack (destructor), push, pop, full, and empty,

-and three attributes, size, top and s, in class Stack. In this

example, attribute s, an array, is assumed to be a simple- object.
The method path expressions of class Stack’s methods are
illustrated in Table 2. Note that the sequence of operations

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

working on attribute 5 in statement delete at line 10 is treated as

du for simplifying the discussion of anomaly analysis.

/* Definition of a class Stack */
line # code
class Stack (.
private:
int size, top,
char *s;
public:
Stack(int &sz){
size=sz; //sz:u; size:d;
s= new char[size]; //s:d; size:u;
Jtop = 0; }: //top:d;
10. ~Stack() { delete s;};//s:du;
11. void push(char &c)

VoUW N

12. s{topl= c; //c:u; top:u; s:d;
13. top++; }; //top:ud;

14. char pop(){

15. top--; //top:ud;

16. return s(topl; }; //top:u; s:u;

17. int empty()

18. if (top == 0) return 1l;//top:u;

19. else return 0; };

20. int full() ¢

21. if(size==top+l) return 1;//top:u; size:u;
22. else return 0; };

23.)

Figure 1. An example of a class stack

Tablet. The method path expression for methods defined in
class Stack
Method | Method path expression iPath expression .
Stack |{P(Stack;size), P(Stack;s), iP(Stack;size)=du; P(Stack;s)=d;
- | P(Stack;'top)} i P(Stack;top)=d

~Stack {{P(~Stack;size), P(~Stack; iP(~Stack;size)=l; P(~Stack;

s), P(~Stack; top)} s)=du; P(~Stack; top)=Il

push {P(push; size), P(push; s), iP(push; size)=l; P(push; s)=d,

| P(push; top)} P(push; top)=uud

pop . |{P(popisize), P(pop; size)=1; P(pop;s)=u,

P(pop;s),P(pop; top) } P(pop; top)=tidu

empty |{P(empty;size), P(empty;s), {P(empty;size)=I; P(empty;s)=/;

' P(empty; top) } P(empty; top)=u

full {P(full; size), P(full; s), " iP(full; size)=w; P(full; s)=I;
P(full; top)} P(full; top)=u

4. Anomaly Detection

An anomaly in a program might indicate the existence of a
" programming error. With the HLF model, we can perform
anomaly detection through the flow information of an OO
program. The anomaly for an object concerned here is an
abnormal usage of its attribute. For a complex object, two
operations that make an abnormal usage of its attribute is called
intra-method anomaly if they are within a method. If the
operations are in two methods of the object respectively, the

abnormal usage is called inter-method anomaly. An intra- -
method anomaly can be detected by analyzing the method path

expression of an invoked method, like traditional data flow
anomaly detection [9, 10, 3]. Detecting an inter-method
anomaly for an object is more complicated because it depends
on the sequences of received messages. This section focuses on
the inter-method anomaly analysis and detection.

334

4.1 Anomaly Analysis

A complex object has a data-flow anomaly when its attribute
has an abnormal usage along one path from construction to
destruction through some methods. In a complex object, the
number of execution paths could be very large since the
sequence of messages to invoke its public methods is not
restricted. In general, only some of the paths are significant to
programmer. Due to this, a dafa-flow anomaly is weak to
indicate a programming error. By extending the traditional data-
flow anomaly, we define an inter-method data-flow anomaly,
also called an inter-method anomaly for short, for anomaly
analysis. An inter-method anomaly exists in two public methods

_ with respect to a private attributes when one of the followings

succeeds: (1) There is a path ending with a data-define operation
in the first method, and each path in the second method begins
with a data-define operation. (2) The first method has a path
ending with a data-define operation, and the second method is
the destructor whose paths either begin with a data-define
operation, or are null operations. (3) The first method is the
constructor whose paths contain no data-define operation, and
the second method has a path beginning with a data-use
operation. These statements can be formally represented as the
following definition.

Definition 4.1 Let a class C = {(A}, A, ..., A Mp, M, ..,
M) 1AL Ay, ..., A, are private attributes, M,, Mj;, ..., M, are
public- methods, and M, and M, are the constructor and

-destructor respectively.}. Two public methods, M; and M;,
of class C have an inter-method anomaly with respect to an
attribute A; if one of the following cases is satisfied:

(1) P(M;; A) =(pd + p') for some j; 1 <j < n-1, and P(M;;
A)=dp"forsomek, 2 <k <n-l,

(2) P(M}; A) = (pd + p) for some j, 1 <j < n-1, and P(M;
A)=(dp"+ 1) fork=n,or

(3) P(Mj; A) =u* for j = 1, and P(M; A) = (up + p) for
somek,2 <k <n. ‘

In Definition 4.1, p, p', and p" are arbitrary path expressions.
The first two. cases of the definition imply that a useless data-
define opération (the value defined by the operations is never
referred to) always exists in the first method when the two
methods are invoked consecutively. The third implies that an
illegal data-use operation (which is not preceded by any data-
define operation) always exists in the second method. Although
an inter-method anomaly can evidently to indicate a
programming error, it does not tell what incurs the error yet. (An
abnormal usage of an object. within a complex object can be
incurred by a wrong sequences of message passing, or erroneous
definition of the object’s class.) Hence, two new types of
anomalies, a message-sequence anomaly and a class-definition
anomaly, based on the inter-method anomaly are defined for
detecting a wrong sequence of message passing and an
erroneous class definition.

A méSsage—sequence anomaly exists in two consecutively
public methods (which'could be identical) if they has an inter-
method anomaly with respect to all private attributes which they
access.

Definition 4.2 Let M; and M, be two public methods of
class C, and A, A, ..., A, be the private attributes accessed

in M; and M,. Two methods, M; and M,, have a message-
sequence anomaly if V i, s <i <t, A; such that M; and M,
~ have an inter-method anomaly with respect to A;

In accoédance with Definition 4.2, we can summarize the
following property.

Property 4.1 Given two messages passed to an object, the
sequence of the two messages might be inappropriate if the
corresponding -invoked methods of the object have a
message-sequence anomaly.

Two methods with a message-sequence anomaly imply that
all accessed attribute in the two methods are associated with a
useless data-define or an illegal data-use operation. Because of
the operation, to invoke the two methods consecutively could be
an error very possibly. Thereby, one can use this property to
examine whether one method is appropriately invoked before
the other.

To indicate a programming error in the definition of a class,
we define another type anomaly, class-definition anomaly.

Definition 4.3 Let a class C = {(4,, Ay oy Ay My M, ..,
M) 1A, A,, ..., A, are private attributes, M,, M;,... M, ; are
public methods, and M, and M, are the constructor and
destructor respectively.}. Class C contains a class-definition
anomaly in a method M; if there exists a private attribute A;
such that one of the following cases holds:

(DIfj#n;,thenforallk,2 <k <n, M; and M, have an
inter-method anomaly with respect to A;. -

(D Ifj+#1,thenforallk, 1 <k <n-1,M, and M; have an
inter-method anomaly with respect to A;.

Observing the definition above, one can 'obtain the following
property:

Property 4.2 A programming error might exist in a method of
a class if the class contains a class-definition anomaly in the
method.

In a class, a method with a class-definition anomaly implies
that all methods are invoked inappropriately before (except the
destructor) or after (except the constructor) the method. The
execution of the method always comes with a useless data-
define operation or an illegal data:use operation. It is obvious
that a class-definition anomaly indicates a programming error
more precise then that an inter-method anomaly does. For
example, according to Definition 4.1, class Stack shown in
Figure 1 contains several inter-method anomalies, such as
P(Stack, push, ~Stack; top) = duud, P(Stack, empty, ~Stack; s) =
ddu, and so on. These anomalies seem not harmful for the class,
and these cases do not form a class-definition anomaly.

4.2 Anomaly Detection

In the HLF model, all the paths along which an attribute is
accessed in a method are described by a path expression. It is
impractical to traverse all possible paths in a method when
detecting inter-method anomalies. For example; a loop in a path
can be regarded as zero and two iterations for static data flow
analysis [9]. Like exposed operations in [1], an inter-method
anomaly is caused by exposable operations in a method.
Reducing the loops and the operations that are not exposable in

335

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

amethod can simplify the inter-method anomaly detection.

To distinguish the exposable operations from the operations
on an attribute in a method, we define three types of exposable
operations,

Definition 4.4 Let m and a be a method and an attribute of a
class, respectively. Let p and p’ be arbitrary path expressions.
(1) A data-use operation, x, on a in m is an upward-
exposable use (UEU) if P(m; a) = xp+p'.
(2) A data-define operation, y,onainmis adownward-
exposable define (DED) if P(m; a) = pyu* + p',
(3) A data-use operation, z, on z in mis a downward-
exposable.use (DEU) if P(m; a) = pdu*z + p'.

A UEU is the first operation on an attribute along one path in
a method. A DED is the last data-define operation on an
attribute along one path in-a method. A DEU is the last
operation that is preceded by a data-define operation on an
attribute along one path in a method. According to Definitions
4.3, one path along which an attribute is accessed in a method
contains at most three exposable operations: one for UEU, one
for DED, and one for DEU, sequentially. A DEU always follows
a DED because the path in which a DEU exists contains at least
one data-define operation. Other operations are called non-
exposable. The exposable flow information of a method can be
defined by eliminating non-exposable operations from the flow
information of the method. :

The sequence of operations along a path after simplifying the
loops [9] and eliminating the non-exposable operations is one of
the following path expressions: udu, ud, du, u, d, and L. To
facilitate the inter-method anomaly analysis, a path expression
in a method is then reduced as a subset of (or equal to) {udu, ud,
du, u, d, I}. In the set, symbol u which is the first of udu, ud,
and u is a UEU, and that being the last of udu and du is a DEU.

Accordfng to Definition 4.1, an inter-method anomaly is
determined in five kinds of path expressions, pd+p', dp”, dp"+1,
u*, and up+p’. pd+p’ means that there exists one string ending
with d, a DED. dp"” denotes all strings beginning with 4. It
implies that there is a DED in each string of the path expression,
and no UEU. In the reduced path expression of dp", all elements
still begin with d. dp"+] is similar to dp” and the reduced path
expression contains one more element . u* can be regarded as
l+uu. For the detection, uu has the same power as 1. Both u*
and up+p’ have a UEU. Let P'(M; x) denote the reduced path
expression of P(M; x). For an object, when method M, is
invoked after method M;, a inter-method anomaly, a useless
data-define operation, in M; can be detected if the first two cases
in Definition 4.1 holds. The first case can also be detected with
reduced path expression. Here, P'(M;}; A)) contains d, ud, or both,
and P'(My; Ay is {du}, {d}, or {du, d}. The DED in P'(M;; A) is
a useless data-define operation because each element in P'(Mj;
A;) begins with a DED. The second case holds with P'(M,; A)
that may contain one more element . An illegal data-use
operation is detected when the third case occurs. Now, P'(M;; A)
is {u}, {1}, or {u, I}, and P'(M; A;) contains at least one element
in {udu, ud, u}. The UEU in P'(M,; A)) is an illegal data-use
operation since there is no DED in P'(Mj; A;). Therefore, a inter-
method anomaly can be found with reduced path expressions.

Proceedings of international Conference on Distributed
Systems, Software Engineering and Database Systems

The first case in Definition 4.1 can formally be described with
reduced path expression as
PM; A) N {nd, d}# D forP(M,,A,)*(pd+p’) and
P'My; A) A {udu, ud, u, 1}y = B AP My A) 0 {du, d} #
& for P(M,; Ap =dp”.
The rest can be seen in Algorithm 4.1 which detects an inter-
method anomaly between two methods. The result of Algorithm
4.1 is d, u, or n, where d denotes a useless data-define operation
on the attribute, # denotes an illegal data-use operation, and n
means no inter-method anomaly.

Algorithm 4.1 Inter-MethodAnomalyDetection
Let P'(M; x) denote the reduced path expression of x in M,

and M, and M, be the constructor and destructor of a class.

Input P, Py, Case: P;and P two path expression methods,
Case i 1s a flag to md1cate which case of detecting an inter-
method anomaly to be applied.

Output result: 4 for a useless data-define operation; 1 for
an illegal data-use operation; n: for no anomaly.

Begin
result ;= n;
if (Case = 1) then // case (1) in Definition 4.1
if (Pn{ud, d} # @ A P{udu, ud, u, 1}=0 A
Pin{du, d} # D) then
result :=d,
endif
endif
if (Case = 2) then // case (2) in Definition 4.1
if (P {ud, d} # D A Py {udu, ud, u}=2 A
P, {du,d, 1} # Q) then
result :=d,
endif
endif
if (Case = 3) then // case (3) in Definition 4.1
if (P {udu, ud, du, d} =D A Pf{u, 3#D A
Pin{udu, ud, u} # &) then
result = u;
endif
endif
output result;
End.

An algorithm to detect a message-sequence anomaly derived
from Definition 4.2 is illustrated in Algorithm 4.2. For two
given methods, according to the case of Definition 4.1 to which
they belong; the reduced path expressions of each attribute in
the two methods are examined by the inter-method anomaly
detection. The result of this algorithm indicates whether the two
methods have a message-sequence anomaly or not.

Algorithm 4.2 Message-SequenceAnomalyDetection
Let MP'(M) denote the reduced flow information of M,
P'(M; x) denote the reduced path expression of x in M, and
M, and M, be the constructor and destructor of a class.

336

Input M;, M‘ M; and M, are two methods.
Output result: true for a message-sequence anomaly; false

for none.
- Begin
result := true;
if (M; # M, A M # M) then

if (M, # M,,) then // case (1) in Definition 4.1
for each attribute x such that P'(M}; x) €
MP'(M)) A P'(M,; x) € MP'(M)) do
if (Inter-MethodAnomalyDetection(
P'(Mj; Aj), P (M Aj), 1) = u) then
result := false;
endif
endfor
else //case (2) in Definition 4.1
for each attribute x such that P'(M; x) €
MP'(M;) A P'(M;; x) € MP'(M}) do
if (Inter-MethodAnomalyDetection(
P'(M;; A)), P'(M;; Aj), 2) = u) then '
result := false;
endif
endfor
endif
endif
if (M; = M; A My # M) then // case (3) in Definition 4.1
for each attribute x such that P'(Mj; x) € MP'(M)) A
P'(My; x) € MP'(M,) do .
if (Inter-MethodAnomalyDetection(
P'(M;; A)), P'(M,; A)), 3) = u) then
result ;= false;
endif
endfor
endif
output result;
End.

Based on Definition 4.3, we designed an algorithm for
detecting class-definition anomalies in a class as below. The
reduced path expressions of all attributes in any two methods of

‘a class are examined for the inter-method anomaly detection.

The result of the algorithm is a set of class-definition anomalies
existing in a class. For example, (M, A;, d) in the set denotes
that a class-definition anomaly in method M; with respect to
attribute A; is a useless data-define operation. -

Algorithm 4.3 Class-DefinitionAnomalyDetection
Let a class C‘= {I(AI, Az, cees Am, Ml, Mz, weey M,,) ‘AI; Az, vy
A, are private attributes, M;, Mj,.., M,,.; are public
‘methods, and M; and M, are the constructor and
destructor respectively.}, and P'(M; x) be a reduced path
expression of x in M.
Input C: a class with its flow information modeled with the
HLF model
Output AnomalySet: {(M;, x, a) A class-deﬁnition .
anomaly in M; with respect to attribute x is a useless data-
define operation for a=d, or an illegal data-use operation
for a=u.}

Begin
AnomalySet = &;
fori:=1tomdo
forj:=1tondo
AnomalyFlag_D:= true;
AnomalyFlag_U:= true;
fork:=1tondo
if(j#nA2<k<n-1) then
if (Inter_MethodAnomalyDetection(
P'(Mj; A), P'(My; A), 1) # d) then
AnomalyFlag_D:= false;
endif
endif
ifG#n Ak=n)then
if (Inter_MethodAnomalyDetection(
Pi(Mj; A), P'(M; A), 2) # d) then
AnomalyFlag_D:= false;
endif
endif
if(j#1and 1 <k<n-1) then
if (Inter_MethodAnomalyDetection(
 P'(M A), P(M;;A), 3) # u) then
AnomalyFlag_U:= false;
endif’ ’
endif
endfor
if (AnomalyFlag_D) then
AnomalySet := AnomalySet U {(M;, A;, d));
endif
if (AnomalyFlag_U) then
AnomalySet := AnomalySet U {(M;, A;, u));
endif
endfor
endfor
output AnomalySet;
End.

Since the size of a reduced path expression will not increase _

as the number of path does, the inter-method anomaly detection
algorithm can be_implemented with cost-effective bit-pattern
_ computation (see Appendix). To demonstrate the class-
definition anomaly detection, we employ class Stack in Figure 1
with some modification shown in Figure 2 as an example.
Suppose an error exists at line 21 in class Stack once the symbol
‘==" is mis-typed as ‘=" (see Figure 2). The path expression of
attribute size in method full() is d. The reduced path expressions
and the corresponding bit patterns are shown in Table 3 (see
Appendix). After the execution of Algorithm 4.3, a class-
definition anomaly set is generated, AnomalySet = {(full, size,
d)}. As aresult, a class-definition anomaly exists in method full()
and indicates that there is a useless data-define operation on
attribute size. '

20. int full()({

21. if (size = top+l) return 1;//top:u; size:q;
22. else return 0; };

Figure 2. An example of a class-definition anomaly

337

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C. -

S. Conclusion and Future Work

In this paper, we have presented the High-Level Flow model
for OO programs. The HLF model introduces additional flow
information associated with object orientation, message passing,
encapsulation, inheritance, and polymorphism features. Besides
conventional data flow anomalies, two types of anomalies have
been defined due to OO features. A message-sequence’ anomaly
can help users to examine an appropriate method invocation
sequence, whereas a class-definition anomaly can indicate a
programming error in-a class. The algorithms for detecting these
anomalies can be implemented efficiently with bit-pattern
computation. Currently, the HLF model has not considered alias
and global variables yet, becaise these variables seldom appear
in programs with well object-orientation. The HLF model will
be extended with the use of self [6] or this [13] variable." In
addition, we will apply these anomalies for OO program testing
and debugging.

Acknowledgment

This research was partly sponsored by National Science
Council, Taiwan, ROC, under contract No. NSC85-2213-E009-
030.

References:

[1]1 F.E. Allen and J. Cocke, “A Program Data Flow Analysis
Procedure,” Communications of the ACM, vol. 19(3),
pp.137~147, 1976.

[2] W. Berg, M. Cline, a‘nd‘ M. Girou, “Lessons Learned from
the O8/400 OO Project,” Communications of the ACM, vol.
38(10), pp.54~64, 1995. _ '

[3] K.D. Cooper and K. Kennedy, “Interprocedural Side-Effect
Analysis in Linear Time,” Proceedings of the SIGPLAN '88
Conference on Programming Language Design and
Implementation, pp.57~66, 1988.

[4] J. Ferrante, K.J. Ottenstein, and J.D. Warren, "The Program
Dependence Graph and Its use in Optimization,” ACM
Transactions on Programming Languages and Systems,

~ Vol.9,No. 3, pp.319~349, July 1987.

[5] L.D. Fosdick and L.J. Osterweil, “Data Flow Analysis in
Software Reliability,” ACM Computing Surveys, vol. 8 (3),
pp-305~330, Step. 1976. ’

[6] A. Goldberg and D. Robson, Smalitalk-80: The Language

. and its implementation, Addison-Wesley, Reading, 1983.

[7] M.S. Hecht, Flow Analysis of Computer Programs, Elsevier
North-Holland, Amsterdam, 1977.

[8] S. Horwitz and T. Reps, “The Use of Program Dependence

- ‘Graphs in Software Engineering,” Proceedings of the 14th

International Conference _on.. Software Engineering,
pp.392~411, 1992.

[9] 1C. Huang, “Detection of -Data Flow Anomaly Through
Program Instrumentation,” IEEE Transactions on Software
Engineering, vol. SE-5(3), pp.226~236, May 1979,

Proceedings of International Conference on Distributed
Systems, Software Enginéering and Database Systems

[10] J. Jachner and VK. Agarwal, “Data Flow Anomaly
Detection,” IEEE Transactions on Software Engineering,
vol. SE-10(4), pp.432~437, 1984.

[11] S.S. Muchnick and N.D. Jones, Program Flow analysis:
Theory and Applications, Prentice-Hall Inc., 1981.

[12] B.K. Rosen, “High-Level Data Flow Analysis,”
Communications of the ACM, vol. 20(10), pp.712~724,
19717.

[13] B. Stroustrup, The C++ Programming Language,
Addison-Wesley, Reading, MA, second edition, 1991.

[14] M. Sudholt and C. Steigner, “On Interprocedural Data
Flow Analysis for Object Oriented Languages,” Lecture
Notes in Computer Science, vol. 641, pp.156~162, 1992.

[15] S. Subramanian, W.T. Tsai, and S.H. Kirani, “Hierarchical
Data Flow Analysis for O-O Programs,” Journal of OOP,
vol. 7(2), pp. 36~46, 1994.

{16] M. Weiser, “Program Slicing,” IEEE Transactions on
Software Engineering, vol. 10(4), pp.352~357, July 1984.

[17] S.S. Yau and S.S. Liu, Some Approaches to Logical
Ripple-effect Analysis, Software Engineering Research
Center, SERC-TR-24F, University of Florida, October
1988.

Appendix:

The inter-method anomaly detection algorithm can be
implemented efficiently with'bit-pattern computation. A reduced
path expression contains at most six types of strings; it can be
represented as a 6-bit pattern, where each bit of the pattern
~ denotes the existence of oné type of reduced path expression.
The mapping ofa bit to a path is shown in Table 2. For example,
the reduced path expressions of Figure 2 corresponding 6-bit
pattern forms are shown in Table 3.

With the mappings in Table 2, we 1llustrate Algorithm 4.1
with pseudo. code as follows.

Inter-MethodAnomalyDetection(P;, Py, A-Case)
Input P;, P, A-Case: P; and P, are two reduced path
expressions of 6-bit pattern forms, and A-Case is a flag to
indicate which case of detecting an inter-method anomaly to
be applied.
Output AnomalyType: d for a useless data-define operation;
u for an illegal data-use operation; n for none anomaly. *
{

AnomalyType :=n;

switch(A-Case)

case 1: // case (1) in Definition 4.} .)
if ((P;&010010)£000000 A (P& 10101)= 000000
A (PL&001010)¢000000)

338

AnomalyType :=d;
break;
case 2: // case (2) in Definition 4.1
if ((P;&010010)000000 A (Pr&110100)=000000
A (P1&001011)2000000)
AnomalyType :=d;
break;
case 3:.// case (3) in Definition 4.1
if ((P;&111010)=000000 A (P;&000101) = 000000

A (P&110100)%000000)
AnomalyType :=u;
break;
b
return AnomalyType;

}

In the pseudo code above, (P;&010010) # 000000 means that
P'(M; x)n{ud, d} # &. Then, (P,&110101) = 000000 means
that P'(My; x) N {udu, ud, u, I} = &, whereas (P;&001010) #
000000 means that P'(M;; x) n {du, d} # ©. The other bit-
pattern computation can be interpreted by similar way.

Table 2. The mapping of a 6-bit pattern to a reduced path
._expression
Bit Pattern be bs: i ba:. ba b2 bl

Value |0 (1 i0iti0i1i0i1i0i1i0:l

Reduced | @ iudui@iudiDidui@iui@id:iDil

path exp

Table 3. Bit pattern for the reduced path expressions of class

Stack

Attr.. | Reduced path exp bebsbabsbaby
size P'(Stack; size)=du - 001000
' P'(push; size)=I 000001
P'(pop; size)= [000001
P'(empty; size)= ! 000001
P'(full; size)=d 000010
. P'(~Stack; size)=1 000001
s P'(Stack; s)=d 000010
- | P'(push;s)=d 000010
P'(pop; s) = u 000100
P'(empty; s) =1 000001
P(full; s)=1 000001
) | P(~Stack; s)=du i 001000
top | P'(Stack; top)=d . 000010
P'(push; top)=ud 010000

| P'(pop; top)=udu 100000"
-P'(empty; top)=u 000100
- P(full; top)=u 000100
| P(~Stack; top)=1 000001

