Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Experlence with Building Reliable RPC Servers Based on a Fault Tolerant
RPC Library

Jyh-Tzong Chiou, Charles Changli Chin, Shang-Rong Tsai
Department of Electrical Engineering
National Cheng Kung University, Tainan, Taiwan, ROC

Abstract

This paper presents a fault tolerant RPC mechamsm
based on Sun RPC and IP multicast protocol. The fault
tolerant RPC mechanism is. provided as an RPC library,
called libFTRPC, whose interface is compatible with that
of conventional Sun’s RPC library. Thanks to this
compatibility, a reliable RPC server can be developed in
the same way a conventional RPC server is constructed.
The service reliability is ensured by replicating the server
to a group of server replicas. Coordinator-cohort
replication model in conjunction with read-one/write-all
policy is used to guarantee state consistency between the
server replicas.

We also present our experience with building several
reliable servers, including the portmapper and NFS server,
over our fault tolerant RPC mechanism. The results of
performance evaluation shows that the reliable NFS

server has the same performance as the single

unreplicated NFS server has when serving read-only
requests.

1. Introduction

As a major interprocess communication mechanism in
distributed environments, RPC (Remote Procedure Call)
[1] has been widely provided and has become a popular
* method in constructing distributed applications. Its
attractive advantage is simplicity. RPC makes
constructing distributed programs an easy task by
extending the conventional procedure call scheme to
distributed environments and hiding from programmers
the complications involved in communication, concurrent,
and transmission errors. When writing RPC programs,
programmers can use programming paradigm similar to
conventional local procedure call while calling and called
procedures are allowed to reside on different machines.

Unfortunately, despite the convenience provided by
RPC, most existing RPC mechanisms lack in support for
fault tolerance. Suppose a client makes a service request to
a server, this server might fail due to underlying hardware

failures while it is executing the requested procedure. The
client will be suspended indefinitely awaiting the result of
the call. If this server is responsible for providing
important .system services, its failure might cause a
disaster in the system.

“We have developed a fault tolerant RPC mechanism
[10] by which an RPC server can be made fault tolerant by
replicating it to a group of server replicas running
concurrently on different nodes among the network. In the
face of node failures, the server can continue to provide
services as long as at least one server replica survives the
failures. We adopt the coordinator-cohort method in
conjunction with read-one/write-all policy to achieve the
goal of fault tolerance. One of the server replicas is
designated as the coordinator and the others act as cohorts.
When serving requests from clients, the coordinator is
responsible for coordinating the cohorts to maintain state
consistency among the server replicas.

In the proposed RPC scheme, we have incorporated the
process group abstraction [2,6,7] into the fault tolerant
RPC model. The replicas of a server group are viewed as a

“process group. IP multicasting [3] is used as the

underlying communication protocol for coordination
between group members (server replicas). It helps to
reduce the overheads of sending a message to all server
replicas one by one. Furthermore, we also exploit the
parallelism of the server replicas to have better
performance when dealing with read-only requests.

In implementing the fault tolerant RPC mechanism,
we have paid special attention to failure transparency and
replication transparency. Existing clients can access the
fault tolerant server group in the same way as they access
conventional RPC server, without any modification to the
client programs. In case of server failures, there is no need
for clients to participate in the activities of server recovery.

This paper is structured as follows. In next section we
introduce the overview of the proposed fault tolerant RPC
mechanism. A new concept of Distributed Reliable Virtual
Machines built on the fault tolerant RPC is also introduced.
In section 3, the basic assumption, state machine
assumption, for RPC servers is made. How a RPC server

316

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

]
! Server Group
: Cohort Servers
Client ‘ Coordinator Server l
' .
: l
t . -
Client Code , E A Server Code Server Code
4
Al @ A4y
Client Stub v |5) | |Server stub & | | server swb
1]
t H T —
1 . 1
' RPC lib : g RPC lib :
1

RPC lib D P e K| O O :
E \] GrouPNI;/IOZm;gment E Y Group Management
v ule Module

L Ay A A
uppp Y ! UDP/AP UDP/P -
with IP multicast - ‘with IP multicast with IP multicast
) f—
.
E 136.2.2.2:2049 Server to Server 236.2.2.2:2049
1 ' Protocol
M ©® | o 3) @
RPCE eply IP multicast datagram
)
RPC r_%qu est 1P multicast datagram

Figure 1. Structure of the Fault Tolerant RPC Mechanism

program initializes to join a server group and to run on a
DRVM is also presented. In section 4, we present our

- experience with building fault tolerant RPC servers over
our fault tolerant RPC mechanism. Finally, the
conclusions of this paper are given.

2. Overview of Fault Tolerant RPC Mechanism

_Our fault tolerant RPC mechanism is implemented
over Sun RPC [8] and IP multicast protocol [3], and is
intended to provide RPC programs with the same interface
as what Sun RPC provides. With this compatibility feature,
many servers based on Sun RPC, such as the Sun NFS
server [9] and the NFS mount server, can be easﬂy ported
to be their fault tolerant counterparts.

2.1 Software Structure of Fault Tolerant RPC Library

The layered software structure of the fault tolerant
RPC mechanism is depicted in Figure 1. Compared with
standard Sun RPC scheme, the notable difference is that
the RPC library is extended to a fault tolerant RPC library,
libFTRPC, which includes an additional process group
.management module. Process group is an operatmg
system level abstraction that has been proposed as a

desirable support for enhancing system reliability,
improving system parallelism, and simplifying the design
of distributed applications. In the fault tolerant RPC
environment, an RPC programmer can think of his server
as a group of server replicas collaborating to provide fault
tolerant services to their client processes. From the client's
point of view, however, it has the illusion that it just faces
a single unreplicated server. Thus, server group is
transparent to clients. The group management module is
responsible for coordinating the members of a server
group in order to provide this replication transparency. In
addition, this module also handle the details relevant to
fault tolerances, such as reconfiguring server group when
group member leaving or joining the group, recovering
server's state when server member reboots from its failures,
detecting failures of servers and, furthermore, balancing
workload of requested calls among server members. The
protocol used for process group management module in a
server to cooperating with other server members is called
the Server-to-Server Protocol (abbreviated as SSP).

- As shown in Figure 1, in order to take advantage of
fault tolerance, the server procedures need to be linked
with server stub and the libFTRPC. The server stub is just
the same stub as is used in conventional Sun RPC systems.
To start up a service, a user can replicate his or her server

317

Proceedings of International Conference on Distributed -
Systems, Software Engineering and Database Systems

to a number of server replicas by running the same
server program on different nodes among the network.
When one server begins its execution, it uses SSP to join
the server group and to gather the membership
information of the server group. Then, it waits for the
arrival of the request messages sent by client.

It is important to note that all server members in a
server group must associate their services with the same
port number and have their service sockets joined in the
same IP multicast address, e.g., 236.2.2.2 as shown in
Figure 1, in order to receive client requests and SSP
protocol messages. For the outside world, this IP multicast
address in conjunction with the server port number are the
identifier of the server group. Hence, we can logically
think that there is a single unreplicated server (actually, a
group of servers) running on a virtual machine with
236.2.2.2 as its IP address. This conception leads to the

DRVM (Distributed Reliable Virtual Machine) abstraction .

described subsection 2.3.
2.2 Read-one/write-all Coordinator-cohort Scheme

We adopt a variant of the coordinator/cohort approach
as our replication technique to maintain state consistency
among all server replicas in a server group. Here, we just
give a brief description of this scheme in our fault tolernat
RPC mechanism; for more details, refer to [10].

When a client makes a remote call, it invokes a client
stub procedure to marshal the parameters of the remote

call-and to assemble this marshaled parameters with the .

remote call identifier into a request message, and then
multicasts this request message to all members in the
server group. In a server group, there are two types of
server replicas: one of the server is designated as the
coordinator and the others are cohorts. Upon receipt of the
request message, instead of executing the requested
procedure immediately, the cohorts put the. request
message in a request queue. Unlike cohorts, the
coordinator forward a message concerning the client
* request to all cohorts. This forwarded message contains a
sequence number and a message signature that can
uniquely identify the original client's request message.
The sequence number determines when this client request
should be served with respect to other client requests.
After the forwarding phase, the servers call the
dispatch routine of RPC library to dispatch this request
and cohorts serve requests according to the forwarded
messages from the coordinator. The SSP protocol will
guarantee that all cohort serve all client requests in the
same order as defined by the coordinator. Therefore, all
servers in the same group will have the same server state if
all of them start with the same initial state. Hence, one-
copy serializability is guaranteed. After the requested

procedure completes, the coordinator replies its return
data to client on behalf of the server group.

Requests whose corresponding service routines do not
modify server state could be handled in the same way as is
described above. But, this scems unnecessary because such
requests do not change anything. In our coordinator-
cohort model, the replica coordination is relaxed for read-
only requests in order to have better performance and
response time.

When a read-only request issued from a client arrives
in the server group, each server replica makes a decision
on who should serve the request. This decision is made
according to the server number of the sérver replica and

" the transaction id of the request. The server number is

assigned to a server replica while it joins the server group
and may change when other server replicas join or leave
(crash) the group. The server number ranges from 1 to n;
n is the number of server replicas in the server group. The
transaction id is assigned randomly by RPC routine on the
client side and is put in a request message. The server
whose server number equals ((m.x_id mod n)+1) is
selected to serve the read-only request, where m.x_id is
the transaction id of the request message m. The other
servers just ignore this request by discarding it.

To provide a way for server program to specify the
read-only service routine, a library routine, read_only(), is
included in libFTRPC. The read_only() routine takes the
program number, version number and procedure number
of the read_only service routine as the parameters.

With the support of read-only operation, we hope that
the workload of the read-only requests can be distributed
among the server hosts. Therefore, in case of multiple
clients, the performance of the server group will be better
than a single server if most of the requests are read-only.

Since clients use the IP multicast protocol to send
requests to all servers, they can access the fault tolerant
service transparently without the knowledge of ‘the
existence of the server replication. If there are failures
occurring to servers, failure recovery can be taken care of
entirely within the server group without clients getting
involved. When the coordinator crashes, a cohort would be
elected as new coordinator to continue to coordinate all
other nonfaulty cohorts. The client can continue to access
the service because the reformed server group still use
the same group identifier as the old ome. Using IP
multicast protocol eliminates the need for clients to switch
to the new coordinator from the failed one.

Owing to the use of IP multicasting, the fault tolerant
RPC program can only run on nodes with installation of IP
multicast protocol, which has already been provided for a
variety of UNIX systems. Since IP multicast can support
only UDP transport, our fault tolerant RPC mechanism
can't support RPC programs running over TCP transport.

318

Since we have kept most of the libFTRPC interface
compatible with -the original ‘SUN RPC, most of the
server code can be retained when an existing server is
made fault tolerant. What the programmer needs to do is
to add procedures to deal with transferring server state
from the coordinator to a new joining server, as described
in section 3. We have taken advantage of this feature to
port the portmapper, Sun NFS server and mount server
into our fault tolerant environment by making very little
modifications to their existing server programs.

2.3 DRVM-Distributed Reliable Virtual Machine

As described above, a server is replicated to a group of
server members rupning on a collection of nodes
connected by a network. Figure 2 shows a possible
configuration where there are four groups of servers
distributed on the network. The four groups are PMAP
(portmapper), NFSD (Sun NFS server), MOUNTD (NFS
mount server) and a = user-provided server (server
developed by application programmers). Each of NFSD
group and MOUNTD group consists of three server
members, and each of PMAP group and user-provided
server is assigned a two-member group.

DRVM: 236.2.2.2

Lt et dl e et]
' '
']
: y
H other server .
. 1234 H
' MOUNTD !
: 400 '
! 1
: '
' '
: 1
1

' access reliable '
services 4) H

"

)

client PMAP NESD
process 111 2049 !
i

1

1

i

]

]

The numbers below the group names are the UDP port
numbers used by service ports on which the servers wait
for the arrival of requests. Suppose that all the servers
associate their service ports with the same IP multicast
address, e.g. 236.2.2.2. Then, for example, a client can
access the NFS service by sending a request message
destined for port 2049 at host with IP address equal to
-236.2.2.2. Clients can make requests to the other server
groups in similar manner. Given this, from the client’s

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

point of view, it seems as if there were a host with IP
address 236.2.2.2 and four servers were running on it

- We have modeled this abstract host as a Distributed
Reliable Virtual Machine (DRVM), as illustrated in
Figure 2. From the client's point of view, a DRVM is a
reliable - host that provides reliable service via its
designated IP multicast address. When writing RPC
programs in our fault tolerant RPC environment, a
programmer can imagine that his server programs would
run on the DRVM. As in standard Sun RPC system, his
s¢rver program may choose to register its service with its
DRVM's portmapper and client programs can look up the
"port number of any remote service supported by a fault
tolerant server group from the portmapper. -

3. State Machine Assumption and Server Initialization

In the following discussion, we define that a server
consists of state variables, which represent the server state,
and operations, which read the state variables and/or
change the server state. The program variables and service
routines of a server program implement its state variables
and operations respectively. A client makes a request to -
execute a service routine, therefore applying an operation
on the server state. Execution of each service routine is
atomic; ie., it can’t be intercepted by other service
requests. Besides, server program is assumed deterministic.
That is, if all server replicas begin execution with the
same initial state, all of them will reach to the same server
state, generate the same sequence of responses and outputs
when given the same sequence of requests.

In fact, the above definition and assumption consider a

server to be a so-called state machine [5]. And, a server

group implements a fault tolerant state machine. The key,
as is pointed out in [5], for implementing a fault tolerant
state machine is to ensure Replica Coordination; i.e., all
replicas receive and process the same sequence of requests.
In the fault tolerant RPC mechanism, replica coordination
is taken care of by the server-to-server protocol (SSP),
which is the primary task of the process group
management module in Figure 1.

Server Initialization

When a server replica starts up, it needs to join the
server group that it belongs to. By joining server group, a
replica can learn the membership information of the group.
Also, joining server group allows the server replica to
acquire the current server state, i.e., the values of the state
variables, if there exist other acting servers. Thus it can
have the correct state consistent with the rest of the server
replicas in the group.

The user-written initialization code for a fault tolerant

319

Proceedings of International Conference on Distributed
" Systems, Software Engineering and Database Systems

server program is quite similar to that of a traditional Sun
RPC server program. One exception is that it begins with
a routine mamed MAIN(Q rather than main(). When
starting a server program, a user has to specify an IP
multicast address as the first arguments for the server
program. This IP multicast address is considered as the IP
multicast address of the DRVM on which the server is
assumed to execute. The main() routine provided in the
1ibFTRPC keeps this IP address in a global variable. After
the system-provided main() completes, the user's MAIN()
is then called and the rest of the arguments following the
IP multicast address are passed to it.

In the MAIN() routine, a server replica creates a

UDP socket and binds a local port to the socket. It then
creates a UDP handle using svcudp_create() in libFTRPC
and calls the svc_register() to declare its program number,
version number and UDP handle to the RPC library. The
svc_register() also registers the program number,
version number and port number with the DRVM
portmapper if the server choose to do it. Note that, at this
point, svc_register() automatically associates the UDP
socket with the user specified IP multicast address.
- Therefore, when the server replica waits on the UDP
socket, it can receive the messages destined for its server
group executed on the specified DRVM. MAIN() routine
ends with calling svc_ran(), which starts with activities of
joining group.

When svc_run() is called, it first multicasts a
Join_Group request to the group that it belongs to. On
receiving the Join_Group request, the coordinator of the
server group is responsible for transferring current server
state to the new joining server and to inform all server
replica the new group membership information. To
transfer server state to the joining server, server program
needs to provide two procedures to be used by the
coordinator and joining server respectively. transfer_state()
is used to pack the server state in a message and return a
pointer - to the message. The coordinator call
transfer_state() to get server state and sends the state

" message to the joining server. On receiving the state
message, the joining server calls restore_state() to
initialize its state.

If there is no currently active server in the group, this
replica becomes the coordinator of the server group after
several Join_Group requests have been multicast and a
fixed period of time has expired. After joining a server
group, a server waits on its service port for the arrival of
the client's requests.

4. Application Examples - Portmapper and NFS Server

This section presents our experience with porting
existent non-replicated RPC servers into the DRVM

environment using the fault tolerant RPC library described
in the paper. The example servers are portmapper and
NFS server, which are two important and classical
applications using Sun RPC. We ported these existing
servers in order to demonstrate the compatibility feature of
the libFTRPC and discuss the transparency issues arisen
from applying 1P multlcastmg to fault tolerant server
group. ;

If dynamic on-line recovery is a major concem “the
state of a“server program should be accurately defined for
state transfer. When a server attempts to join an existing
server group, the current server-state needs to'be sent to
the new joining server, whose state can then be updated

- correctly before normal operation can proceed. In common

case, this server state may consist of only a set of variables,
and can be collected, compacted in messages. without

_difficulty, and transferred efficiently. In more complex

cases such as NFS server, on the other hand, the whole
exported file tree may need to be transferred. This could
last as long as several or tens of minutes. The processing
of client requests which arrive during the time period of
state transfer is deferred until the completion of the state
transfer. '

4.1 Portmapper

~As in conventional Sun RPC environment, the
portmapper provides a way for clients to look up and find
the port numbers of server programs running on DRVM.
The portmapper program maps RPC program and version
numbers to transport specific port numbers. It makes
dynamic binding of remote programs on DRVM possible.
The important data structure that portmapper maintains is
a list of mappings, called pmaplist. Each of the mappings
maps the tuple (program_number, version_number,
protocol) for one already existing server to the port
number that the server used. This list of mappings
comprises the server state of the portmapper.

The following four steps are what we have done to port
portmapper of the DRVM environment:

1. Substitute MAIN() for main() in portmapper program.
2. Before svc_run() is called, call read_only(), which is
used to declare PMAPPROC GETPORT,

PMAPPROC_DUMP, PMAPPROC_CALLIT as read-

only service routines.
3.Define the procedures, transfer_state() and

restore_stat(), for state transfer as listed in Figure 3.

4. Link the portmapper program with our libFTRPC
library.

‘In fact, these four steps can be generally used for
porting existing RPC servers, not limited to portmapper,
to the DRVM environment. Step 2 is optional; it is needed
only if there are read-only service routines to be declared

320

to increase performance.

1 void* transfer_state()
3 static - u_long stat buf[8*1024/sizeof{u_long)];
4 struct mess_stat *st_msg;
5 XDR - pmlixdr,
6 char *pmlbuf = (char *)stat_buf+ \
sizeof{struct mess_stat),
7 struct pmaplist *pml;
8 int *addr, ,
9 st_msg = (struct mess_stat*)&stat_buf]0];
10 st_msg->flags = 0;
11 xdrimem_create(&pmlxdr, pmlbuf, \
100*sizeof(struct pmaplist), XDR_ENCODE),
12 if (Ixdr_pmaplist(&pmixdr, &pmaplist)) {
13 printf(* xdr_pmaplist \
C encoding error \n"),
14 - : exit(0);
15 3 .
16 st_msg->stat_len = XDR_GETPOS(&pmixdr);
17. return((void*)stat_buf),
18}

19 struct pmaplist *newlist = - (struct pmaplist*)0;
20 restore_state(stat_msg)
21 struct mess stat *stat_msg;

2§

23XDR pmixdr; :

24 char *pmlbuf = (char *)stat_msg+ \
_sizeof{struct mess_stat),

25 stmct pmaphst *pml;

26 xdrmem_create(&pmlxdr, pmlbuf, \
: stat_msg->stat_len, XDR_DECODE),
27 if (Ixdr_pmaplist(&pmlxdr, &newlist)) {
28 printf{(* xdr _pmaphst decoding error \n"),
29 exit(0),

30 H
31 pmaplist = newlist;
32}

Figure 3. state transfer procedures for portmapper

Figure 3 shows the procedures for state transfer used in
portmapper. When a new portmapper is submitted to join
an existing portmapper group, the coordinator in the
portmapper group will call transfer_state() to obtain the
server state. The transfer stat() routine encodes the
pmaplist into XDR format, puts it in a state message using
XDR routine for pmaplist (line 12) and returns a pointer
to the state message (line 17). The coordinator then sends
the state message to the new joining portmapper.. Upon
receiving the state message, the new joining portmapper
calls restore_state() to decode the pmaplist into local host
representatxon and to install the new mappmg list as its
current server state.

After the program is compiled, the portmap‘per can be.

started by the following command

Joint Conference of 1996 International Computer Symposnum
December. 19~21, Kaohsiung, Taiwan, R.0.C.

Ipc.pmap 236.2.2.2
where rpc.pmap is the name of the executable and
236.2.2.2 is the IP multicast address of DRVM on which
the portmapper will be run. If there are any arguments for
the server, put them after the IP multicast address. The
1ibFTRPC takes the first argument as the multicast address
and associates the service socket, which is created by the
server to receive requests, with the IP multicast address on
behalf of the submitted server.

From this example, it is obvious that the porting
becomes an easy task. The reason for this is that the
interface provided by libFTRPC is compatible with that of
Sun RPC library.

4.2 NFS Server

The Sun Network Filesystem (NFS) protocol provides
a collection of remote procedures that allow a client to
access files on a server. It is designed to be portable across
different machines, operating systems, network
architectures, and ttansport protocols. This portability is
achieved through the use of RPC primitives built on top of
XDR.[9] The NFS has been widely' used in Unix
environments to make file sharing easier. Since reliability
of file server is important to a computer system, some
researches had focused to build reliable NFS servers. Here,
we show that the task of building a reliable NFS server is
simplified when it is built on top of the libFTRPC.

The source code from user-level Linux NFS version
2.1 is used for our porting. The goal is to replicate a file
tree onto a collection of hosts, on which a NFS server

-group is responsible for providing file service.

The data structure used in the NFS protocol to
reference a file is a file handle, which is provided by the
NFS server and used by clients to specify which file to
operate on. On serving a client request, the NFS server
needs to know the exact file corresponding to the file
handle in order to do the operation on it. The user-level
Linux NFS server version 2.1 uses the i~node numbers,
major device numbers -and minor device numbers for all
directories or files in the path name to encode the file
handle. This way, NFS server can convert from the
pathname to file handle and vice versa, without difficulty.
However, these numbers for various copies of a replicated
file are usually different on different hosts. This leads to a
problem that the file handle of a replicated file generated
on a server cannot be recognized by servers.on other hosts
even if all the servers have the same replicated file tree.
This obviously violates the deterministic assumption.

. To have unique, global file handle for a replicated file
in NFS server group, we used the pathname of the
replicated file to encode its corresponding file handle. The
method guarantees that file handles of a replicated file

321

Proceedings of international Conference on Distributed
Systems, Software Engineering and Database Systems

generated by all NFS servers are the same and that the

pathname can be reconstructed from its corresponding file
handle if all copies of the replicated file have the same
pathname on all servers.

In addition to fault tolerant NFS server group, we also
need a mount server in order to allow clients to get the
first file handle when clients mount the remote file
systems. The mount server return the file handle
referencing the mounted directory if the client has access
permission to the mounted directory. Of course, this file
handle returned by mount server need to be recognized by
the NFS server group. The client's mount requests are
recorded in a mount list; each entry contains a pair of the
client hostname and the mounted directory pathname.

The steps to port mount server are similar to those used
ﬂfor portmapper program. Two procedures of mount
‘protocol, MOUNTPROC_DUMP,
MOUNTPROC_EXPORT, can be declared as read-only
procedure in step 2. The server state of the mount server is
the list of remote mounted filesystems. State transfer
procedures listed in Figure 3 are modified to transfer the

current mount list from the coordinator to a new joining
server in order to meet the requirements of mount server.

Porting NFS server is complicated by transferring all
files in exported filesystems from coordinator to a new
joining server if on-line recovery is required. This can be

achieved by the cooperation of the state transfer
procedures, transfer_state() and restore_state(). The
transfer time may last several minutes to tens of minutes.

In our current porting of NFS server, we don't support
on-line recovery. Instead, we replicate (use Unix
commands) a group of NFS server, each with identical file
systems to support fault tolerance. This greatly simplifies
the porting because the NFS protocol is designed to be
stateless. The stateless NFS server need not maintain any
protocol state information about any of its clients in order
to function correctly.[9] Therefore, no other server state

. NFSPROC_STATFS.

than the state of the exported file system needs to be
transferred.

Again, we apply the four steps described above to port
NFS server to DRVM environment. The read-only service
routines include NFSPROC_GETATTR,
NFSPROC_LOOKUP, NFSPROC_READLINK,
NFSPROC_READ, NFSPROC_READDIR, and
The transfer_state() .and
restore_state() are made null procedures.

The resulting system described in this section is like
the DRVM shown in Figure 2. The mount server and NFS
server register their service ports with the DRVM's
portmapper. A client of NFS server may look up service

~ ports from portmapper, mount the NFS file system from

the mount server-and then it can access the replicated files
on the NFS server. _

From the experience with porting above three RPC
servers, we conclude that libFTRPC has great help in
developing fault tolerant RPC servers. libFTRPC conceals
server replication from server program, so that a server
program may be developed as a conventional RPC
program rather than a distributed fault tolerant program.
Moreover, since most interface of IbFTRPC is kept
compatible with the interface supported by Sun RPC
library, only limited changes need to be made to existing
servers for the benefit of fault tolerance.

4.3 Performance Measurement of Fault Tolerant NFS -
server’

The fault tolerant RPC mechanism described in this
paper has been supported as a library on SunOS, FreeBSD,
and Linux. We also had ported portmapper, mount server
and NFS server into the DRVM environment on top of the
Linux operating system, as described in previous section.
We measured the performance of the fault tolerant NFS
server. The hardware configuration used to generate the

Read 1k bytes per |[Read 2k bytes per RPC|Read 4k bytes per RPC| Read 8 k bytes per
< ‘RPC request request request RPC request
. \ i
non-FT NFS 50.07 38.11 26.56 22.92
FT NFS server 50.53 38.72 27.71 23.64

Table 1. Times (seconds) for sequentially reading an 8MB file from NFS server and server groups

Write 1k bytes per | Write 2k bytes per Write 4k bytes per Write8 k bytes per
request ' request request request .
non-FT NFS 46.67 34.40 26.33 21.51
1. server replica 47.07 34.87 26.54 21.57
2 server replicas 64.24 45.46 33.08 28.35
3 server replicas 73.58 53.22 43.31 3248

" Table 2. Times (seconds) for sequentially writing an 8MB file to NFS server and server groups

322

performance results was several 90 MHz Pentinum PCs
connected by 10Mbps ethernet.

Table 1 and Table 2 show, the measurement results.
The tests ran with both the NFS servers and the client
running at user-level. Since the NFSPROC_READ
procedure was declared to be read-only, requests for file
reading are served by read-one policy without any server
coordination needed. Thus the read throughput is
independent of the number of servers in a server group.
Nevertheless, requests for NFSPROC_WRITE procedure
are served by write-all policy and coordination between
server replicas is necessary to guarantee that all server
replicas serve all file writing requests in the same order.

5. Conclusions

This paper has presented a novel fault tolerant RPC
mechanism, which is based on Sun RPC and IP multicast
protocol. The mechanism is provided as a RPC library
with which a RPC server can be easily made fault tolerant
by replicating the server to a group of server replicas. The
- coordinator-cohort method with read-one/write-all scheme
is used as the replication technique of the fault tolerant
RPC mechanism.

The use of IP multicast has the advantages of
replication transparency and failure transparency. A client
of a fault tolerant server group can be shielded from the
details in coordination between server replicas. When
failures occur in a server group, the client is freed from the
need for switch to a new server even in the face of
“coordinator failures. Besides, using IP multicast also has
reduced the overhead incurred from the coordination
among server replicas. This transparency aspect has been
enable existing client programs to continue to use services
provided by fault tolerant server groups without any
modification to the client programs. "

We have successfully implemented a fault tolerant
RPC library, called libFTRPC, on the SunOS, FreeBSD,
and Linux operating systems. Since most. interface of the
fault tolerant RPC library is compatible with the standard
Sun RPC, existing server programs based on Sun RPC can
benefit from the fault tolerant library with only minor
modification being made. We has ported a user level NFS
server into its fault tolerant version by using the fault
tolerant RPC mechanism described in the paper. Our
experience with building the fault tolerant NFS server on
libFTRPC has shown that the fault tolerant RPC library
can greatly ease the design and implementation of fault
tolerant RPC server.

Performance measurements of the reliable NFS server
shows that it has the same read throughput as the
unreplicated NFS, though the coordination overhead
degrades the write performance. Considering that the NFS

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C. -

“server group may concurrently serve multiple read-only

requests, we believe that it will perform better than the
unreplicated NFS server if there are multiple clients
making read-only requests at the same time.

References

[1] Andrew D. Birrell and Bruce J. Nelson.
"Implementing Remte Procedure calls," ACM
trans. on Computer Systems, Vol. 2, No. 1, pp. 39-
59, February, 1984.

{2] Luping Liang, Samuel T. Chanson, and Gerald W.
Neufeld, "Process Groups and Group
Communications: Classifications and
Requirements," IEEE Computer, Vol 23, No.2, pp.
56-65, February 1995. '

[3] . Deering, "Host Extensions for IP Multicasting,"

RPC 1054, Stanford University, May 1988.

[4] Hector Garcia-Molina, "Elections in a Distributed
Computing System," /EEE Trans. on Computers,
Vol. ¢-31, No. 1, pp. 48-59, January 1982.

[5] Fred B. Schneider, "Implementing Fault-Tolerant
Services Using the State Machine Approach: A
Tutorial," 4CM Computing Surveys, Vol. 22, No. 4,
Pp. 299-319, December 1990. |

[6] M. Frans Kaashoek and Andrew S. Tanenbaum,
“Group Communication in the Amoeba
Distributed Operating System,” In- Proc. of the
Eleventh International Conference on Distributed
Computer Systems, pp. 222-230, May 1991.

[7] Kenneth Birman, Andre Schiper, and Pat

Stephenson, “Lightweight causal and Atomic
Group Multicast,” ACM Trans. on Computer
Systems, Vol. 9, No. 3, pp.272-314, August 1991.

[81 Sun Microsystems, Inc. RPC: Remote Procedure
Call Protocol Specification, Version 2. RFC 1057,
June 1988. _

[9] Sun Microsystems, Inc. NFS: Network File System
Protocol Specification, RFC 1094, Network
Information Center, SRI International, March 1989

[10] Jyh-Tzong Chiou, Charles Changli Chin and

~ Shang-Rong Tsai, “A Fault Tolerant RPC
Mechanism Based on IP Multicast,” Proc. 1996
Workshop on Distributed System Technologies &
Applications, 1996

323

